1
|
Yu X, Feng L, Huang Y, Liang Y, Pan F, Zhang W, Zhao Y, Xiao Y. Planted Citrus Regulates the Community and Networks of phoD-Harboring Bacteria to Drive Phosphorus Availability Between Karst and Non-Karst Soils. Microorganisms 2024; 12:2582. [PMID: 39770784 PMCID: PMC11678004 DOI: 10.3390/microorganisms12122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The phosphorus (P) availability in soils is influenced by microbes, particularly those containing the gene responsible for phosphate solubilization. The present study investigated the community structure, diversity, and co-occurrence networks of phoD-harboring bacteria in karst and non-karst citrus orchard soils across a planting duration gradient, natural forests, and abandoned land, as well as the soil total P (TP) and available P (AP) contents and enzyme activities. The soil AP contents were lower in the karst regions than in the non-karst regions, while the soil organic carbon (C; SOC), exchangeable calcium, and microbial biomass nitrogen (N) contents; alkaline phosphatase (ALP) and β-Glucuronidase activities; and pH had the opposite trends. In addition, the soil AP and SOC contents and the ALP and acid phosphatase (ACP) activities in the karst regions decreased with an increase in the planting years, whereas the AP, TP, and microbial biomass P contents and ACP activities in the non-karst regions increased. The diversity indices and network complexity of phoD-harboring bacteria were higher in the karst regions than in the non-karst regions, with marked community differences between different planting years in the non-karst regions. The soil AP was significantly and positively correlated with the rare genera Pelagicola, Methylobacter, Streptomyces, and Micromonospora in the karst regions and Roseivivax, Collimonas, Methylobacterium, Ralstonia, and Phyllobacterium in the non-karst regions. Structural Equation Modeling showed that citrus cultivation altered the soil pH, SOC, and total N, and, in turn, the phoD-harboring bacterial community structure and diversity, which led to changes in the ALP activity and P availability. Thus, the rare genera of the phoD-harboring bacteria, influenced by the pH and SOC, highly regulated the availability of P in the karst and non-karst citrus orchard soils.
Collapse
Affiliation(s)
- Xuan Yu
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Lulu Feng
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yuan Huang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yueming Liang
- Karst Dynamics Laboratory, Ministry of Natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
| | - Fujing Pan
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, College of Environmental and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Wei Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Yuan Zhao
- Changsha Comprehensive Survey Center of Natural Resources, China Geological Survey, Changsha 410600, China
| | - Yuexin Xiao
- Changsha Comprehensive Survey Center of Natural Resources, China Geological Survey, Changsha 410600, China
| |
Collapse
|
2
|
Rebi A, Wang G, Yang T, Kanomanyanga J, Ejaz I, Mustafa A, Rizwan M, Zhou J. Stoichiometric and bacterial eco-physiological insights into microbial resource availability in karst regions affected by clipping-and-burning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122925. [PMID: 39413635 DOI: 10.1016/j.jenvman.2024.122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Despite growing interest in soil microbial resource limitation (MRL), the impacts of clipping-and-burning on bacterial resource acquisition and its soil carbon, nitrogen, and phosphorous stoichiometry (C:N:P) remain unclear, yet are critical for nutrient cycling and SOC accumulation in vegetation restoration. We examined the soil C:N:P and eco-enzymatic stoichiometry, bacterial life-history strategies, and bacterial resource limitation under the influence of clipping-and-burning management practices: high-intensity fire (HIF), low-intensity fire (LIF), clipping-and-fire (CF), clipping (CP), and an undisturbed control (CK) in a Karst site in southwest China. The results showed that SOC, TN, and TP in HIF and LIF were significantly (p < 0.05) reduced (by 64%, 97%, and 99%) compared to CK. However, soil C:N, C:P, and N:P ratios were surprisingly higher (18.1, 56, and 3.08) in CF than in CK. The ratios of soil microbial biomass carbon (MBC) and nitrogen (MBN) were higher (4.8) under clipping. In contrast, their ratios with microbial biomass phosphorus (MBP) were observed to be higher (22.3 and 6.4) under high-intensity fire compared to CK. Moreover, results show that there is a higher percentage of species linked with oligotroph bacteria of Rickettsiales in CF treatments than CK. Soil bacterial communities in CF treatments exhibited co-limitation by C and P, whereas N limitation was more pronounced under low-intensity fire conditions. In conclusion, the evidence links MRL to soil C:N:P stoichiometry, underscoring the critical role of oligotrophic bacteria in mediating soil nutrient dynamics under clipping-and-burning disturbances. These findings improve our understanding of MRL over the Karst region under clipping-and-burning treatments, shedding light on its relationship with soil C:N:P, eco-enzymatic stoichiometry, and bacterial life-history strategies.
Collapse
Affiliation(s)
- Ansa Rebi
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forestry Resources, Beijing Forestry University, Beijing, 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Guan Wang
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forestry Resources, Beijing Forestry University, Beijing, 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Tao Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jasper Kanomanyanga
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln, LN6 7TS, United Kingdom; NIAB, Cambridge, CB3 0LE, United Kingdom
| | - Irsa Ejaz
- Department of Crop Science, Division of Agronomy, University of Göttingen, Göttingen, 37075, Germany
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jinxing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forestry Resources, Beijing Forestry University, Beijing, 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
3
|
Jiang S, Song M, Du H, Wang F, Song T, Chen H, Zeng F, Peng W. Soil Properties Regulate Soil Microbial Communities During Forest Succession in a Karst Region of Southwest China. Microorganisms 2024; 12:2136. [PMID: 39597525 PMCID: PMC11596547 DOI: 10.3390/microorganisms12112136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Natural vegetation restoration has emerged as an effective and rapid approach for ecological restoration in fragile areas. However, the response of soil microorganisms to natural succession remains unclear. To address this, we utilized high-throughput sequencing methods to assess the dynamics of soil bacterial and fungal communities during forest succession (shrubland, secondary forest, and primary forest) in a karst region of Southwest China. Our study revealed that bacterial α-diversity was significantly higher in secondary forest compared to both shrubland and primary forest. Intriguingly, the soil bacterial community in primary forest exhibited a closer resemblance to that in shrubland yet diverged from the community in secondary forest. Conversely, the soil fungal community underwent notable variations across the different forest stages. Furthermore, analysis of the microbial co-occurrence network revealed that, within these karst forests, the relationships among soil fungi were characterized by fewer but stronger interactions compared to those among bacteria. Additionally, soil properties (including pH, soil organic carbon, total nitrogen, moisture, and available potassium), soil microbial biomass (specifically phosphorus and nitrogen), and plant diversity were the drivers of soil bacterial community dynamics. Notably, soil pH accounted for the majority of the variations observed in the soil fungal community during karst forest succession. Our findings provide valuable insights that can inform the formulation of strategies for ecological restoration and biodiversity conservation in karst regions, particularly from a microbial perspective.
Collapse
Affiliation(s)
- Shanghua Jiang
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Min Song
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
- Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hu Du
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Feng Wang
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Tongqing Song
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Huijun Chen
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Fuping Zeng
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Wanxia Peng
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (S.J.); (M.S.); (H.D.); (F.W.); (T.S.); (H.C.); (F.Z.)
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Pan F, Yang Q, Liang Y, Yu X, Hu P, Zhang W, Pang Y. Lithology and elevated temperature impact phoD-harboring bacteria on soil available P enhancing in subtropical forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174815. [PMID: 39019286 DOI: 10.1016/j.scitotenv.2024.174815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants are generally limited by soil phosphorus (P) deficiency in forest ecosystems. Soil available P is influenced by lithology, temperature, and soil microbes. However, the interactive effects of these factors on soil P availability in subtropical forests remain unclear. To assess their impacts, we measured soil inorganic and available P fractions and the diversity, composition, and co-occurrence network of phoD-harboring bacteria in two contrasting forest soils (lithosols in karst forests and ferralsols in non-karst forests) in the subtropical regions of southwestern China across six temperature gradients. The present results showed that the complexities in composition and network and the diversity indices of phoD-harboring bacteria were higher in the karst forest soils than those in the non-karst forest soils, with marked differences in composition. In both types of forest soils, the complexities of composition and networks and the diversity indices were higher in the high-temperature regions (mean annual temperature (MAT) > 16 °C) compared to the low-temperature regions (MAT <16 °C). Soil total inorganic and available P contents were lower in the karst forest soils compared to the non-karst forest soils. Soil total available P contents were lower in the high temperature regions than those in the low temperature regions in both forest soils, whereas soil total inorganic P contents were contrary. Variance partitioning analysis showed that soil inorganic and available P fractions were predominantly explained by lithology and its interaction with soil microbes and climate. The present findings demonstrate that soil P availability in subtropical forests of southwestern China is influenced by lithology and temperature, which regulate the diversity, composition, and network connectivity of phoD-harboring bacteria. Furthermore, this study highlights the significance of controlling the composition of phoD-harboring bacteria for mitigating plant P deficiency in karst ecosystems.
Collapse
Affiliation(s)
- Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Qian Yang
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Yueming Liang
- Karst Dynamics Laboratory, Ministry of natural Resources, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi, China.
| | - Xuan Yu
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, Guangxi, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin 541006, Guangxi, China
| | - Peilei Hu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Process and Services, Huanjiang Observation and Research of karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China
| | - Wei Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, Hunan, China; Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Process and Services, Huanjiang Observation and Research of karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, Guangxi, China.
| | - Yuelan Pang
- Guangxi Field Scientific Observation and Research Station for Tea Resources, Institute of Tea Science Research, Guangxi Zhuang Autonomous Region, Guilin 541000, Guangxi, China
| |
Collapse
|
5
|
Li Q, Zhou Y, Sun W, Qiao B, Cheng J, Shi S, Zhao C, Li C. Dynamic response of allelopathic potency of Taxus cuspidata Sieb. et Zucc. mediated by allelochemicals in Ficus carica Linn. root exudates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173663. [PMID: 38823714 DOI: 10.1016/j.scitotenv.2024.173663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
In a mixed forest, certain plants can release allelochemicals that exert allelopathic effects on neighboring plants, thereby facilitating interspecific coexistence of two species. Previous studies have demonstrated that allelochemicals released from Ficus carica Linn. roots in mixed forest of F. carica and Taxus cuspidata Sieb. et Zucc. has phase characteristics over time, which can improve the soil physicochemical properties, enzyme activity and microbial diversity, thus promoting the growth of T. cuspidata. Based on the irrigation of exogenous allelochemicals, changes in soil fertility (soil physical and chemical properties, soil enzyme activity and soil microelement content) were observed in response to variations in allelochemicals during five phases of irrigation: initial disturbance phase (0-2 d), physiological compensation phase (2-8 d), screening phase (8-16 d), restore phase (16-32 d) and maturity phase (32-64 d), which was consistent with the response of soil microorganisms. The allelopathic response of growth physiological indexes of T. cuspidata, however, exhibited a slight lag behind the soil fertility, with distinct phase characteristics becoming evident on the 4th day following irrigation of allelochemicals. The findings demonstrated that the allelochemicals released by the root of F. carica induced a synergistic effect on soil fertility and microorganisms, thereby facilitating the growth of T. cuspidata. This study provides a comprehensive elucidation of the phased dynamic response-based allelopathic mechanism employed by F. carica to enhance the growth of T. cuspidata, thus establishing a theoretical basis for optimizing forest cultivation through allelopathic pathways.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Yifan Zhou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Wenxue Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Bin Qiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Jiabo Cheng
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Sen Shi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China.
| | - Chunying Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Engineering Research Center of Forest Bio-preparation, Ministry of Education, Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Zheng W, Wu Q, Guo X, Zhou P, Wu J, Yan W. Rocky desertification succession alters soil microbial communities and survival strategies in the karst context. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172171. [PMID: 38575035 DOI: 10.1016/j.scitotenv.2024.172171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
Rocky desertification is one of the most ecological problems in the karst context. Although extensive research has been conducted to explore how to restore and protect, the responses of soil fungi and archaea to rocky desertification succession remain limited. Here, four grades of rocky desertification in a karst ecosystem were selected, amplicon sequencing analysis was conducted to investigate fungal and archaeal community adaptation in response to rocky desertification succession. Our findings revealed that the diversity and community structure of fungi and archaea in soils declined with the aggravation of rocky desertification. As the rocky desertification succession intensified, microbial interactions shifted from cooperation to competition. Microbial survival strategies were K-strategist and r-strategist dominated in the early and late stages of succession, respectively. Additionally, the driving factors affecting microorganisms have shifted from vegetation diversity to soil properties as the intensification of rocky desertification. Collectively, our study highlighted that plant diversity and soil properties play important roles on soil microbiomes in fragile karst ecosystems and that environmental factors induced by human activities might still be the dominant factor exacerbating rocky desertification, which could significantly enrich our understanding of microbial ecology within karst ecosystems.
Collapse
Affiliation(s)
- Wei Zheng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, PR China
| | - Qian Wu
- Faculty of Resources and Environmental Engineering, Anshun University, Anshun 561000, China.
| | - Xiaobin Guo
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Ping Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Wende Yan
- Faculty of Life Science and Technology, Central South University of Forestry & Technology, Changsha 410004, PR China; National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, PR China.
| |
Collapse
|
7
|
Xiao C, Xiao D, Sun M, Wang K. Bacteria, Fungi, and Protists Exhibit Distinct Responses to Managed Vegetation Restoration in the Karst Region. Microorganisms 2024; 12:1074. [PMID: 38930456 PMCID: PMC11205577 DOI: 10.3390/microorganisms12061074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteria, fungi, and protists occupy a pivotal position in maintaining soil ecology. Despite limited knowledge on their responses to managed vegetation restoration strategies in karst regions, we aimed to study the essential microbial communities involved in the process of vegetation restoration. We compared microbial characteristics in four land use types: planted forests (PF), forage grass (FG), a mixture of plantation forest and forage grass (FF), and cropland (CR) as a reference. Our findings revealed that the richness of bacteria and protists was higher in FF compared to PF, while fungal richness was lower in both PF and FF than in CR. Additionally, the bacterial Shannon index in FF was higher than that in CR and PF, while the fungal and protist Shannon indices were similar across all four land use types. Significant differences were observed in the compositions of bacterial, fungal, and protist communities between FF and the other three land use types, whereas bacterial, fungal, and protist communities were relatively similar in PF and FG. In FF, the relative abundance of bacterial taxa Acidobacteria, Firmicutes, and Gemmatimonadetes was significantly higher than in PF and CR. Fungal communities were dominated by Ascomycota and Basidiomycota, with the relative abundance of Ascomycota significantly higher in FF compared to other land use types. Regarding protistan taxa, the relative abundance of Chlorophyta was higher in FF compared to CR, PF, and FG, while the relative abundance of Apicomplexa was higher in CR compared to FF. Importantly, ammonium nitrogen, total phosphorus, and microbial biomass nitrogen were identified as key soil properties predicting changes in the diversity of bacteria, fungi, and protists. Our results suggest that the microbial community under FF exhibits greater sensitivity to vegetation restoration compared to PF and FG. This sensitivity may stem from differences in soil properties, the formation of biological crusts and root systems, and management activities, resulting in variations in bacterial, fungal, and protist diversity and taxa in PF. As a result, employing a combination restoration strategy involving plantation forest and forage grass proves to be an effective approach to enhance the microbial community and thereby improve ecosystem functionality in ecologically fragile areas.
Collapse
Affiliation(s)
- Can Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Dan Xiao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Mingming Sun
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kelin Wang
- Huanjiang Agriculture Ecosystem Observation and Research Station of Guangxi, Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| |
Collapse
|
8
|
Xiao D, Tang Y, Zhang W, Hu P, Wang K. Lithology and niche habitat have significant effect on arbuscular mycorrhizal fungal abundance and their interspecific interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170774. [PMID: 38340853 DOI: 10.1016/j.scitotenv.2024.170774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
The chemical properties of bedrock play a crucial role in shaping the communities of soil and root-associated arbuscular mycorrhizal fungi (AMF). We investigate AMF community composition and diversity in bulk soil, rhizosphere soil, and roots in karst and non-karst forests. Chemical properties of bedrock of the calcium oxide (CaO) and ratio of calcium oxide and magnesium oxide (Ca/Mg), soil pH, and exchangeable Ca2+ were higher in karst carbonate rocks compared to non-karst clastic rocks. Conversely, bedrock phosphorus content (P-rock), silicon dioxide (SiO2) content, and tree diversity exhibited an opposing trend. AMF abundance was higher in non-karst clastic rocks than in karst carbonate rocks. Stronger interspecific interactions among AMF taxa occurred in the bulk soil and rhizosphere soil of non-karst clastic rocks compared to karst carbonate rocks. AMF abundance and diversity were higher in rhizosphere soil and roots, attributed to increasing nutrient availability when compared to the bulk soil. A more complex network within AMF taxa was observed in rhizosphere soil and roots compared to bulk soil due to an increase in AMF abundance and diversity in rhizosphere soil and roots. Comparing non-karst clastic rocks, karst carbonate rocks increased soil nitrogen (N) and P levels, which can be attributed to the elevated content of soil Ca2+ and Mg2+ content, facilitated by the high CaO content and Ca/Mg ratio in the bedrock of karst forests. However, the thicker soil layer exhibited higher soil nutrient storage, resulting in greater tree diversity in non-karst forests. These findings suggest that high tree richness may increase root biomass and secretion of root exudates in non-karst regions, thereby enhancing the abundance of AMF and their interspecies interactions. Consequently, the diverse bedrock properties that drive variations in soil properties, nutrients, and plant diversity can impact AMF communities, ultimately promoting plant growth and contributing to vegetation recovery.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Yixin Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Wuhan Geomatics Institute, Wuhan 430022, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| | - Peilei Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 44547100, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| |
Collapse
|
9
|
Pan F, Yu X, Chen M, Liang Y. Vegetation recovery reshapes the composition and enhances the network connectivity of phoD-harboring microorganisms to promote P availability in a karst ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170561. [PMID: 38309358 DOI: 10.1016/j.scitotenv.2024.170561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Soil phoD-harboring microorganisms can facilitate phosphorus (P) transformation and increase the available P (AP) in P-limited soils; however, the mechanism by which these microorganisms enhance AP throughout the vegetation recovery process of karst ecosystems is poorly understood. Accordingly, this study investigates the effect of vegetation recovery on soil AP and the community composition and network connectivity of phoD-harboring microorganisms to elucidate the mechanism by which phoD-harboring microorganisms enhance soil AP in the four vegetation recovery stages (i.e., grassland, shrubland, shrub-arbor forest, and arbor forest) in a karst ecosystem. Results show that soil total P, AP, and microbial biomass P concentrations, as well as alkaline phosphatase activities, litter and soil nutrients, and plant diversity indices (Shannon-Wiener and Pielou) increase with advancing vegetation recovery. Moreover, the diversity indices (Shannon-Wiener and Simpson) and network complexity of the phoD-harboring microorganisms also increase with advancing vegetation recovery, leading to distinct communities among the four recovery stages. Rhizobiales, Pseudomonadales, and Burkholderiales comprise the dominant phoD-harboring microorganism orders. The relative abundances of Pseudomonadales and Burkholderiales increase with advancing vegetation recovery; Rhizobiales is the highest in shrubland and the lowest in grassland. The structural equation model results show that advanced vegetation recovery is associated with increased plant diversity, litter nutrients, and soil nutrients. The network connectivity is enhanced with advancing vegetation recovery accompanied by increasing soil phosphatase activity and P availability. These results suggest that regulating the phoD-harboring microorganism composition and network connectivity is essential to alleviate plant P limitation in karst ecosystems.
Collapse
Affiliation(s)
- Fujing Pan
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Xuan Yu
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Min Chen
- College of Environmental and Engineering, Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Yueming Liang
- Karst Dynamics Laboratory, Ministry of natural Resources & Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China.
| |
Collapse
|
10
|
Xiao D, He X, Zhang W, Chen M, Hu P, Wu H, Liao X, Wang K. Strengthen interactions among fungal and protistan taxa by increasing root biomass and soil nutrient in the topsoil than in the soil-rock mixing layer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120468. [PMID: 38430883 DOI: 10.1016/j.jenvman.2024.120468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Soil depth plays a crucial role in shaping the interactions between soil microbes and nutrient availability. However, there is limited understanding of how bacterial, fungal, and protistan communities respond to different soil depths, particularly in the unique geological context and soil properties of karst regions. Organic matter, total nitrogen, and phosphorus, ammonium, nitrate, and plant root biomass, as well as bacterial and fungal abundances, bacterial and protistan diversity were higher in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, soil pH was higher in the 20-40 cm and soil-rock mixing layers than that in the 0-20 cm soil layer. The soil exchange of calcium, nitrate, and root biomass were identified as the primary factors regulating microbial assemblages across the depth transect. Moreover, co-occurrence network analysis revealed a greater degree of connectivity between protistan taxa and fungal taxa in the 0-20 cm soil layer than those in the 20-40 cm and soil-rock mixing layers. In contrast, the number of association links between protist-bacteria and bacteria-bacteria was higher in the soil-rock mixing layers compared to the 0-20 cm soil layer. Actinobacteria, Ascomycota, and unclassified protistan taxa were identified as keystones, displaying the highest number of connections with other microbial taxa. Collectively, these results suggested that the increased plant root biomass, coupled with sufficient available nutrient inputs in the upper 0-20 cm soil layer, facilitates strong interactions among fungal and protistan taxa, which play crucial roles in the topsoil. However, as nutrients become less available with increasing depth, competition among bacterial taxa and the predation between bacterial and protistan taxa intensify. Therefore, these findings indicate the interactions among keystone taxa at different soil depths has the potential to generate ecological implications during vegetation restoration in fragile ecosystems.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Xunyang He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Meifeng Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Peilei Hu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Hanqing Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Xionghui Liao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; Guangxi Industrial Technology Research Institute for Karst Rocky Desertification Control, Nanning 530001, China; Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang 547100, China.
| |
Collapse
|
11
|
Zhao J, He X, Xiao D, Chen M, Cheng M, Wang Z. Impacts of Lithology and Slope Position on Arbuscular Mycorrhizal Fungi Communities in a Karst Forest Soil. J Fungi (Basel) 2023; 9:1133. [PMID: 38132734 PMCID: PMC10743893 DOI: 10.3390/jof9121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The influence of lithology and slope position on arbuscular mycorrhizal fungi (AMF) communities has been explored in various ecosystems, but there is a limited understanding of these mechanisms in karst regions. This study focused on typical karst hills with contrasting lithologies, specifically dolomite and limestone. Additionally, three slope positions (upper, middle, and lower) were investigated within each hill in karst forest ecosystems. Total phosphorus (TP) content in the soil was higher in dolomite compared to limestone. Conversely, exchangeable calcium (Ca) was lower in dolomite than in limestone. Notably, the lithology, rather than the slope position, exerted a significant impact on AMF diversity and abundance and the presence of specific AMF taxa. Dolomite exhibited greater AMF richness and a higher Shannon index in comparison to limestone when not accounting for slope position. The AMF community composition differed between dolomite and limestone. For instance, without considering slope position, the relative abundance of Acaulospora, Diversispora, and Paraglomus was higher in dolomite than in limestone, while the relative abundance of Claroideoglomus displayed an opposing trend. Furthermore, a more complex interaction among AMF taxa was observed in dolomite as compared to limestone, as evidenced by an increase in the number of nodes and edges in the co-occurrence networks within the dolomite. The genera Glomus, Claroideoglomus, and Diversispora exhibited a higher number of links with each other and with other AMF taxa. The study identified TP and Ca as the primary factors determining variations in AMF diversity between dolomite and limestone. Consequently, it is imperative to consider the underlying lithology and soil conditions when addressing the restoration of degraded karst hilly areas.
Collapse
Affiliation(s)
- Jin Zhao
- Forestry College, Central South University of Forestry and Technology, Changsha 410004, China (M.C.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Xunyang He
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Dan Xiao
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Meifeng Chen
- Forestry College, Central South University of Forestry and Technology, Changsha 410004, China (M.C.)
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Ming Cheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (X.H.)
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Zhongcheng Wang
- Forestry College, Central South University of Forestry and Technology, Changsha 410004, China (M.C.)
| |
Collapse
|
12
|
Čačković A, Kajan K, Selak L, Marković T, Brozičević A, Pjevac P, Orlić S. Hydrochemical and Seasonally Conditioned Changes of Microbial Communities in the Tufa-Forming Freshwater Network Ecosystem. mSphere 2023:e0060222. [PMID: 37097185 DOI: 10.1128/msphere.00602-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Freshwater network ecosystems consist of interconnected lotic and lentic environments within the same catchment area. Using Plitvice Lakes as an example, we studied the changes in environmental conditions and microbial communities (bacteria and fungi) that occur with downstream flow. Water samples from tributaries, interlake streams, connections of the cascading lakes, and the Korana River, the main outflow of the system, were characterized using amplicon sequencing of bacterial 16S rRNA and fungal ITS2 genes. Our results show that different environmental conditions and bacterial and fungal communities prevail among the three stream types within the freshwater network ecosystem during multiple sampling seasons. Microbial community differences were also confirmed along the longitudinal gradient between the most distant sampling sites. The higher impact of "mass effect" was evident during spring and winter, while "species sorting" and "environmental selection" was more pronounced during summer. Prokaryotic community assembly was majorly influenced by deterministic processes, while fungal community assembly was highly dominated by stochastic processes, more precisely by the undominated fraction, which is not dominated by any process. Despite the differences between stream types, the microbial community of Plitvice Lakes is shown to be very stable by the core microbiome that makes up the majority of stream communities. Our results suggest microbial community succession along the river-lake continuum of microbial communities in small freshwater network ecosystems with developed tufa barriers. IMPORTANCE Plitvice Lakes represent a rare freshwater ecosystem consisting of a complex network of lakes and waterfalls connecting them, as well as rivers and streams supplying water to the lake basin. The unique geomorphological, hydrological, biogeochemical, and biological phenomenon of Plitvice Lakes lies in the biodynamic process of forming tufa barriers. In addition to microbial communities, abiotic water factors also have a major influence on the formation of tufa. Therefore, it is important to understand how changes in environmental conditions and microbial community assembly affect the functioning of the ecosystem of a freshwater network with developed tufa barriers.
Collapse
Affiliation(s)
- Andrea Čačković
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Katarina Kajan
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Zagreb, Croatia
| | - Lorena Selak
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Andrijana Brozičević
- Scientific Research Center "Dr. Ivo Pevalek," Plitvice Lakes National Park, Plitvička Jezera, Croatia
| | - Petra Pjevac
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna, Vienna, Austria
| | - Sandi Orlić
- Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Center of Excellence for Science and Technology-Integration of Mediterranean Region (STIM), Zagreb, Croatia
| |
Collapse
|
13
|
Jiang C, Sun X, Liu Y, Zhu S, Wu K, Li H, Shui W. Karst tiankeng shapes the differential composition and structure of bacterial and fungal communities in karst land. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32573-32584. [PMID: 36469271 DOI: 10.1007/s11356-022-24229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Karst tiankeng are important biodiversity conservation reservoirs. However, the unique habitats of karst tiankeng affect microbial community structure remained poorly understood. In this study, we collected soil samples from karst tiankeng (TK) and karst land (KL) and subjected to high-throughput sequencing. Based on the classification of the total, abundance, and rare taxa for bacteria and fungi, a multivariate statistical analysis was carried out. The results revealed that bacterial community Shannon diversity and Pielou's evenness were highest in TK. The rare taxa were ubiquitous in all soil samples, while the higher Shannon diversity of the abundant taxa of TK may be related to the habitat preferences of species and niche differentiation. The community composition of bacterial and fungal sub-communities exhibited significant dissimilarity between TK and KL. The redundancy analysis further demonstrated that abundant taxa were environmentally more constrained than rare taxa. The bacterial and fungal networks of KL were more complex than TK. The keystones of the network transforms may suggest their significant role in the ecological function of the karst tiankeng ecosystem. This study represents the first reports of the characteristics of bacterial and fungal communities in karst tiankeng.
Collapse
Affiliation(s)
- Cong Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Xiang Sun
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Yuanmeng Liu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Sufeng Zhu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, 100871, People's Republic of China
| | - Kexing Wu
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Hui Li
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China
| | - Wei Shui
- College of Environment and Safety Engineering, Fujian Province, Fuzhou University, Fuzhou University Town, No. 2 Wulongjiang North Avenue, Fuzhou City, People's Republic of China.
| |
Collapse
|
14
|
Cheng X, Xiang X, Yun Y, Wang W, Wang H, Bodelier PLE. Archaea and their interactions with bacteria in a karst ecosystem. Front Microbiol 2023; 14:1068595. [PMID: 36814573 PMCID: PMC9939782 DOI: 10.3389/fmicb.2023.1068595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Karst ecosystems are widely distributed around the world, accounting for 15-20% of the global land area. However, knowledge on microbial ecology of these systems does not match with their global importance. To close this knowledge gap, we sampled three niches including weathered rock, sediment, and drip water inside the Heshang Cave and three types of soils overlying the cave (forest soil, farmland soil, and pristine karst soil). All these samples were subjected to high-throughput sequencing of V4-V5 region of 16S rRNA gene and analyzed with multivariate statistical analysis. Overall, archaeal communities were dominated by Thaumarchaeota, whereas Actinobacteria dominated bacterial communities. Thermoplasmata, Nitrosopumilaceae, Aenigmarchaeales, Crossiella, Acidothermus, and Solirubrobacter were the important predictor groups inside the Heshang Cave, which were correlated to NH4 + availability. In contrast, Candidatus Nitrososphaera, Candidatus Nitrocosmicus, Thaumarchaeota Group 1.1c, and Pseudonocardiaceae were the predictors outside the cave, whose distribution was correlated with pH, Ca2+, and NO2 -. Tighter network structures were found in archaeal communities than those of bacteria, whereas the topological properties of bacterial networks were more similar to those of total prokaryotic networks. Both chemolithoautotrophic archaea (Candidatus Methanoperedens and Nitrosopumilaceae) and bacteria (subgroup 7 of Acidobacteria and Rokubacteriales) were the dominant keystone taxa within the co-occurrence networks, potentially playing fundamental roles in obtaining energy under oligotrophic conditions and thus maintaining the stability of the cave ecosystem. To be noted, all the keystone taxa of karst ecosystems were related to nitrogen cycling, which needs further investigation, particularly the role of archaea. The predicted ecological functions in karst soils mainly related to carbohydrate metabolism, biotin metabolism, and synthesis of fatty acid. Our results offer new insights into archaeal ecology, their potential functions, and archaeal interactions with bacteria, which enhance our understanding about the microbial dark matter in the subsurface karst ecosystems.
Collapse
Affiliation(s)
- Xiaoyu Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Science, Shangrao Normal University, Shangrao, China
| | - Yuan Yun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| |
Collapse
|
15
|
Yuan M, Zhu X, Sun H, Song J, Li C, Shen Y, Li S. The addition of biochar and nitrogen alters the microbial community and their cooccurrence network by affecting soil properties. CHEMOSPHERE 2023; 312:137101. [PMID: 36334753 DOI: 10.1016/j.chemosphere.2022.137101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Biochar plays an important role in reducing the harmful environmental effects of inorganic nitrogen (N) fertilizers on agroecosystems, but the the impact mechanisms of biochar combined with N fertilizers on soil microorganisms are not clear enough. In this study, high-throughput sequencing was used to study the influences of three N fertilizer levels (0 (N0), 90 (N90) and 120 (N120) kg ha-1) and two biochar levels (0 (B0) and 20 (B20) t ha-1) on the soil microbial community and symbiotic network among microbial taxa in wheat fields. Compared to the control (B0N0), N fertilizer alone or combined with biochar significantly increased soil total N, available N, and organic matter in topsoil (0-20 cm), and the same results were found only in B20N120 treatment in subsoil (20-40 cm). In addition, bacterial and fungal diversity in topsoil were significantly increased and decreased by all N and biochar treatments, respectively. Moreover, soil bacterial and fungal community compositions also were also changed by N and biochar. Furthermore, biochar weakened the competition and cooperation among microorganisms in topsoil and subsoil, and the keystone species of networks were also changed by biochar. Redundancy analysis showed that soil total N, available N, available P, available K and pH were the main environmental factors driving the changes in bacterial and fungal community structures. These data indicated that the addition of N fertilizer and biochar could improve soil fertility by maintaining the stability of microbial community structures, which can provide reasonable guidance for the sustainable development of agriculture, such as maintaining dryland production.
Collapse
Affiliation(s)
- Minshu Yuan
- State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Jingrong Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Chen Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yufang Shen
- State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
16
|
Jiang C, Zeng H. Comparison of soil microbial community structure and function for karst tiankeng with different degrees of degradation. Ecol Evol 2022; 12:e9615. [PMID: 36514550 PMCID: PMC9731917 DOI: 10.1002/ece3.9615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Karst tiankengs are oases in degraded karst landscapes and act as repositories for biodiversity conservation; however, knowledge about the bacterial and fungal structure and function of the karst tiankeng ecosystems is limited. This study investigated the microbial communities in three different tiankeng (nondegraded, moderately degraded, and heavily degraded tiankeng) by Illumina NovaSeq sequencing. We found that the degradation of karst tiankeng can lead to changes in microbial community structure and functions, while there are differences in bacterial and fungal responses. There were significant differences in bacterial and fungal community composition and beta diversity in the three tiankeng soils. Random molecular ecological network analysis results indicated that a more complex and stable bacterial network existed in nondegraded tiankeng, while more complex fungal networks existed in moderately degraded tiankeng. The keystones of Proteobacteria, Actinobacteria, Acidobacteria, Ascomycota, and Basidiomycota played essential roles in maintaining soil function and stability. The functional profiles revealed that tiankeng habitat changes may affect microbial survival strategies, such as increasing gene abundance associated with the carbon cycle. To our knowledge, this is the first report on bacterial and fungal communities in different degrees of karst tiankeng, which provides crucial insights into our understanding of the microbial communities' structure and potential function in karst tiankeng ecosystems.
Collapse
Affiliation(s)
- Cong Jiang
- School of Urban Planning and DesignPeking University Shenzhen Graduate School, Peking UniversityShenzhenChina
| | - Hui Zeng
- School of Urban Planning and DesignPeking University Shenzhen Graduate School, Peking UniversityShenzhenChina
| |
Collapse
|
17
|
Jiang C, Liu Y, Li H, Zhu S, Sun X, Wu K, Shui W. The characterization of microbial communities and associations in karst tiankeng. Front Microbiol 2022; 13:1002198. [PMID: 36338100 PMCID: PMC9632645 DOI: 10.3389/fmicb.2022.1002198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
The karst tiankeng is a special and grand negative terrain on the surface, that maintains a unique ecosystem. However, knowledge about bacterial and fungal communities in karst tiankengs is still limited. Therefore, soil samples from five karst tiankengs were collected and subjected to high-throughput sequencing of 16S rRNA and ITS genes, and multivariate statistical analysis. The results showed abundant and diversified bacterial and fungal communities in karst tiankeng. The bacterial communities were dominated by Proteobacteria and Acidobacteria, and the fungal communities were dominated by Ascomycota and Basidiomycota. Statistical analysis revealed significant differences in bacterial and fungal communities among the five karst tiankengs, which may indicate that the distribution of bacterial and fungal communities was driven by separate karst tiankengs. The co-occurrence network structure was characterized by highly modularized assembly patterns and more positive interactions. The keystone taxa were mainly involved in nutrient cycling and energy metabolism. The null model analysis results showed that the stochastic process, especially dispersal limitation, tended to be more important in controlling the development of bacterial and fungal communities in karst tiankeng. The bacterial community structure was significantly associated with soil properties (SWC, TN, AN, and BD), while the fungal community structure was significantly associated with soil properties (SWC and TP) and plant diversity. These results can expand our knowledge of the karst tiankeng microbiome.
Collapse
Affiliation(s)
- Cong Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yuanmeng Liu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Hui Li
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Sufeng Zhu
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiang Sun
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Kexing Wu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Wei Shui
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
- *Correspondence: Wei Shui,
| |
Collapse
|
18
|
Yang W, Diao L, Wang Y, Yang X, Zhang H, Wang J, Luo Y, An S, Cheng X. Responses of soil fungal communities and functional guilds to ~160 years of natural revegetation in the Loess Plateau of China. Front Microbiol 2022; 13:967565. [PMID: 36118195 PMCID: PMC9479326 DOI: 10.3389/fmicb.2022.967565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Natural revegetation has been widely confirmed to be an effective strategy for the restoration of degraded lands, particularly in terms of rehabilitating ecosystem productivity and soil nutrients. Yet the mechanisms of how natural revegetation influences the variabilities and drivers of soil residing fungal communities, and its downstream effects on ecosystem nutrient cycling are not well understood. For this study, we investigated changes in soil fungal communities along with ~160 years of natural revegetation in the Loess Plateau of China, employing Illumina MiSeq DNA sequencing analyses. Our results revealed that the soil fungal abundance was greatly enhanced during the later stages of revegetation. As revegetation progresses, soil fungal richness appeared first to rise and then decline at the climax Quercus liaotungensis forest stage. The fungal Shannon and Simpson diversity indexes were the lowest and highest at the climax forest stage among revegetation stages, respectively. Principal component analysis, Bray–Curtis similarity indices, and FUNGuild function prediction suggested that the composition, trophic modes, and functional groups for soil fungal communities gradually shifted along with natural revegetation. Specifically, the relative abundances of Basidiomycota, Agaricomycetes, Eurotiomycetes, and ectomycorrhizal fungi progressively increased, while that of Ascomycota, Sordariomycetes, Dothideomycetes, Tremellomycetes, saprotrophic, pathotrophic, arbuscular mycorrhizal fungi, and endophyte fungi gradually decreased along with natural revegetation, respectively. The most enriched members of Basidiomycota (e.g., Agaricomycetes, Agaricales, Cortinariaceae, Cortinarius, Sebacinales, Sebacinaceae, Tricholomataceae, Tricholoma, Russulales, and Russulaceae) were found at the climax forest stage. As important carbon (C) sources, the most enriched symbiotic fungi (particularly ectomycorrhizal fungi containing more recalcitrant compounds) can promote organic C and nitrogen (N) accumulation in soils of climax forest. However, the most abundant of saprotrophic fungi in the early stages of revegetation decreased soil organic C and N accumulation by expediting the decomposition of soil organic matter. Our results suggest that natural revegetation can effectively restore soil fungal abundance, and modify soil fungal diversity, community composition, trophic modes, and functional groups by altering plant properties (e.g., plant species richness, diversity, evenness, litter quantity and quality), quantity and quality of soil nutrient substrates, soil moisture and pH. These changes in soil fungal communities, particularly their trophic modes and functional groups along with natural revegetation, impact the accumulation and decomposition of soil C and N and potentially affect ecosystem C and N cycling in the Loess Plateau of China.
Collapse
Affiliation(s)
- Wen Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
- *Correspondence: Wen Yang,
| | - Longfei Diao
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yaqi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xitong Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huan Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yiqi Luo
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, United States
| | - Shuqing An
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaoli Cheng
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Xiaoli Cheng,
| |
Collapse
|
19
|
Heterogeneity of Spatial-Temporal Distribution of Nitrogen in the Karst Rocky Desertification Soils and Its Implications for Ecosystem Service Support of the Desertification Control—A Literature Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, the study of soil nitrogen distribution (SND) in rocky desertification control ecosystems has increased exponentially. Rocky desertification experiences severe environmental degradation due to its fragile nature, and understanding rocky desertification soil nitrogen (SN) is critical for ecosystem services (ES) to support sustainable development. From the perspective of bibliometrics, this paper systematically, comprehensively, qualitatively and quantitatively describes the progress, trends and hotspots of SND in the field of rocky desertification environment. The results show that: 97.40% of the document type is “Article”; the study of rocky desertification SND shows the characteristics of rapid growth, the volume of published articles in the past three years accounted for 34.30% of the total; active countries are mainly China, Germany, United States, Sweden, Finland, etc. The research hotspots in this field include karst and nitrogen, and the future research hotspots tend to focus on karst rocky desertification ecosystem, soil nutrients and vegetation diversity in south China. It is suggested to construct SN management strategy suitable for rocky desertification fragile ecosystems in the future, strengthen theoretical research and comprehensively understand the characteristics of rocky desertification control ecosystem to put forward sustainable management strategy according to local conditions.
Collapse
|