1
|
Pang X, Guan M. Influence of construction works on urban streamflow water quality variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176852. [PMID: 39393710 DOI: 10.1016/j.scitotenv.2024.176852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Construction activities can have long-lasting impacts on receiving water bodies, especially when they receive polluted urban runoff. Therefore, it is essential to minimize these impacts on water quality and consider the long-term environmental effects of development activities. This study aims to provide insights into the assessment, temporal variations, and key variables associated with the impact of construction works on streamflow water quality. However, current assessment methods relating to construction works and streamflow water quality may lead to spurious correlations. A spurious correlation refers to a connection between two variables that appears to be causal but is not. This study proposes a novel approach to avoid spurious correlations between construction work signatures and water quality, ensuring causality and correlation between water quality parameters. The approach was applied to a developing urban catchment in Hong Kong. Compared to existing assessment models, the proposed approach advances in ensuring true correlations between construction works and streamflow water quality. It is also the first to develop a new indicator to represent the key variable of construction works. In this study, salinity, turbidity, and suspended solids were used as substitutes for construction activity parameters, such as the number of construction works, to correlate with water quality parameters. Additionally, principal component analysis and the construction work signature index were both adopted to calculate the key variables of water quality on behalf of construction works. Results demonstrate that the new approach has significantly improved causality by 45 % compared to previous assessment methods. However, the method has limitations as it does not consider the impact of rainfall on construction works.
Collapse
Affiliation(s)
- Xuan Pang
- Department of Civil Engineering, University of Hong Kong, Hong Kong Special Administrative Region
| | - Mingfu Guan
- Department of Civil Engineering, University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
2
|
Hao L, Zhang Y, Shen Y, Liu Y, Gao H, Guo P. Driving mechanism of land use and landscape pattern to phytoplankton and zooplankton community and their trophic interactions in river ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122691. [PMID: 39357447 DOI: 10.1016/j.jenvman.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/31/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The trophic interactions between phytoplankton and zooplankton communities are essential for maintaining river ecosystem integrity and health. However, the driving mechanisms of land use and landscape patterns (LULP) affecting their trophic interactions are not fully understood. Therefore, the research objective of this study was to reveal the driving mechanisms of LULP on the interaction of phytoplankton with zooplankton through remote sensing interpretation of LULP in different buffer scales (500 m, 1000 m, 1500 m, and catchment), combined with water environment factors and plankton community structures analyzed. Results showed that LULP had the most significant effect on the phytoplankton and the zooplankton community structure at 500 and 1500 m buffer scales, respectively. Construction land (CON) and edge density (ED) most influenced phytoplankton and zooplankton community structure and their influence mechanisms were identified, i.e., CON increased the species (S) of phytoplankton by increasing the concentration of NO3-N in river water at the 500 m buffer scale. ED reduced the biological density (BD) of zooplankton by decreasing the concentration of heavy metal (HM) in river water at the 1500 m buffer scale. The water area (WAT) and ED showed the most significant influence on plankton interaction. Three pathways were found to explain their influence mechanisms, i.e., ED decreased the BD or Shannon-Weiner index (H') of zooplankton by increasing the dissolved oxygen (DO) to enhance BD of phytoplankton in river water at the 1500 m buffer scale; the WAT increased the BD of phytoplankton by increasing water temperature to reduce the H' of zooplankton at the 500 m buffer. These findings have implications for effective ecological planning of future human activities in the stream domain and maintaining river ecosystem health.
Collapse
Affiliation(s)
- Litao Hao
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yixin Zhang
- Department of Landscape Architecture, Gold Mantis School of Architecture, The Sino-Portugal Joint Laboratory of Cultural Heritage Conservation Science, Soochow University, Suzhou 215123, PR China
| | - Yanping Shen
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Hongjie Gao
- Chinese Research Academy of Environmental Science, Beijing 100012, PR China.
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
3
|
Krinos AI, Bowers RM, Rohwer RR, McMahon KD, Woyke T, Schulz F. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. MICROBIOME 2024; 12:133. [PMID: 39030632 PMCID: PMC11265017 DOI: 10.1186/s40168-024-01831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/06/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Protists, single-celled eukaryotic organisms, are critical to food web ecology, contributing to primary productivity and connecting small bacteria and archaea to higher trophic levels. Lake Mendota is a large, eutrophic natural lake that is a Long-Term Ecological Research site and among the world's best-studied freshwater systems. Metagenomic samples have been collected and shotgun sequenced from Lake Mendota for the last 20 years. Here, we analyze this comprehensive time series to infer changes to the structure and function of the protistan community and to hypothesize about their interactions with bacteria. RESULTS Based on small subunit rRNA genes extracted from the metagenomes and metagenome-assembled genomes of microeukaryotes, we identify shifts in the eukaryotic phytoplankton community over time, which we predict to be a consequence of reduced zooplankton grazing pressures after the invasion of a invasive predator (the spiny water flea) to the lake. The metagenomic data also reveal the presence of the spiny water flea and the zebra mussel, a second invasive species to Lake Mendota, prior to their visual identification during routine monitoring. Furthermore, we use species co-occurrence and co-abundance analysis to connect the protistan community with bacterial taxa. Correlation analysis suggests that protists and bacteria may interact or respond similarly to environmental conditions. Cryptophytes declined in the second decade of the timeseries, while many alveolate groups (e.g., ciliates and dinoflagellates) and diatoms increased in abundance, changes that have implications for food web efficiency in Lake Mendota. CONCLUSIONS We demonstrate that metagenomic sequence-based community analysis can complement existing efforts to monitor protists in Lake Mendota based on microscopy-based count surveys. We observed patterns of seasonal abundance in microeukaryotes in Lake Mendota that corroborated expectations from other systems, including high abundance of cryptophytes in winter and diatoms in fall and spring, but with much higher resolution than previous surveys. Our study identified long-term changes in the abundance of eukaryotic microbes and provided context for the known establishment of an invasive species that catalyzes a trophic cascade involving protists. Our findings are important for decoding potential long-term consequences of human interventions, including invasive species introduction. Video Abstract.
Collapse
Affiliation(s)
- Arianna I Krinos
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, Woods Hole, MA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Robert M Bowers
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robin R Rohwer
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Katherine D McMahon
- Department of Bacteriology, University of Wisconsin at Madison, Madison, WI, USA
| | - Tanja Woyke
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
4
|
Ke Z, Tang J, Yang L, Sun J, Xu Y. Linking pharmaceutical residues to dissolved organic matter and aquatic bacterial communities in a highly urbanized bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162027. [PMID: 36740058 DOI: 10.1016/j.scitotenv.2023.162027] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals are causing environmental concerns associated with their widespread distribution in aquatic ecosystems. The environmental fate and behavior of pharmaceutical residues are related to dissolved organic matter and bacterial communities, both of which are strongly influenced by human activities. However, the relationships among pharmaceutical pollution, dissolved organic matter pool, and bacterial community structure under the pressure of human activities are still unclear, especially in highly urbanized bay areas. In this study, we investigated the occurrence and distribution of 35 pharmaceuticals in a typical urbanized bay (Hangzhou Bay) in Eastern China, and analyzed their relationships with dissolved organic matter and aquatic bacterial community structure. The target pharmaceuticals were ubiquitously detected in surface water samples, with their concentrations ranging from undetectable to 263 ng/L. The detected pharmaceuticals were mostly sulfonamides, macrolides, antidepressants, and metabolites of stimulants. Significant positive correlations were observed between the concentrations of pharmaceuticals and the intensity of human activities. Strong correlations also emerged between the concentration of antidepressants and the speed of urban expansion, as well as between the concentration of cardiovascular drugs and the population density or nightlight index. Three fluorescent components (protein-like C1, terrestrial humic-like C2, protein tryptophan-like C3) were significantly positively correlated with the total concentration of pharmaceuticals. Pharmaceutical pollution reshaped aquatic bacterial communities, based on the close correlation observed between pharmaceutical concentration and bacterial community structure. The results elucidate the potential dynamics of dissolved organic matter pool and aquatic bacterial communities in response to pharmaceutical pollution in urbanized bay ecosystems.
Collapse
Affiliation(s)
- Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| |
Collapse
|
5
|
Liu Y, Zhang B, Han YH, Yao Y, Guo P. Involvement of exogenous arsenic-reducing bacteria in root surface biofilm formation promoted phytoextraction of arsenic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160158. [PMID: 36379332 DOI: 10.1016/j.scitotenv.2022.160158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Root surface biofilm (RSB) is the last window for pollutants entering plant roots and thus plays a critical role in the phytoextraction of pollutants. Exogenous arsenic-reducing bacteria (EARB) have been adopted to enhance the phytoextraction of arsenic (As). However, whether EARB would be involved in RSB formation together with indigenous bacteria and the role of EARB involvement in As phytoextraction are still unknown. Herein, two EARB strains and two phytoextractors (wheat and maize) were selected to investigate the involvement of EARB in RSB formation and its role in As phytoextraction. Results showed that EARB successfully participated in RSB formation together with indigenous bacteria, attributing to their strong chemotaxis and biofilm formation abilities induced by root exudates. The involvement of EARB in RSB formation significantly enhanced As accumulation in plant roots, since more arsenite (As(III)) caused by arsenate (As(V)) reduction in RSB was absorbed by roots. Its underlying mechanism was further elucidated. EARB involvement increased phylum Proteobacteria to produce more siderophores in RSB. Siderophores then improved photosynthesis by increasing catalase and peroxidase activities and decreasing the malondialdehyde of plants. These actions further raised the shoot fresh weight to enhance As accumulation in plant roots. Moreover, mesophyll cell in wheat has a stronger As(V) reduction ability than that in maize, resulting in opposite distribution patterns of As(III) and As(V) in wheat and maize shoots. This study provides a new understanding of phytoextraction enhanced by exogenous bacteria and fills the gap in the role of EARB in As phytoextraction from the perspective of the RSB microregion.
Collapse
Affiliation(s)
- Yibo Liu
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China
| | - Baiyu Zhang
- Department of Civil Engineering, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yong-He Han
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, P R, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, PR China
| | - Ye Yao
- College of Physics, Jilin university, Changchun 130012, PR China
| | - Ping Guo
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130012, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
6
|
Li W, Ren L, Li Q, Zhang D, Jin X, Fang W, Yan D, Li Y, Wang Q, Cao A. Evaluation of ethylicin as a potential soil fumigant in commercial tomato production in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158520. [PMID: 36063939 DOI: 10.1016/j.scitotenv.2022.158520] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Recent increases in soil-borne plant disease have limited further expansion of some crops produced in protected agriculture. Soil fumigation effectively minimizes the impact of soil pathogens causing many diseases. We provide the first report of the efficacy of the Chinese fungicide ethylicin as a soil fumigant against the plant pathogens such as Fusarium spp. and Phytophthora spp., and against the plant parasitic nematode Meloidogyne spp. We also examined ethylicin's impact on the physicochemical properties of soil, the soil's bacterial and fungal taxonomic composition, the plant growth of tomatoes, the enzyme activity of soil and tomato yield. Ethylicin fumigation significantly decreased the abundance of Fusarium spp. and Phytophthora spp. by 67.7 %-84.0 % and 53.8 %-81.0 %, respectively. It reduced Meloidogyne spp. by 67.2 %-83.6 %. Ethylicin significantly increased the growth of tomato plants and tomato yield by 18.3 %-42.0 %. The soil's ammonium‑nitrogen concentration increased significantly in answer to ethylicin fumigation, while nitrate‑nitrogen concentration and the activity of soil urease decreased significantly. High-throughput gene sequencing had been used to show that ethylicin cut down the taxonomic soil bacteria diversity and bacterial abundance, but increased the soil fungi taxonomic diversity. Some genera of microorganisms increased, such as Firmicutes, Steroidobacter and Chytridiomycota, possibly due to changes in the physicochemical properties of soil that differentially favored their survival. We conclude that ethylicin is efficacious as a soil fumigant and it would be a useful addition to the limited number of soil fumigants currently available.
Collapse
Affiliation(s)
- Wenjing Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lirui Ren
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingjie Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Daqi Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding, Hebei 071000, China
| | - Wensheng Fang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongdong Yan
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Innovation Consortium of Agriculture Research System, Beijing 100029, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Innovation Consortium of Agriculture Research System, Beijing 100029, China
| | - Qiuxia Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Innovation Consortium of Agriculture Research System, Beijing 100029, China
| | - Aocheng Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Beijing Innovation Consortium of Agriculture Research System, Beijing 100029, China.
| |
Collapse
|
7
|
Edegbene AO, Akamagwuna FC. Insights from the Niger Delta Region, Nigeria on the impacts of urban pollution on the functional organisation of Afrotropical macroinvertebrates. Sci Rep 2022; 12:22551. [PMID: 36581677 PMCID: PMC9800367 DOI: 10.1038/s41598-022-26659-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Anthropogenic activities, including urbanisation and industrialisation threaten stream ecological integrity, ecosystem community structure and ecosystem functioning of rivers and streams worldwide. However, developing sustainable monitoring strategies for ecological health remains a critical challenge in Africa. We examined the effects of urban disturbance on macroinvertebrate Functional Feeding Groups in selected streams in the Niger Delta Region of Nigeria. We sampled 11 sites between 2008 and 2012 and grouped into three site groups (Site groups 1 > 2 > 3). The groups represent an increasing gradient of urban pollution. Our result showed that urban-induced disturbances affected physicochemical variables in the study area (PERMANOVA; p < 0.05), with nutrients NO2-N, PO4-P, and electrical conductivity being significantly higher in impacted Site group 3 (ANOVA, p < 0.05). Predators and gatherers were the most dominant Functional Feeding Group recorded in the study area, while shredders were the least abundant macroinvertebrate Functional Feeding Groups. The multivariate RLQ analysis revealed that shredders, predators, and scrapers were tolerant of urban pollution, whereas gatherers were sensitive to increasing urban pollution. Overall, macroinvertebrates Functional Feeding Groups responded differentially to urban pollution in the Niger Delta Region. Identifying pollution indicator Functional Feeding Groups is seen as an important step towards developing a reliable, low-cost tool for riverine monitoring of urban pollution effects in Africa.
Collapse
Affiliation(s)
- Augustine Ovie Edegbene
- grid.91354.3a0000 0001 2364 1300Institute for Water Research, Rhodes University, Makhanda (Grahamstown), 6140 South Africa ,Department of Biological Sciences, Federal University of Health Sciences, Otukpo, Nigeria
| | - Frank Chukwuzuoke Akamagwuna
- grid.91354.3a0000 0001 2364 1300Institute for Water Research, Rhodes University, Makhanda (Grahamstown), 6140 South Africa
| |
Collapse
|