1
|
Li R, Feng K, Du Y, Fan X, Zhang Y, Wang C, Zhang J, Ahmad S, Amna R, Liu C, Niu R, Sun Z. Identification of potential natural compounds to relieve deoxynivalenol-induced intestinal damage based on bioinformatics and reverse network pharmacology. Food Chem Toxicol 2025; 202:115551. [PMID: 40379078 DOI: 10.1016/j.fct.2025.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Deoxynivalenol (DON) is one of the most prevalent mycotoxins globally, causing a variety of toxic effects in both humans and animals. Numerous studies have demonstrated the considerable efficacy of natural medicines in treating and preventing DON-induced damage. Therefore, it is crucial to predict and screen highly efficient natural medicines and further investigate their mechanisms. In this study, we employed bioinformatics approaches to explore DON's pathogenic mechanism and targets. Utilizing drug prediction and screening databases, we conducted reverse prediction and screening of differentially expressed genes (DEGs) and key targets to obtain optimal natural medicines, ultimately identifying quercetin as the most promising candidate. Subsequently, network pharmacology analyses revealed that quercetin alleviated DON-induced intestinal damage by modulating inflammatory targets and the TNF/NF-κB pathways. Our experiments demonstrated that quercetin treatment improved DON-induced growth inhibition and intestinal damage in mice, while successfully reversing the abnormal expression of key target genes. Furthermore, quercetin restored the intestinal microbial imbalance induced by DON. Overall, these findings suggest that quercetin is a promising natural medicine capable of alleviating DON-induced intestinal dysfunction by regulating inflammation-related factor levels and gut microbiota, thereby providing new insights for the future prevention and treatment of mycotoxins.
Collapse
Affiliation(s)
- Rui Li
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Kang Feng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yu Du
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Xuebin Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Yaqin Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Chenli Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Jingdi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Sheraz Ahmad
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Rafique Amna
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Ruiyan Niu
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China
| | - Zilong Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, Shanxi, China.
| |
Collapse
|
2
|
Cova TF, Ferreira C, Nunes SCC, Pais AACC. Structural Similarity, Activity, and Toxicity of Mycotoxins: Combining Insights from Unsupervised and Supervised Machine Learning Algorithms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6173-6188. [PMID: 40013497 DOI: 10.1021/acs.jafc.4c08527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A large number of mycotoxins and related fungal metabolites have not been assessed in terms of their toxicological impacts. Current methodologies often prioritize specific target families, neglecting the complexity and presence of co-occurring compounds. This work addresses a fundamental question: Can we assess molecular similarity and predict the toxicity of mycotoxins in silico using a defined set of molecular descriptors? We propose a rapid nontarget screening approach for multiple classes of mycotoxins, integrating both unsupervised and supervised machine learning models, alongside molecular and physicochemical descriptors to enhance the understanding of structural similarity, activity, and toxicity. Clustering analyses identify natural clusters corresponding to the known mycotoxin families, indicating that mycotoxins belonging to the same cluster share similar molecular properties. However, topological descriptors play a significant role in distinguishing between acutely toxic and nonacutely toxic compounds. Random forest (RF) and neural networks (NN), combined with molecular descriptors, contribute to improved knowledge and predictive capability regarding mycotoxin toxicity profiles. RF allows the prediction of toxicity using data reflecting mainly structural features and performs well in the presence of descriptors reflecting biological activity. NN models prove to be more sensitive to biological activity descriptors than RF. The use of descriptors encompassing structural complexity and diversity, chirality and symmetry, connectivity, atomic charge, and polarizability, together with descriptors representing lipophilicity, absorption, and permeation of molecules, is crucial for predicting toxicity, facilitating broader toxicological evaluations.
Collapse
Affiliation(s)
- Tânia F Cova
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Sandra C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, Institute of Molecular Sciences (IMS), Faculty of Sciences and Technology, University of Coimbra, R. Larga 2, 3004-535 Coimbra, Portugal
| |
Collapse
|
3
|
Huybrechts I, Jacobs I, Biessy C, Aglago EK, Jenab M, Claeys L, Zavadil J, Casagrande C, Nicolas G, Scelo G, Altieri A, Fervers B, Oswald IP, Vignard J, Chimera B, de Magistris MS, Masala G, Palli D, Padroni L, Castilla J, Jiménez-Zabala A, Frenoy P, Mancini FR, Ren X, Sonestedt E, Vineis P, Heath A, Werner M, Molina-Montes E, Dahm CC, Langmann F, Huerta JM, Brustad M, Skeie G, Schulze MB, Agudo A, Sieri S, Korenjak M, Gunter MJ, De Saeger S, De Boevre M. Associations between dietary mycotoxins exposures and risk of hepatocellular carcinoma in a European cohort. PLoS One 2024; 19:e0315561. [PMID: 39680546 PMCID: PMC11649147 DOI: 10.1371/journal.pone.0315561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mycotoxins have been hypothesized to contribute to a diversity of adverse health effects in humans, even at low concentrations. Certain mycotoxins are established human carcinogens, whereas for others research suggests potential carcinogenic effects. The aim of this study was to determine the association between dietary exposure to mycotoxins and hepatobiliary cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. EPIC questionnaire data were matched to mycotoxin food occurrence data compiled by the European Food Safety Authority to assess long-term dietary mycotoxin exposure (expressed as μg/kg body weight/day) and then relate them to the risk of hepatocellular carcinoma (HCC) (n = 255) and biliary tract cancers (n = 273). Analyses were conducted using multivariable Cox proportional hazards regression models to compute hazard ratios (HR) and 95% confidence intervals (95% CI). Key food groups contributing to mycotoxin exposure were cereals and cereal-based products, vegetables, non-alcoholic beverages (including fruit juices) and fruits. Estimated intake of deoxynivalenol (DON) and its derivatives was positively associated with HCC risk (HRT3vsT1: 1.90, 95% CI: 1.18-3.05, p-trend <0.01). No statistically significant associations were found for the other mycotoxins. Further research to confirm our observations and investigate potential underlying mechanisms of these compounds is warranted. These data may provide evidence of HCC risks associated with higher dietary intake levels of DON, which has not yet been classified as a human carcinogen.
Collapse
Affiliation(s)
- Inge Huybrechts
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Inarie Jacobs
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Carine Biessy
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Elom K. Aglago
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Mazda Jenab
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Liesel Claeys
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Corinne Casagrande
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Genevieve Nicolas
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | | | | | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Julien Vignard
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Bernadette Chimera
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
| | | | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Lisa Padroni
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra–IdiSNA, Pamplona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Jiménez-Zabala
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, San Sebastian, Spain
- BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, San Sebastián, Spain
| | - Pauline Frenoy
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Francesca Romana Mancini
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Xuan Ren
- UVSQ, Inserm "Exposome, Heredity, Cancer and Health" Team, CESP U1018, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Emily Sonestedt
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Paolo Vineis
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Alicia Heath
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Mårten Werner
- Department of Public Health and Clinikal Medicine, Umeå University, Umeå, Sweden
| | - Esther Molina-Montes
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Nutrition and Food Science, Campus of Cartuja, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Granada, Spain
| | | | - Fie Langmann
- Dept. of Public Health, Aarhus University, Aarhus, Denmark
| | - José María Huerta
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council-IMIB, Murcia, Spain
| | - Magritt Brustad
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- The Public Dental Health Service Competence Centre of Northern Norway, Tromsø, Norway
| | - Guri Skeie
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Antonio Agudo
- Unit of Nutrition and Cancer, Catalan Institute of Oncology ‐ ICO, L’Hospitalet de Llobregat, Spain
- Nutrition and Cancer Group, Bellvitge Biomedical Research Institute ‐ IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michael Korenjak
- International Agency for Research on Cancer (IARC/WHO), Epigenomics and Mechanisms Branch, Lyon, France
| | - Marc J. Gunter
- International Agency for Research on Cancer (IARC/WHO), Nutrition and Metabolism Branch, Lyon, France
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Sarah De Saeger
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
| | - Marthe De Boevre
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Willoquet B, Mirey G, Labat O, Garofalo M, Puel S, Penary M, Soler L, Vettorazzi A, Vignard J, Oswald IP, Payros D. Roles of cytochromes P450 and ribosome inhibition in the interaction between two preoccupying mycotoxins, aflatoxin B1 and deoxynivalenol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176937. [PMID: 39437909 DOI: 10.1016/j.scitotenv.2024.176937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Mycotoxins are a threat to human and animal health. Climate change increases their occurrence and our dietary exposure. Although humans and animals are concomitantly exposed to several mycotoxins, their combined effects are poorly characterised. This study investigated the interaction between aflatoxin B1 (AFB1), the most potent natural carcinogen, and deoxynivalenol (DON), which is among the most prevalent mycotoxins. AFB1 is associated with hepatocellular carcinoma through its bioactivation by cytochrome P450 (CYP450) enzymes; while DON induces ribotoxic stress leading to an alteration of intestinal, immune and hepatic functions. Analysis of DNA damage biomarkers γ-H2AX and 53BP1 revealed that DON reduces the genotoxicity of AFB1. This effect was mimicked with cycloheximide (CHX), another ribosome inhibitor; moreover DOM-1, a DON-derivative lacking ribosome inhibition, did not affect DNA damage. Exposure to DON, alone or in combination with AFB1, decreased the protein levels and/or activities of CYP1A2 and CYP3A4 in a time- and dose-dependent manner. A similar reduction of CYP1A2 and CYP3A4 activities was also observed with CHX. Altogether, these results revealed an original interaction between DON and AFB1, DON inhibiting the genotoxicity of AFB1. The underlying mechanism involves ribosome inhibition by DON and the subsequent impairment of CYP450s, responsible for the bioactivation of AFB1. This work highlights the importance of studying mycotoxins not only individually but also in mixture and of considering food contaminants as part of the exposome.
Collapse
Affiliation(s)
- B Willoquet
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - G Mirey
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - O Labat
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - M Garofalo
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - S Puel
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - M Penary
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - L Soler
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - A Vettorazzi
- Department of Pharmacology and Toxicology, Research Group MITOX, School of Pharmacy and Nutrition, Universidad de Navarra, 31008 Pamplona, Spain
| | - J Vignard
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France
| | - I P Oswald
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.
| | - D Payros
- INRAE, UMR1331, Toxalim, Research Centre in Food Toxicology, Toulouse, France.
| |
Collapse
|
5
|
Yang X, Cheng L, Yu L, Qi X, Zhang L, Zhang Q, Mao J, Li P. Moderate elimination of mycotoxins in vegetable oil triggered by superoxide anion and singlet oxygen. Food Chem 2024; 456:140082. [PMID: 38878532 DOI: 10.1016/j.foodchem.2024.140082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
Establishing a moderate elimination strategy for mycotoxins with the maintained food nutrition is significant to food safety. Herein, the Au-NPs decorated defective Bi2WO6 (Au-BWO-OV) with modulated ROS generation was successfully synthesized, integrating the merits of defect-engineering and Au-NPs induced LSPR-effect. The Au-BWO-OV exhibited modified photoelectrochemical property and O2-adsorption capacity, supporting the selective generation of •O2- and 1O2 with moderate oxidizing ability. As a result, >90% of AFB1 and ZEN were eliminated within 100 and 50 min, along with the maintained nutrition in vegetable oil. Moreover, the reasonable degradation mechanism triggered by •O2- and 1O2 was proposed based on the trapping experiments, DFT calculations and LC-MS analysis for intermediate products, including the steps of hydrolysis, oxidative dissociation, cis-trans isomerization, and dehydroxylation. This work not only paved the way for balancing the contradiction between detoxification and nutrient retention, but also casted new insights into the ROS-mediated degradation mechanism.
Collapse
Affiliation(s)
- Xianglong Yang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ling Cheng
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Li Yu
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xin Qi
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Liangxiao Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qi Zhang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jin Mao
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Peiwu Li
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
6
|
Beal MA, Habauzit D, Khoury L, Audebert M. Human next-generation risk assessment of trichothecene toxicity. Food Chem Toxicol 2024; 192:114916. [PMID: 39128691 DOI: 10.1016/j.fct.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Trichothecenes are naturally occurring chemicals, produced by fungi, that can be found in contaminated crops. Trichothecenes have the potential to indirectly damage DNA and exacerbate genotoxic effects of genotoxicants. However, genotoxicity data for most trichothecenes are limited and data gaps remain. Here we use the γH2AX/pH3 assay to evaluate DNA damage in vitro of 13 trichothecenes. Three human cell lines (SH-SY5Y, ACHN, and HepG2) were exposed to each trichothecene (0.001-100 μM) to assess toxicity as models for the brain, kidney, and liver, respectively. Concentration-dependent induction of DNA damage, illustrated by γH2AX induction, was observed for all trichothecenes. In vitro-in vivo extrapolation (IVIVE) modeling was employed to support in vivo equivalent potency ranking and screen for risk potential. Diacetoxyscirpenol, T-2, and HT-2 had the highest genotoxic potency, notably in SH-SY5Y cells. Administered equivalent doses (AEDs) derived from IVIVE were compared against exposure data from French total diet studies to assess risk potential. AEDs derived for T-2 and HT-2 from the SH-SY5Y model were within 100-fold of exposure levels for infants aged one year or less. Overall, the potential for trichothecenes to damage DNA and higher exposures in infants highlights the need to investigate the cumulative effects across the broader trichothecene family.
Collapse
Affiliation(s)
- Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada.
| | - Denis Habauzit
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Toxicology of Contaminants Unit, Fougères, France
| | | | - Marc Audebert
- Toxalim UMR1331, Toulouse University, INRAE, Toulouse, France.
| |
Collapse
|
7
|
Mishra S, Kapoor R, Sushma, Kanchan S, Jha G, Sharma D, Tomar B, Rath SK. Deoxynivalenol Induces Drp-1-Mediated Mitochondrial Dysfunction via Elevating Oxidative Stress. Chem Res Toxicol 2024; 37:1139-1154. [PMID: 38875017 DOI: 10.1021/acs.chemrestox.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Mitochondrial dysfunction is often linked to neurotoxicity and neurological diseases and stems from oxidative stress, yet effective therapies are lacking. Deoxynivalenol (DON or vomitoxin) is one of the most common and hazardous type-B trichothecene mycotoxins, which contaminates crops used for food and animal feed. Despite the abundance of preliminary reports, comprehensive investigations are scarce to explore the relationship between these fungal metabolites and neurodegenerative disorders. The present study aimed to elucidate the precise role of DON in mitochondrial dynamics and cell death in neuronal cells. Excessive mitochondrial fission is associated with the pathology of several neurodegenerative diseases. Human SH-SY5Y cells were treated with different concentrations of DON (250-1000 ng/mL). Post 24 and 48 h DON treatment, the indexes were measured as follows: generation of reactive oxygen species (ROS), ATP levels, mitochondrial membrane potential, calcium levels, and cytotoxicity in SH-SY5Y cells. The results showed that cytotoxicity, intracellular calcium levels, and ROS in the DON-treated group increased, while the ATP levels and mitochondrial membrane potential decreased in a dose-dependent manner. With increasing DON concentrations, the expression levels of P-Drp-1, mitochondrial fission proteins Mff, and Fis-1 were elevated with reduced activities of MFN1, MFN2, and OPA1, further resulting in an increased expression of autophagic marker LC3 and beclin-1. The reciprocal relationship between mitochondrial damage and ROS generation is evident as ROS can instigate structural and functional deficiencies within the mitochondria. Consequently, the impaired mitochondria facilitate the release of ROS, thereby intensifying the cycle of damage and exacerbating the overall process. Using specific hydroxyl, superoxide inhibitors, and calcium chelators, our study confirmed that ROS and Ca2+-mediated signaling pathways played essential roles in DON-induced Drp1 phosphorylation. Therefore, ROS and mitochondrial fission inhibitors could provide critical research tools for drug development in mycotoxin-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Sakshi Mishra
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Radhika Kapoor
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sushma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Sonam Kanchan
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Gaurav Jha
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Divyansh Sharma
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Bhawna Tomar
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
8
|
Alberge J, Mussard E, Al-Ayoubi C, Lencina C, Marrauld C, Cauquil L, Achard CS, Mateos I, Alassane-Kpembi I, Oswald IP, Soler L, Combes S, Beaumont M. Butyrate reduces epithelial barrier dysfunction induced by the foodborne mycotoxin deoxynivalenol in cell monolayers derived from pig jejunum organoids. Gut Microbes 2024; 16:2430424. [PMID: 39572558 PMCID: PMC11587856 DOI: 10.1080/19490976.2024.2430424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/30/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The foodborne mycotoxin deoxynivalenol (DON) produced by Fusarium species threats animal and human health through disruption of the intestinal barrier. Targeting the gut microbiota and its products appears as a promising strategy to mitigate DON intestinal toxicity. In this study, we investigated whether the bacterial metabolite butyrate could alleviate epithelial barrier disruption induced by DON. We used a model of cell monolayers derived from porcine jejunum organoids allowing to reproduce the cellular complexity of the intestinal epithelium. Our results show that DON dose-dependently disrupted the epithelial barrier integrity, reduced epithelial differentiation, and altered innate immune defenses. Butyrate attenuated the DON-induced increase in paracellular permeability. Butyrate also prevented epithelial barrier dysfunction triggered by anisomycin, a ribosome inhibitor like DON. Moreover, butyrate partially counteracted the effects of DON on tight junctions (TJP1, OCLN), innate epithelial defenses (PTGS2, CD14, TLR4, TLR5), and absorptive cell functions (CA2, VIL1, NHE3, CFTR). In contrast, butyrate did not prevent the toxic effects of DON on mitochondrial metabolism, proliferation and goblet cell functions. Taken together, our results demonstrate that the bacterial metabolite butyrate is able to reduce DON-induced epithelial barrier disruption.
Collapse
Affiliation(s)
- Julie Alberge
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Eloïse Mussard
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
| | - Carine Al-Ayoubi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Corinne Lencina
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Laurent Cauquil
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | | | - Ivan Mateos
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
- Lallemand Animal Nutrition, Blagnac Cedex, France
- Departamento de Producción Animal, Universidad de León, León, Spain
| | - Imourana Alassane-Kpembi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
- Centre de recherche en infectiologie porcine et avicole (CRIPA), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Isabelle P. Oswald
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Laura Soler
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, Toulouse, France
| | - Sylvie Combes
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| |
Collapse
|
9
|
Djouina M, Waxin C, Caboche S, Lecointe K, Steimle A, Beury D, Desai MS, Hot D, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. Low dose dietary contamination with deoxynivalenol mycotoxin exacerbates enteritis and colorectal cancer in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165722. [PMID: 37482350 DOI: 10.1016/j.scitotenv.2023.165722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND The mycotoxin deoxynivalenol (DON) is a frequent contaminant of grain and cereal products worldwide. Exposure to DON can cause gastrointestinal inflammation, disturb gut barrier function, and induce gut dysbiosis in vivo under basal conditions, but little is known about the effects of DON ingestion in individuals with pre-existing gastrointestinal disease. OBJECTIVES Mice were orally exposed to 10 and 100 μg/kg bw/day of DON, corresponding to 10 to 100-fold human tolerable daily intake concentrations, and to the translation in mice of current human daily intake. The effects of DON exposure were explored under steady-state conditions, and in murine models of enteritis and colorectal cancer (CRC). RESULTS After 8 days of DON exposure, an increase of histomorphological and molecular parameters of epithelial proliferation were observed in normal mice, from the duodenum to the colon. The same exposure in a murine model of indomethacin-induced enteritis led to exacerbation of lesion development and induction of ileal cytokines. DON exposure also worsened the development of colitis-associated CRC in mice as shown by increases in endoscopic and histological colitis scores, tumor grades, and histological hyperplasia. In colon of DON-exposed mice, upstream and downstream ERK signaling genes were upregulated including Mapk1, Mapk3, Map 2k1, Map2k2 core ERK pathway effectors, and Bcl2 and Bcl2l1 antiapoptotic genes. The effects observed in the CRC model were associated with alterations in cecal microbiota taxonomic composition and metabolism of bacterial fucose and rhamnose. Strong Spearman's correlations were revealed between the relative abundance of the changed bacterial genera and CRC-related variables. DISCUSSION Ingestion of DON mycotoxin at concentrations representative of human real-world exposure worsened the development of indomethacin-induced enteritis and colitis-associated CRC in mice. Our results suggest that even at low doses, which are currently tolerated in the human diet, DON could promote the development of intestinal inflammatory diseases and CRC.
Collapse
Affiliation(s)
- Madjid Djouina
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Ségolène Caboche
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Karine Lecointe
- Inserm U1285, Univ. Lille, CHU de Lille, UMR CNRS 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Alexander Steimle
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Delphine Beury
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - David Hot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US41-UAR 2014-PLBS, F-59000 Lille, France
| | - Laurent Dubuquoy
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Mathilde Body-Malapel
- Univ. Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
10
|
Garofalo M, Payros D, Taieb F, Oswald E, Nougayrède JP, Oswald IP. From ribosome to ribotoxins: understanding the toxicity of deoxynivalenol and Shiga toxin, two food borne toxins. Crit Rev Food Sci Nutr 2023; 65:193-205. [PMID: 37862145 DOI: 10.1080/10408398.2023.2271101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Ribosomes that synthesize proteins are among the most central and evolutionarily conserved organelles. Given the key role of proteins in cellular functions, prokaryotic and eukaryotic pathogens have evolved potent toxins to inhibit ribosomal functions and weaken their host. Many of these ribotoxin-producing pathogens are associated with food. For example, food can be contaminated with bacterial pathogens that produce the ribotoxin Shiga toxin, but also with the fungal ribotoxin deoxynivalenol. Shiga toxin cleaves ribosomal RNA, while deoxynivalenol binds to and inhibits the peptidyl transferase center. Despite their distinct modes of action, both groups of ribotoxins hinder protein translation, but also trigger other comparable toxic effects, which depend or not on the activation of the ribotoxic stress response. Ribotoxic stress response-dependent effects include inflammation and apoptosis, whereas ribotoxic stress response-independent effects include endoplasmic reticulum stress, oxidative stress, and autophagy. For other effects, such as cell cycle arrest and cytoskeleton modulation, the involvement of the ribotoxic stress response is still controversial. Ribotoxins affect one organelle yet induce multiple toxic effects with multiple consequences for the cell. The ribosome can therefore be considered as the cellular "Achilles heel" targeted by food borne ribotoxins. Considering the high toxicity of ribotoxins, they pose a substantial health risk, as humans are highly susceptible to widespread exposure to these toxins through contaminated food sources.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Frederic Taieb
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
11
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Liang SJ, Wang XQ. Deoxynivalenol induces intestinal injury: insights from oxidative stress and intestinal stem cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48676-48685. [PMID: 36856999 DOI: 10.1007/s11356-023-26084-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/19/2023] [Indexed: 04/16/2023]
Abstract
Mycotoxins are fungal secondary metabolites that frequently occur in human and animal diets. Deoxynivalenol (DON) is one of the most widely occurring mycotoxins globally and poses significant harm to the animal husbandry industry and human health. People are increasingly aware of the adverse effects of DON on vulnerable structures and functions in the intestine, especially in the field of intestinal stem cells (ISCs). In this review, we present insights into DON that induces oxidative stress and affects the expansion of ISCs. Related studies of strategies for reducing its harm are summarized. We also discussed promising approaches such as regulation of microbiota, molecular docking, and modulation of the redox status via reducing the expression of Keap1 protein and single-cell sequencing, which may be critical for further revealing the mechanism of DON that induces oxidative stress and affects the expansion of ISCs.
Collapse
Affiliation(s)
- Shao-Jie Liang
- Guangdong Laboratory Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiu-Qi Wang
- Guangdong Laboratory Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
13
|
Garofalo M, Payros D, Penary M, Oswald E, Nougayrède JP, Oswald IP. A novel toxic effect of foodborne trichothecenes: The exacerbation of genotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120625. [PMID: 36410598 DOI: 10.1016/j.envpol.2022.120625] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Trichothecenes (TCT) are very common mycotoxins. While the effects of DON, the most prevalent TCT, have been extensively studied, less is known about the effect of other trichothecenes. DON has ribotoxic, pro-inflammatory, and cytotoxic potential and induces multiple toxic effects in humans and animals. Although DON is not genotoxic by itself, it has recently been shown that this toxin exacerbates the genotoxicity induced by model or bacterial genotoxins. Here, we show that five TCT, namely T-2 toxin (T-2), diacetoxyscirpenol (DAS), nivalenol (NIV), fusarenon-X (FX), and the newly discovered NX toxin, also exacerbate the DNA damage inflicted by various genotoxins. The exacerbation was dose dependent and observed with phleomycin, a model genotoxin, captan, a pesticide with genotoxic potential, and colibactin, a bacterial genotoxin produced by the intestinal microbiota. For this newly described effect, the trichothecenes ranked in the following order: T-2>DAS > FX > NIV ≥ DON ≥ NX. The genotoxic exacerbating effect of TCT correlated with their ribotoxic potential, as measured by the inhibition of protein synthesis. In conclusion, our data demonstrate that TCT, which are not genotoxic by themselves, exacerbate DNA damage induced by various genotoxins. Therefore, foodborne TCT could enhance the carcinogenic potential of genotoxins present in the diet or produced by intestinal bacteria.
Collapse
Affiliation(s)
- Marion Garofalo
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Delphine Payros
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Marie Penary
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France
| | | | - Isabelle P Oswald
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
14
|
Zhou Y, Yang CJ, Luo XF, Li AP, Zhang SY, An JX, Zhang ZJ, Ma Y, Zhang BQ, Liu YQ. Design, synthesis, and biological evaluation of novel berberine derivatives against phytopathogenic fungi. PEST MANAGEMENT SCIENCE 2022; 78:4361-4376. [PMID: 35758905 DOI: 10.1002/ps.7055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The abuse of chemical fungicides not only leads to toxic residues and resistance in plant pathogenic fungi, but also causes environmental pollution and side effects on in humans and animals. Based on the antifungal activities of berberine, seven different types of berberine derivatives (A1-G1) were synthesized, and their antifungal activities against six plant pathogenic fungi were evaluated (Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, Phytophthora capsici, Sclerotinia sclerotiorum, and Magnaporthe oryzae). RESULTS The results for antifungal activities in vitro showed that berberine derivative E1 displayed good antifungal activity against R. solani with a median effective concentration (EC50 ) of 1.77 μg ml-1 , and berberine derivatives F1 and G1 demonstrated broad-spectrum antifungal activities with EC50 values ranging from 4.43 to 42.23 μg ml-1 against six plant pathogenic fungi. Berberine derivatives (E2-E29, F2-F18, and G2-G9) were further synthesized to investigate the structure-activity relationship (SAR), and compound E20 displayed significant antifungal activity against R. solani with an EC50 value of 0.065 μg ml-1 . Preliminary mechanism studies showed that E20 could cause mycelial shrinkage, cell membrane damage, mitochondrial abnormalities and the accumulation of harmful reactive oxygen species, resulting in cell death in R. solani. Moreover, in vivo experimental results showed that the protective effect of E20 was 97.31% at 5 μg ml-1 , which was better than that of the positive control thifluzamide (50.13% at 5 μg ml-1 ). CONCLUSION Berberine derivative E20 merits further development as a new drug candidate with selective and excellent antifungal activity against R. solani. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - An-Ping Li
- Gansu Institute for Drug Control, Lanzhou, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, People's Republic of China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Yue Ma
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou, People's Republic of China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
15
|
Sun X, Rubitski E, Spellman RA, Engel M, Schuler M. A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:230-245. [PMID: 35703118 DOI: 10.1002/em.22496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/21/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Genotoxicity testing guidelines require the assessment of the clastogenic and aneugenic potential of compounds. While in vitro micronucleus assays detect both types of endpoints, it requires labor-intensive microscopic scoring and does not discriminate between the two modes of actions. Here, we present a novel high-content imaging platform in A375 human cells that addresses the need for rapid scoring while providing additional mechanistic information. We evaluated the new platform with 12 compounds, three compounds from each mechanistic class (clastogen, aneugen tubulin binder, aneugen aurora inhibitor, and nongenotoxicant) following 4- and 24-h compound treatments. The approach we developed is first discriminating between genotoxicant and nongenotoxicant using an image analysis algorithm to quantify micronucleus induction below a 60% cytotoxicity cutoff. Then it uses centromere protein A (CENPA) staining for the genotoxic compounds to discriminate between aneugens and clastogens. Lastly, we use phosphorylated histone H2AX Ser139 (γH2AX) staining to confirm clastogenicity and changes in phosphorylated histone 3 Ser10 (pH 3) and increases in polyploidy in mitotic cells to discriminate between aneugens that bind tubulin from those that affect aurora kinases. All compounds were correctly classified, and we showed by using benchmark dose-response analysis that the imaging platform in A375 cells is at least as sensitive as the MicroFlow® assay in TK6 cells for genotoxicant but appears to be more specific for the nongenotoxicants. A detailed comparison of the cell lines and a more comprehensive validation with a much larger compound set, predictive and dose-response modeling will be presented in the future.
Collapse
Affiliation(s)
- Xiaowen Sun
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | | | | | - Maria Engel
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| | - Maik Schuler
- Pfizer Research, Development, and Medical, Groton, Connecticut, USA
| |
Collapse
|