1
|
Yan J, Zhang X, Shi X, Wu J, Zhou Z, Tang Y, Bao Z, Luo N, Zhang D, Chen J, Zhang H. Metagenomic insights into the rapid recovery mechanisms of prokaryotic community and spread of antibiotic resistance genes after seawater disinfection. WATER RESEARCH 2025; 271:122887. [PMID: 39637691 DOI: 10.1016/j.watres.2024.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/26/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Disinfectants, such as bleaching powder, are widely employed in marine aquaculture worldwide to control the bacterial pathogens and eliminate antibiotic resistance genes (ARGs). Nevertheless, the rapid recovery of prokaryotic community compositions (PCCs) after disinfection may significantly influence the overall efficacy of disinfection. Presently, little is known about the rapid recovery mechanisms of PCCs and its impact on the removal of ARGs in seawater. In this study, 16S rRNA gene sequencing and metagenomic analysis were used to address the above concerns through simulating the disinfection process in aquaculture. The results showed that recovery of PCCs began within 16 h. The underlying mechanisms of the rapid recovery of PCCs were the synergistic interactions between microbes and the residues of disinfection-resistant bacteria (DRB). Disinfection resistance genes (DRGs) related to efflux pump serve as the primary molecular foundation providing DRB to resist disinfection. Among the 78 annotated ARGs, only 10 ARGs exhibited a significant decrease (P < 0.05) after 72 h, implying the ineffective removal of ARGs by bleaching powder. Furthermore, bacterial co-resistance to disinfectants and antibiotics was observed. Genome analysis of two highly resistant DRB from Pseudomonadaceae revealed that both DRB carried 16 DRGs, aiding the recovery of PCCs and the spread of ARGs. These findings provide novel insights in the mechanisms of the rapid recovery of PCCs and bacterial co-resistance to disinfectants and antibiotics, which can be crucial for the management of pathogens and antibiotic resistance in seawater.
Collapse
Affiliation(s)
- Jiaojiao Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Shanghai Treatgut Biotechnology Co., Ltd., Shanghai, 200441, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xinxu Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xinyong Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jialin Wu
- Ningbo Haiwei Ecological Technology Co., Ltd., Ningbo, 315141, China
| | - Ziang Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yawen Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhen Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Nan Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Huajun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Marine Economic Research Center, Donghai Academy, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Xu C, Hu C, Li F, Liu W, Xu Y, Shi D. Antibiotic resistance genes risks in relation to host pathogenicity and mobility in a typical hospital wastewater treatment process. ENVIRONMENTAL RESEARCH 2024; 259:119554. [PMID: 38964571 DOI: 10.1016/j.envres.2024.119554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Hospital wastewaters (HWWs) serve as critical reservoirs for disseminating antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). However, the dynamics and noteworthy shifts of ARGs and their associated pathogenicity, mobility, and resistome risks during HWWs treatment processes remain poorly understood. Utilizing metagenomic sequencing and assembly, we identified 817 ARG subtypes conferring resistance to 20 classes of antibiotics across 18 HWW samples from influent to effluent. Genes encoding resistance to multidrug, aminoglycoside and beta_lactam were the most prevalent ARG types, reflecting patterns observed in clinical settings. On-site treatment efforts decreased the relative abundance of ARGs by 77.4% from influent to secondary sedimentation, whereas chlorine disinfection significantly increased their abundance in the final effluent. Deterministic processes primarily drove the taxonomic assembly, with Proteobacteria being the most abundant phylum and serving as the primary host for 15 ARG types. Contig-based analysis further revealed 114 pathogenic ARB, with Escherichia coli, Pseudomonas alcaligenes, and Pseudomonas aeruginosa exhibiting multidrug-resistant. The contributions of host bacteria and pathogenic ARB varied throughout wastewater treatment. In addition, 7.10%-31.0 % ARGs were flanked by mobile genetic elements (MGEs), predominantly mediated by transposase (74.1%). Notably, tnpA exhibited the highest potential for ARG dissemination, frequently co-occurring with beta-lactam resistance genes (35.2%). Considering ARG profiles, pathogenic hosts, and transferability, raw influent exhibited the highest antibiotic resistome risk index (ARRI), followed by the final effluent. Chlorine disinfection exacerbated resistome risks by inducing potential pathogenic ARB and mobile ARGs, posing threats to the receiving environment. This study delineates ARG occurrence patterns, highlights mechanisms of ARG carriage and horizontal gene transfer, and provides insights for assessing resistance risks and prioritizing interventions in clinical settings.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Chun Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yumin Xu
- Department of Infection Control, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| | - Dake Shi
- Department of Infection Control, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
3
|
Zhao K, Wang L, Deng J, Zuo Q, Adila M, Wang X, Dai Z, Tian P. Determining the Disinfectants Resistance Genes and the Susceptibility to Common Disinfectants of Extensively Drug-Resistant Carbapenem-Resistant Klebsiella pneumoniae Strains at a Tertiary Hospital in China. Microb Drug Resist 2024; 30:407-414. [PMID: 39166283 DOI: 10.1089/mdr.2024.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) infection has become a significant threat to global health. The application of chemical disinfectants is an effective infection control strategy to prevent the spread of CRKP in hospital environments. However, bacteria have shown reduced sensitivity to clinical disinfectants in recent years. Furthermore, bacteria can acquire antibiotic resistance due to the induction of disinfectants, posing a considerable challenge to hospital infection prevention and control. This study collected 68 CRKP strains from the Fifth Affiliated Hospital of Xinjiang Medical University in China from 2023 to 2024. These strains were isolated from the sputum, urine, and whole blood samples of patients diagnosed with CRKP infection. Antibiotic susceptibility tests were performed on CRKP strains. Concurrently, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of disinfectants (benzalkonium bromide, 1% iodophor disinfectant, alcohol, and chlorine-containing disinfectant) against the test isolates were determined by the broth microdilution method. The efflux pump genes (cepA, qacE, qacEΔ1, qacEΔ1-SUL1, oqxA, and oqxB) were detected using polymerase chain reaction. The results showed that 21 out of the 68 CRKP strains exhibited extensive drug resistance, whereas 47 were nonextensively drug-resistant. The MIC value for benzalkonium bromide disinfectants displayed statistically significant differences (p < 0.05) between extensively drug-resistant (XDR) and non-XDR strains. Additionally, the MBC values for benzalkonium bromide disinfectants and 1% iodophor disinfectants displayed statistically significant differences (p < 0.05) between XDR and non-XDR strains. The detection rates for the efflux pump genes were as follows: cepA 52.9%, qacE 39.7%, qacEΔ1 35.2%, qacEΔ1-SUL1 52.9%, oqxA 30.8%, and oqxB 32.3%. The detection rate of the qacEΔ1-SUL1 gene in XDR CRKP strains was significantly higher than in non-XDR CRKP strains (p < 0.05). This indicates a potential link between CRKP bacterial disinfectant efflux pump genes and CRKP bacterial resistance patterns. Ongoing monitoring of the declining sensitivity of XDR strains against disinfectants is essential for the effective control and prevention of superbug.
Collapse
Affiliation(s)
- Kexin Zhao
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Liang Wang
- Department of Laboratory Medicine, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jinglan Deng
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Qiuxia Zuo
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Maimaiti Adila
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Xiao Wang
- School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Zhe Dai
- Fifth School of Clinical Medicine, Xinjiang Medical University, Urumqi, China
| | - Ping Tian
- Infection Management Department, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Health Care Research Center for Xinjiang Regional population, Urumqi, China
| |
Collapse
|
4
|
Xu C, Zhang Y, Hu C, Shen C, Li F, Xu Y, Liu W, Shi D. From disinfection to pathogenicity: Occurrence, resistome risks and assembly mechanism of biocide and metal resistance genes in hospital wastewaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123910. [PMID: 38570158 DOI: 10.1016/j.envpol.2024.123910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Hospital wastewaters (HWWs) represent critical reservoir for the accumulation and propagation of resistance genes. However, studies on biocide and metal resistance genes (BMRGs) and their associated resistome risks and driving mechanisms in HWWs are still in their infancy. Here, metagenomic assembly was firstly used to investigate host pathogenicity and transferability profiles of BMGRs in a typical HWWs system. As a result, genes conferring resistance to Ethidium Bromide, Benzylkonium Chloride, and Cetylpyridinium Chloride dominated biocide resistance genes (BRGs), whereas Cu resistance gene was the largest contributor of metal resistance genes (MRGs). Most BMRGs experienced significant reduction from anoxic-aerobic treatment to sedimentation stages but exhibited enrichment after chlorine disinfection. Network analysis indicated intense interactions between BMRGs and virulence factors (VFs). Polar_flagella, belonging to the adherence was identified to play important role in the network. Contig-based analysis further revealed noteworthy shifts in host associations along the treatment processes, with Pseudomonadota emerging as the primary carrier, hosting 91.1% and 85.3% of the BRGs and MRGs. A total of 199 opportunistic pathogens were identified to carry 285 BMRG subtypes, which mainly included Pseudomonas alcaligenes, Pseudomonas lundensis, and Escherichia coli. Notably, ruvB conferring resistance to Cr, Cetylpyridinium Chloride, and Dodine were characterized with the highest frequency carried by pathogens. Diverse co-occurrence patterns between BMRGs and mobile genetic elements (MGEs) were found from the raw influent to final effluent. Overall, 10.5% BRGs and 8.84% MRGs were mobile and among the 4 MGEs, transposase exhibited the greatest potential for the BMRGs dissemination. Furthermore, deterministic processes played a dominant role in bacterial communities and BMRGs assembly in HWWs. Bacterial communities contributed more than MGEs in shaping the resistome. Taken together, this work demonstrated widespread BMRGs pollution throughout the HWWs treatment system, emphasizing the potential for informing resistome risk and ecological mechanism in medical practice.
Collapse
Affiliation(s)
- Chenye Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yibo Zhang
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chun Hu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yumin Xu
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dake Shi
- Department of Infection Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Zhang L, Cui W, Zhai H, Cheng S, Wu W. Performance of public drinking water purifiers in control of trihalomethanes, antibiotics and antibiotic resistance genes. CHEMOSPHERE 2024; 352:141459. [PMID: 38360417 DOI: 10.1016/j.chemosphere.2024.141459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Point-of-use water purifiers are widely applied as a terminal treatment device to produce drinking water with high quality. However, concerns are raised regarding low efficiency in eliminating emerging organic pollutants. To enhance our understanding of the reliability and potential risks of water purifiers, the removal of trihalomethanes, antibiotics, and antibiotic resistance genes (ARGs) in four public water purifiers was investigated. In the four public water purifiers in October and November, the removal efficiencies of trichloromethane (TCM) and bromodichloromethane (BDCM) were 15%-69% (averagely 37%) and 6%-44% (averagely 23%). The levels of TCM and BDCM were lowered by all water purifiers in October and November, but accelerated in effluent compared to the influent in one public water purifier in December. The removal efficiencies of twelve antibiotics greatly varied with species and time. Out of twelve sampling cases, the removal efficiencies of total antibiotics were 25%-75% in ten cases. In the other two cases, very low removal efficiency (6%) or higher levels of antibiotics present in effluent compared to the influent were observed. Two public water purifiers effectively remove ARGs from water, with log removal rates of 0.45 log-3.89 log. However, in the other two public water purifiers, the ARG abundance accidently increased in the effluents. Overall, public water purifiers were more effective in removing antibiotics and ARGs compared to household water purifiers, but less or equally effective in removing trihalomethanes. Both public and household water purifiers could be contaminated and release the accumulated micro-pollutants or biofilm-related pollutants into effluent. The production frequency and standing time of water within water purifiers can impact the internal contamination and purification efficacy.
Collapse
Affiliation(s)
- Liangyu Zhang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Wenjie Cui
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Shengzi Cheng
- Tianjin LVYIN Landscape & Ecology Construction Co. Ltd., Kaihua Road 20, Hi-Tech, Tianjin, 300110, China
| | - Wenling Wu
- China Construction Industrial Engineering and Technology Research Academy Co. Ltd., Beijing, 101399, China
| |
Collapse
|
6
|
Wang HB, Wu YH, Sun YG, Xu YQ, Chen Z, Xue S, Zhang ZW, Ikuno N, Koji N, Hu HY. Flow-through electrode system (FES): An effective approach for biofouling control of reverse osmosis membranes for municipal wastewater reclamation. WATER RESEARCH 2024; 249:120890. [PMID: 38016222 DOI: 10.1016/j.watres.2023.120890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/01/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Yi-Ge Sun
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Song Xue
- CSCEC SCIMEE Sci.& Tech. Co., Ltd, Chengdu 610045, China
| | - Zhuo-Wei Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Nozomu Ikuno
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Nakata Koji
- Kurita Water Industries Ltd., Nakano-ku, Tokyo 164-0001, Japan
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| |
Collapse
|
7
|
Wang M, Masoudi A, Wang C, Wu C, Zhang Z, Zhao X, Liu Y, Yu Z, Liu J. Impacts of net cages on pollutant accumulation and its consequence on antibiotic resistance genes (ARGs) dissemination in freshwater ecosystems: Insights for sustainable urban water management. ENVIRONMENT INTERNATIONAL 2024; 183:108357. [PMID: 38056093 DOI: 10.1016/j.envint.2023.108357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
There has been increasing interest in the role of human activities in disseminating antibiotic-resistance genes (ARGs) in aquatic ecosystems. However, the influence of pollutant accumulation on anthropogenic pollutant-ARG synergistic actions is limited. This study explored the association of net cages with the propagation of anthropogenic pollutants and their consequences for influencing the enrichment of ARGs using high-throughput metagenomic sequencing. We showed that net cages could substantially impact the ecology of freshwater systems by enhancing i) ARG diversity and the tendency for ARG-horizontal gene transfer and ii) the overlap of mobile genetic elements (MGEs) with biocide-metal resistance genes (BMRGs) and ARGs. These findings suggested that the cotransfer of these three genetic determinants would be favored in net cage plots and that nonantibiotic factors such as metal(loid)s, particularly iron (Fe), displayed robust selective pressures on ARGs exerted by the net cage. The resistome risk scores of net cage sediments and biofilms were higher than those from off-net cage plots, indicating that the net cage-origin antibiotic resistome should be of great concern. The combination of deterministic and stochastic processes acting on bacterial communities could explain the higher ARG variations in cage plots (8.2%) than in off-cage plots (3.4%). Moreover, MGEs and pollutants together explained 43.3% of the total variation in ARG communities, which was higher than that of off-cage plots (8.8%), considering pollutants, environmental variables, MGEs, and assembly processes. These findings will inform the development of policies and guidelines to more effectively limit the spread of antimicrobial resistance and achieve the goal of sustainability in freshwater systems in urban areas.
Collapse
Affiliation(s)
- Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Abolfazl Masoudi
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Can Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Changhao Wu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Ze Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Xin Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Yuanjie Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry, and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
8
|
Yan M, Xu C, Li C, Feng Y, Duan J, Zhao K, Wu D, Li G, Yang S, Han X, Xie Y, Huang Y, Yu X, Wu J, Zou L. Effects of environmental disinfection on microbial population and resistance genes: A case study of the microecology within a panda enclosure. ENVIRONMENTAL RESEARCH 2023; 235:116662. [PMID: 37453509 DOI: 10.1016/j.envres.2023.116662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Widespread use of disinfectants raises concerns over their involvement in altering microbial communities and promoting antimicrobial resistance. This study explores the influence of disinfection protocols on microbial populations and resistance genes within an isolated enclosure environment and in the gut of giant pandas (GPs) held within. Samples of panda feces, air conditioning ducts, soil and bamboo were collected before and after disinfection. High-throughput sequencing characterized the microbial flora of GP gut and environmental microbes inside the artificial habitat. Microbial cultures showed that Escherichia coli (34.6%), Enterococcus (15.4%) and other pathogenic bacteria deposited in feces and the enclosure. Isolates exhibit a consistent resistance to disinfectant, with the greatest resistance shown to cyanuric acid, and the lowest to glutaraldehyde-dodecyl dimethyl ammonium bromide (GD-DDAB) and dodecyl dimethyl ammonium bromide (DDAB). The total number of the culturable bacteria in soil and bamboo were significantly diminished after disinfection but increased in the gut. After disinfection, the richness (Chao1 index) of environment samples increased significantly (P < 0.05), while the richness in gut decreased significantly (P < 0.05). Ten genera showed significant change in feces after disinfection. Metagenome sequencing showed that 126 types of virulence genes were present in feces before disinfection and 37 in soil. After disinfection, 110 virulence genes localized in feces and 53 in soil. Eleven virulence genes including ECP and T2SS increased in feces. A total of 182 antibiotic resistance genes (ARGs) subtypes, potentially conferring resistance to 20 classes of drugs, were detected in the soils and feces, with most belonging to efflux pump protein pathways. After disinfection, the number of resistance genes increased both in gut and soil, which suggests disinfection protocols increase the number of resistance pathways. Our study shows that the use of disinfectants helps to shape the microbial community of GPs and their habitat, and increases populations of resistant strain bacteria.
Collapse
Affiliation(s)
- Min Yan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunzhong Xu
- Shanghai Wild Animal Park, Shanghai, 201399, China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Yongqi Feng
- Shanghai Wild Animal Park, Shanghai, 201399, China
| | - Juntang Duan
- Shanghai Wild Animal Park, Shanghai, 201399, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Daifu Wu
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Guo Li
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Shengzhi Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, China
| | - Xinfeng Han
- College of Veterinary Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yue Xie
- College of Veterinary Science, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration (SFGA) on Conservation Biology of Rare Animals in the Giant Panda National Park, The China Conservation and Research Center for the Giant Panda (CCRCGP), Dujiangyan, 611830, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiawei Wu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Zhang M, Wang Y, Bai M, Jiang H, Cui R, Lin K, Tan C, Gao C, Zhang C. Metagenomics analysis of antibiotic resistance genes, the bacterial community and virulence factor genes of fouled filters and effluents from household water purifiers in drinking water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158572. [PMID: 36075417 DOI: 10.1016/j.scitotenv.2022.158572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study was to explore the influence and removal of household water purifiers (HWPs) on emerging contaminants in drinking water, and their distribution characteristics. The antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), virulence factor genes (VFGs) and bacterial communities were profiled in the fouled filters, influents, and effluents from HWPs with five steps of filtration after 150 days operation, using metagenomics. The results showed that the diversity of dominant species in Poly Propylene 1 μm (PP1) and nanofiltration membrane (NM) was significantly higher than that in other filters. Post-activated carbon (AC) was used to detect low species richness or diversity, and the highest proportion of dominant species, which contributes to the greater microbial risk of HWPs effluents in drinking water. The number of dominant bacterial genera in the filters disinfected with chloramine was higher than that in the same group disinfected with chlorine. The bacterial species richness or diversity in water was reduced by the purification of HWPs because the filter elements effectively trapped a variety of microorganisms. The relative abundance of Antibiotic efflux in the effluents of chlorinated and chloraminated HWPs was 5.58 × 10-3 and 4.60 × 10-3, respectively, which was the main resistance mechanism. High abundance of VFGs was found in HWPs effluents and the relative abundance of aggressive VFGs was significantly higher than those of defensive VFGs. Based on the co-occurrence results, 243 subtypes of ARGs co-occurred with VFGs, and a variety of bacteria were thought to be possible ARGs hosts, which indicated that the host bacteria of VFGs in HWP effluents had a stronger attack ability. The effluent of HWPs with only filtration processes is exposed to the risk of ARGs and VFGs. This study helps to understand the actual purification effect of HWPs and provides a theoretical reference for the management and control of ARGs pollution in domestic drinking water.
Collapse
Affiliation(s)
- Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Miao Bai
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Hairong Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Ruoqi Cui
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Kaizong Lin
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Chaohong Tan
- School of Environmental and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China
| | - Cuiling Gao
- Shandong Institute of Product Quality Inspection, Testing Technology Lab of Material Safety, Jinan 250102, China
| | - Can Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China.
| |
Collapse
|
10
|
Sun Q, Zhu G. Deciphering the effects of antibiotics on nitrogen removal and bacterial communities of autotrophic denitrification systems in a three-dimensional biofilm electrode reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120476. [PMID: 36272603 DOI: 10.1016/j.envpol.2022.120476] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, three-dimensional biofilm electrode reactors (3D-BERs) were constructed, and the effects of metronidazole (MNZ) on the nitrogen removal performance and bacterial communities of autotrophic denitrification systems were evaluated. The results showed that nitrogen removal decreased slightly as the MNZ concentration increased. Specifically, nitrate-nitrogen removal efficiency decreased from 97.98% to 89.39%, 86.93%, 82.64%, and 82.77% within 12 h after the addition of 1, 3, 5, and 10 mg/L MNZ, respectively. The 3D-BERs showed excellent MNZ degradation ability, especially at a concentration of 10 mg/L. The MNZ removal efficiency could be as high as 94.38% within 6 h, and the average removal rate increased as the MNZ concentration increased. High-throughput sequencing results showed significant changes in the bacterial community under different MNZ concentrations. As the antibiotic concentration increased, the relative abundances of Hydrogenophaga and Silanimonas increased, from only 0.09% and 0.01% without antibiotics to 3.55% and 2.35%, respectively, at an antibiotic concentration of 10 mg/L. Changes in antibiotic concentration altered the abundances of genes involved in nitrogen metabolism. Redundancy analysis showed that MNZ removal efficiency was positively correlated with SBR1031, SC-I-84, Hydrogenophaga, Silanimonas and Denitratesoma, whereas the removal efficiencies of nitrate-nitrogen and total nitrogen were negatively correlated with these genera. The results of this study provide a theoretical basis for studying the toxic effects of antibiotics on the denitrification process and also provide guidance for the control of antibiotics and nitrogen pollution in ecosystems.
Collapse
Affiliation(s)
- Qi Sun
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xizang Minzu University, Xianyang, Shaanxi, 712082, China.
| |
Collapse
|
11
|
Wang Y, Han Y, Li L, Liu J, Yan X. Distribution, sources, and potential risks of antibiotic resistance genes in wastewater treatment plant: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119870. [PMID: 35921944 DOI: 10.1016/j.envpol.2022.119870] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and β-lactams (blaOXA, blaTEM). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 102-3.90 × 109 copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Junxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Xu Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
12
|
Musarurwa H, Tavengwa NT. Cellulose composites tethered with smartness and their application during wastewater remediation. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Antibiotic Resistance in the Drinking Water: Old and New Strategies to Remove Antibiotics, Resistant Bacteria, and Resistance Genes. Pharmaceuticals (Basel) 2022; 15:ph15040393. [PMID: 35455389 PMCID: PMC9029892 DOI: 10.3390/ph15040393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
Bacterial resistance is a naturally occurring process. However, bacterial antibiotic resistance has emerged as a major public health problem in recent years. The accumulation of antibiotics in the environment, including in wastewaters and drinking water, has contributed to the development of antibiotic resistant bacteria and the dissemination of antibiotic resistance genes (ARGs). Such can be justified by the growing consumption of antibiotics and their inadequate elimination. The conventional water treatments are ineffective in promoting the complete elimination of antibiotics and bacteria, mainly in removing ARGs. Therefore, ARGs can be horizontally transferred to other microorganisms within the aquatic environment, thus promoting the dissemination of antibiotic resistance. In this review, we discuss the efficiency of conventional water treatment processes in removing agents that can spread/stimulate the development of antibiotic resistance and the promising strategies for water remediation, mainly those based on nanotechnology and microalgae. Despite the potential of some of these approaches, the elimination of ARGs remains a challenge that requires further research. Moreover, the development of new processes must avoid the release of new contaminants for the environment, such as the chemicals resulting from nanomaterials synthesis, and consider the utilization of green and eco-friendly alternatives such as biogenic nanomaterials and microalgae-based technologies.
Collapse
|