1
|
Yang C, Xu Y, Yu T, Li Y, Zeng XC. Microbial reductive mobilization of As(V) in solid phase coupled with the oxidation of sulfur compounds: An overlooked biogeochemical reaction affecting the formation of arsenic-contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138234. [PMID: 40250270 DOI: 10.1016/j.jhazmat.2025.138234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Dissimilatory As(V)-respiring prokaryotes (DARPs) are recognized as having a crucial role in the formation of arsenic-contaminated groundwater. DARPs use small-molecule organic acids as electron donor to directly reduce As(V) in solid phase to more mobile As(III). Therefore, DARPs are considered to be heterotrophic bacteria. However, these cannot explain why high concentrations of As(III) are produced in environments lacking soluble organic carbon. We thus propose that reduced sulfur compounds may also be utilized by DARPs and affect the DARPs-mediated arsenic mobilization. This study sought to confirm this hypothesis. Metagenomic investigations on the DARP population derived from As-contaminated soil indicated that approximately 84 % of DARP MAGs possess the enzymes potentially catalyzing the oxidation of S2-, S0, SO32-, or S2O32-. Functional analysis of DARP population and a cultivable strain suggested that DARPs, in addition to small-molecule organic carbon, can effectively use sulfur compounds as electron donor to reduce As(V) to mobile As(III). Arsenic release experiments using DARP population and a cultivable DARP strain showed that DARPs indeed utilized sulfur compounds as the sole electron donors under autotrophic and anaerobic conditions to directly reduce adsorbed As(V) in the soils to mobile As(III). These findings provide new insights into the microbial mechanism responsible for the variation of As(III) concentrations in contaminated groundwater.
Collapse
Affiliation(s)
- Chengsheng Yang
- State Key Laboratory of Geomicrobiology and Environmental Changes & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Yifan Xu
- State Key Laboratory of Geomicrobiology and Environmental Changes & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Tingting Yu
- State Key Laboratory of Geomicrobiology and Environmental Changes & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Yang Li
- State Key Laboratory of Geomicrobiology and Environmental Changes & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Geomicrobiology and Environmental Changes & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Ai D, Wu T, Huang D, Ying Z, Zhang J. Enhanced removal of carbamazepine by microalgal-fungal symbiotic systems in the presence of Mn(II): Synergistic mechanisms and microbial community dynamics. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138342. [PMID: 40280062 DOI: 10.1016/j.jhazmat.2025.138342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/02/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Microalgal-fungal symbiotic systems (MFSS) have emerged as a promising approach for wastewater treatment, yet the mechanisms driving reactive oxygen species (ROS) generation and pharmaceutical pollutant removal remain underexplored. This study investigates the synergistic interactions within MFSS and their role in Mn(II) oxidation, with a focus on enhancing carbamazepine (CBZ) degradation and microbial community dynamics. The results reveal that microalgal-fungal interactions inhibit Fe-S cluster activity, disrupting electron transport chains and promoting extracellular superoxide production. This superoxide surge directly accelerates Mn(II) oxidation, while Mn(III) and ROS drive synergistic effects to amplify CBZ removal efficiency. Notably, system-specific variations in superoxide generation were observed across different MFSS configurations, determining their degradation performance. Water quality factors, such as microbial community complexity and nitrate concentration, play crucial roles in CBZ degradation in natural water systems. High-throughput sequencing reveals dynamic shifts in bacterial and eukaryotic communities, highlighting their synergistic interactions in pollutant degradation. Temporal and spatial changes in microbial community structure suggest that the system evolves into a more adaptive configuration during pollutant treatment, enhancing long-term stability. These findings advance the mechanistic understanding of ROS-mediated pollutant degradation in MFSS and provide actionable strategies for optimizing bioremediation systems in engineered and natural water environments.
Collapse
Affiliation(s)
- Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Tao Wu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China
| | - Zeguo Ying
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
3
|
da Costa L, Zopfi J, Alewell C, Lehmann MF, Lenz M. Antimony mobility in soils: current understanding and future research directions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:833-848. [PMID: 40109006 DOI: 10.1039/d4em00743c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Antimony (Sb) has gained increased attention over the past few decades due to its possible detrimental effects on biota and its potential to leach and disperse from contaminated soils. The fate of Sb in the environment is largely controlled by its chemical speciation, as well as the speciation of solid phases (e.g. Mn/Fe-oxyhydroxides) that interact with Sb in soils. Microbes have the capacity to facilitate a multitude of oxidation and reduction reactions in soils. Therefore, they exert control over the reactivity of Sb in the environment, either directly and/or indirectly, by changing Sb speciation and/or affecting the redox state of soil solid phases. Here, we outline processes that determine the behaviour of Sb in soils. We conclude that based on laboratory studies there is a good theoretical understanding of pure soil components interacting with Sb species. However, comparatively little is known concerning the contribution of these interactions in complex natural systems that are dynamic in terms of biogeochemical conditions and that can hardly be simulated using laboratory incubations. We note that important biochemical foundations of microbially driven Sb conversions (i.e. molecular constraints on organisms, genes and enzymes involved) have emerged recently. Again, these are based on laboratory incubations and investigations in environments high in Sb. In this regard, an important remaining question is which microorganisms actively impact Sb speciation under real-world conditions, in particular where Sb concentrations are low. Multiple dissolved Sb species have been described in the literature. We note that more analytical development is needed to identify and quantify possible key Sb species in natural systems, as well as anthropogenically impacted environments with only moderate Sb concentrations. With these research needs addressed, we believe that the Sb fate in the environment can be more accurately assessed, and remediation options can be developed.
Collapse
Affiliation(s)
- Lara da Costa
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132 Muttenz, Switzerland.
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Jakob Zopfi
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Christine Alewell
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Moritz F Lehmann
- University of Basel, Department of Environmental Science, Bernoullistrasse 30, 4056 Basel, Switzerland
| | - Markus Lenz
- Institute for Ecopreneurship, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Hofackerstrasse 30, 4132 Muttenz, Switzerland.
- Department of Environmental Technology, Wageningen University, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
4
|
Bappy MMM, Rahman MM, Hossain MK, Moniruzzaman M, Yu J, Arai T, Paray BA, Hossain MB. Distribution and retention efficiency of micro- and mesoplastics and heavy metals in mangrove, saltmarsh and cordgrass habitats along a subtropical coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125908. [PMID: 39993705 DOI: 10.1016/j.envpol.2025.125908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Understanding how coastal ecosystems mitigate pollution is essential due to their critical role in safeguarding environmental health, and supporting restoration efforts. This study, for the first time, evaluated the contamination levels and retention capacities of micro- and mesoplastics, and heavy metals across coastal habitats-specifically mangrove (MH), invasive Kikuyu grass (KH), and salt marsh cord grass (SH)-along a subtropical intertidal beach. Of the 120 sediment samples collected, 60 were analyzed for micro- and mesoplastics using wet peroxide oxidation and FTIR spectroscopy, while the remaining 60 were examined for heavy metal concentrations via ICP-MS. Results showed that KH habitats retained the highest plastics (153 ± 10.9 items/kg), followed by MH (112 ± 4.58 items/kg), SH (73.17 ± 6.81 items/kg), and NV (50.83 ± 10.87 items/kg) areas with significantly different retention in MH and KH habitats. Heavy metals followed a decreasing retention order of Mn > Zn > Cu > Cr > Pb > Ni > As > Cd > Hg. Significant difference was observed in Pb, Cr retention by an invasive Kikuyu grass (KH1) station, and Cu retention in two invasive Kikuyu grass stations (KH1 and KH3). However, in general no habitats were significantly different in retaining the metals. Principal Component Analysis and Canonical Correspondence Analysis revealed that micro- and mesoplastics were strongly associated with Zn, Cu, and Pb. KH habitats showed the highest retention efficiency, however, the associated toxicity risk increased with retention levels, indicating a higher risk in KH habitats compared to NV areas. The study highlighted Kikuyu grass habitats as both efficient pollutant sinks and potential ecological risk zones, emphasizing the need for targeted remediation to optimize retention while safeguarding ecosystem health.
Collapse
Affiliation(s)
- Md Maheen Mahmud Bappy
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Md Mofizur Rahman
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh
| | - Md Kamal Hossain
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mohammad Moniruzzaman
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
5
|
Laloo AE, Gupta A, Verrone V, Dubey RK. Role of Fe and Mn in organo-mineral-microbe interactions: evidence of carbon stabilization and transformation of organic matter leading to carbon greenhouse gas emissions. Lett Appl Microbiol 2025; 78:ovaf044. [PMID: 40118507 DOI: 10.1093/lambio/ovaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/10/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
Up to 90% of organic matter (OM) in soils and sediments are stabilized and protected against microbial decomposition through organo-mineral interactions, formation of soil aggregates, pH, and oxygen availability. In soils and sediment systems, OM is associated with mineral constituents promoting carbon persistence and sequestration of which iron (Fe) and manganese (Mn) are crucial components. Under anoxic condition, microbes couple the decomposition of OM to the oxidative/reductive transformation of Fe/Mn minerals leading to carbon greenhouse gas (C-GHG) emissions (i.e. CH4 and CO2). Although these organo-mineral-microbe interactions have been observed for decades, the bio-geochemical mechanisms governing the switch from OM stability toward OM degradation are not fully understood. Interest in this field have been growing steadily given the interest in global warming caused by OM decomposition leading to C-GHG emissions. This review emphasizes the dual role of Fe/Mn minerals in both OM stability and decomposition. Additionally, we synthesize the conceptual understanding of how Fe/Mn minerals govern OM dynamics and the resultant C-GHG emissions via microbial-mediated carbon transformation. We highlight the need for interdisciplinary research to better understand organo-Fe/Mn mineral-microbial interactions to develop management handles for climate mitigation strategies.
Collapse
Affiliation(s)
- Andrew Elohim Laloo
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Abhishek Gupta
- Singapore Centre of Environmental Engineering and Life Sciences, National University of Singapore, Singapore
| | - Valeria Verrone
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Rama Kant Dubey
- National University of Singapore Environmental Research Institute, National University of Singapore, 117411, Singapore
- Department of Biological Science, National University of Singapore, 117558, Singapore
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh 281406, India
| |
Collapse
|
6
|
da Costa MV, Lopes G, Guilherme LRG, Martins FAD, Silva KN, Dos Santos LC, Carneiro MAC, Duarte MH, Ribeiro BT. Fast, in situ, and eco-friendly determination of Mn in plant leaves using portable X-ray fluorescence spectrometry for agricultural and environmental applications. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:227. [PMID: 39899111 DOI: 10.1007/s10661-025-13692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
The portable X-ray fluorescence (pXRF) spectrometry has been very useful for the characterization of different earth materials, and its application for foliar analysis is really promising. The performance of pXRF for foliar analysis depends on several factors such as concentration of the elements, fluorescence yield which is influenced by atomic number, spectral interference, and water content. Mn is one of the elements that present a prominent fluorescence peak. In this sense, it was hypothesized that pXRF can directly determine the Mn concentration on foliar samples, even when used on intact leaves (fresh or dry) being a useful tool for agronomic and environmental purposes. Thus, the objective was to assess the performance of a pXRF to determine Mn concentration in two different foliar datasets from Brazil/South America and Mali/Africa. In the Brazilian dataset, leaves from eight crops (common bean, castor plant, coffee, eucalyptus, guava tree, maize, mango, and soybean) were scanned via pXRF at the following conditions: intact and fresh leaves, intact and dry leaves, and powdered samples). In the Malian dataset, powdered samples from cotton and maize were analyzed via pXRF. For comparison, Mn concentration was also determined after nitro-perchloric digestion followed by quantification via inductively coupled plasma optical emission spectroscopy (ICP-OES). After descriptive statistics, linear regressions were performed for all sample preparation conditions in both datasets, using Mn concentrations obtained through pXRF and the acid digestion method. The data quality level of all linear regressions was considered quantitative with high R (0.93 to 0.98) and R2 (0.87 to 0.96) values. The direct analysis of Mn via pXRF on intact and fresh leaves yielded R of 0.93, R2 of 0.87, and a low relative standard deviation (< 10%). The manufactured pXRF calibration used in this work allowed an accurate direct Mn determination in plant leaves. Considering the importance of Mn as a plant micronutrient and its potential toxicity depending on soil redox conditions, the fast, in situ, non-destructive, and eco-friendly determination via pXRF has a tremendous agronomic and environmental application worldwide.
Collapse
Affiliation(s)
- Marcela Vieira da Costa
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
| | - Guilherme Lopes
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
| | | | | | - Kellen Nara Silva
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
| | | | | | - Mariene Helena Duarte
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil
| | - Bruno Teixeira Ribeiro
- Department of Soil Science, Federal University of Lavras, Lavras, Minas Gerais State, Brazil.
| |
Collapse
|
7
|
Wang X, Liu TC, Wang XW, Dang CC, Tan X, Lu Y, Liu BF, Xing DF, Ren NQ, Xie GJ. Microbial manganese redox cycling drives co-removal of nitrate and ammonium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124095. [PMID: 39848182 DOI: 10.1016/j.jenvman.2025.124095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.83 and 2.30 mg N L-1 d-1, respectively. The batch tests and metagenomic analyses revealed a nitrate-dependent anaerobic manganese oxidation (NDMO) process mediated by Anaerolineales and Phycisphaerales and a manganese reduction coupled to anaerobic ammonium oxidation (Mnammox) process mediated by Chthonomonadales. Based on identified key genes involved in the nitrogen and manganese metabolic pathways, nitrate was likely reduced to nitrite and nitrogen gas in the NDMO process while ammonium was oxidized to nitrite in the Mnammox process, which in turn fuelled the Anammox process carried out by Candidatus Brocadia. This revealed the microbial interactions of NDMO, Mnammox, and Anammox processes responsible for manganese-driven co-removal of ammonium and nitrate. These findings provide a potential solution for biological nitrogen removal and expand our understanding of the nitrogen and manganese biogeochemical cycles.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tian-Chen Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yang Lu
- Water Innovation and Smart Environment Laboratory, School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
8
|
Hailai Y, Liu Y, Yang Z, Li Y, Feng J, Li W, Sheng H. Silicon regulation of manganese homeostasis in plants: mechanisms and future prospective. FRONTIERS IN PLANT SCIENCE 2024; 15:1465513. [PMID: 39703551 PMCID: PMC11655192 DOI: 10.3389/fpls.2024.1465513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Manganese (Mn), a plant micronutrient element, is an important component of metalloprotein involved in multiple metabolic processes, such as photosynthesis and scavenging reactive oxygen species (ROS). Its disorder (deficiency or excess) affects the Mn-dependent metabolic processes and subsequent growth and development of plants. The beneficial element of Si has a variety of applications in agricultural fields for plant adaptation to various environmental stresses, including Mn disorder. The probable mechanisms for Si alleviation of Mn toxicity in plants are summarized as follows: (1) Si alters the rhizosphere acidification, root exudates and microorganisms to decrease the bioavailability of Mn in the rhizosphere; (2) Si down-regulates Mn transporter gene and reinforces the apoplastic barriers for inhibiting the Mn uptake and translocation; and (3) Si promotes the Mn deposition onto cell wall and Mn compartmentation into vacuole. Under Mn-deficient conditions, the probable mechanisms for Si promotion of Mn absorption in some plants remain an open question. Moreover, scavenging ROS is a common mechanism for Si alleviating Mn disorder. This minireview highlights the current understanding and future perspectives of Si regulation of manganese homeostasis in plants.
Collapse
Affiliation(s)
- Yuebu Hailai
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuan Liu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhengming Yang
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| | - Ying Li
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jingqiu Feng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Wenbing Li
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People’s Republic of China, Southwest Minzu University, Chengdu, Sichuan, China
| | - Huachun Sheng
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan, China
- Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhao Y, Liu Y, Cao S, Hao Q, Liu C, Li Y. Anaerobic oxidation of methane driven by different electron acceptors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174287. [PMID: 38945238 DOI: 10.1016/j.scitotenv.2024.174287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Methane, the most significant reduced form of carbon on Earth, acts as a crucial fuel and greenhouse gas. Globally, microbial methane sinks encompass both aerobic oxidation of methane (AeOM), conducted by oxygen-utilizing methanotrophs, and anaerobic oxidation of methane (AOM), performed by anaerobic methanotrophs employing various alternative electron acceptors. These electron acceptors involved in AOM include sulfate, nitrate/nitrite, humic substances, and diverse metal oxides. The known anaerobic methanotrophic pathways comprise the internal aerobic oxidation pathway found in NC10 bacteria and the reverse methanogenesis pathway utilized by anaerobic methanotrophic archaea (ANME). Diverse anaerobic methanotrophs can perform AOM independently or in cooperation with symbiotic partners through several extracellular electron transfer (EET) pathways. AOM has been documented in various environments, including seafloor methane seepages, coastal wetlands, freshwater lakes, soils, and even extreme environments like hydrothermal vents. The environmental activities of AOM processes, driven by different electron acceptors, primarily depend on the energy yields, availability of electron acceptors, and environmental adaptability of methanotrophs. It has been suggested that different electron acceptors driving AOM may occur across a wider range of habitats than previously recognized. Additionally, it is proposed that methanotrophs have evolved flexible metabolic strategies to adapt to complex environmental conditions. This review primarily focuses on AOM, driven by different electron acceptors, discussing the associated reaction mechanisms and the habitats where these processes are active. Furthermore, it emphasizes the pivotal role of AOM in mitigating methane emissions.
Collapse
Affiliation(s)
- Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| |
Collapse
|
10
|
Zhang T, Sun Y, Parikh SJ, Colinet G, Garland G, Huo L, Zhang N, Shan H, Zeng X, Su S. Water-fertilizer regulation drives microorganisms to promote iron, nitrogen and manganese cycling: A solution for arsenic and cadmium pollution in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135244. [PMID: 39032176 DOI: 10.1016/j.jhazmat.2024.135244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
The co-contamination of arsenic (As) and cadmium (Cd) in rice fields presents a global imperative for resolution. However, understanding the complex microbially driven geochemical processes and network connectivity crucial for As and Cd bioavailability under the frequent redox transitions in rice fields remains limited. Here, we conducted a series of microcosm experiments, using flooding and drainage, alongside fertilization treatments to emulate different redox environment in paddy soils. Soil As significantly reduced in drained conditions following applications of biochar or calcium-magnesium-phosphate (CMP) fertilizers by 26.3 % and 31.2 %, respectively, with concurrent decreases in Cd levels. Utilizing geochemical models, we identified the primary redox cycles dynamically altering during flooding (Fe and S cycles) and drainage (Fe, Mn, and N cycles). PLS-SEM elucidated 76 % and 61 % of the variation in Cd and As through Mn and N cycles. Functional genes implicated in multi-element cycles were analyzed, revealing a significantly higher abundance of assimilatory N reduction genes (nasA, nirA/B, narB) in drained soil, whereas an increase in ammonia-oxidizing genes (amoA/B) and a decrease in nitrate reduction to ammonium genes were observed after CMP fertilizer application. Biochar application led to significant enrichment of the substrate-binding protein of the Mn transport gene (mntC). Moreover, Fe transport genes were enriched after biochar or CMP application compared to drained soils. Among 40 high-quality metagenome-assembled genomes (MAGs), microbial predictors associated with low Cd and As contents across different treatments were examined. Bradyrhizobacea harbored abundant Mn and FeIII transport genes, while Nitrososphaeraceae carried nitrification-related genes. Two MAGs affiliated with Caulobacteraceae, carrying diverse Fe transport genes, were enriched in biochar-applied soils. Therefore, applying CMP fertilizer or biochar in aerobic rice fields can synergistically reduce the bioavailability of Cd and As by specifically enhancing the circulation of essential elements.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Yifei Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA
| | - Gilles Colinet
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Gina Garland
- Department of Environmental System Science, ETH Zurich, Zurich 8046, Switzerland
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Waliu Road No 66, Taiyuan 030024, China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
11
|
Xu Z, Ge L, Zou W, Lv B, Yang J, Chai Z, Guo X, Zhu X, Kao SJ. The underestimated role of manganese in modulating the nutrient structure in a eutrophic seasonally-stratified reservoir. WATER RESEARCH 2024; 260:121940. [PMID: 38885556 DOI: 10.1016/j.watres.2024.121940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Accumulation and subsequent release of nutrients have great potential to trigger algal blooms in lakes and reservoirs. We conducted high vertical resolution (2 m interval) monitoring at ∼monthly intervals over a year for hydrological parameters, Chl-a, ammonium (NH4+), nitrate (NO3-) and different species of phosphorus (P) and manganese (Mn) in a 40-meter-deep subtropical reservoir (Shanmei Reservoir) in Fujian, southern China. In this seasonally stratified reservoir featured with high nutrient loading, the consistent trend in the ratio of dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorus (DIP) between the euphotic zone and the hypolimnion, coupled with its mirrored correlation with Chl-a concentration indicates that upward flux from the hypolimnion affects phytoplankton growth in the euphotic zone. The monthly variation of the depth-integrated multiple species of N and P indicates that during the stratification period in the hypoxic hypolimnion, approximately 80% of the DIP is removed, leading to a remarkable decoupling phenomenon between NH4+ and DIP. This process effectively increases the ratio of DIN to DIP in the hypolimnion, thereby significantly reducing the potential of algal blooms caused by the upward flux. A robust positive linear correlation between iron-manganese bound phosphorus (CBD-P) and particulate Mn was observed during stratification period implying that DIP was scavenged by sediment-released Mn throughout the water column. Vertical profiles during stratification showed that upward diffusion of Mn2+ facilitated the formation of Mn oxide zones near the oxycline. The most significant decrease in DIP inventory occurs when Mn oxide zones migrate either upwards from the bottom or downwards from the oxycline, indicating that the migration of Mn oxides on the vertical profile is a key factor in the decoupling of NH4+and DIP. Our findings underscore the importance of Mn cycling as an underappreciated DIP self-immobilization process in the water column of reservoirs characterized by high nutrient loading. Furthermore, we propose that denitrification and Mn cycling establish a consecutive feedback mechanism, preventing excessive nutrient accumulation in low oxygen bottom water. In the context of global changes, we anticipate a heightened prominence of this feedback mechanism.
Collapse
Affiliation(s)
- Zifu Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lianghao Ge
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wenbin Zou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bingchen Lv
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Zijian Chai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaoyu Guo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xunchi Zhu
- State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou, China.
| |
Collapse
|
12
|
Wang Y, Wang Z, Ali A, Su J, Huang T, Hou C, Li X. Microbial-induced calcium precipitation: Bibliometric analysis, reaction mechanisms, mineralization types, and perspectives. CHEMOSPHERE 2024; 362:142762. [PMID: 38971440 DOI: 10.1016/j.chemosphere.2024.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Microbial-induced calcium precipitation (MICP) refers to the formation of calcium precipitates induced by mineralization during microbial metabolism. MICP has been widely used as an ecologically sustainable method in environmental, geotechnical, and construction fields. This article reviews the removal mechanisms of MICP for different contaminants in the field of water treatment. The nucleation pathway is explained at both extracellular and intracellular levels, with a focus on evaluating the contribution of extracellular polymers to MICP. The types of mineralization and the regulatory role of enzyme genes in the MICP process are innovatively summarized. Based on this, the environmental significance of MICP is illustrated, and the application prospects of calcium precipitation products are discussed. The research hotspots and development trends of MICP are analyzed by bibliometric methods, and the challenges and future directions of MICP technology are identified. This review aims to provide a theoretical basis for further understanding of the MICP phenomenon in water treatment and the effective removal of multiple pollutants, which will help researchers to find the breakthroughs and innovations in the existing technologies, with a view to making significant progress in MICP technology.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
13
|
Ren X, Wang XL, Zhang FF, Du JQ, Du JZ, Hong GH. Utilities of environmental radioactivity tracers in assessing sequestration potential of carbon in the coastal wetland ecosystems. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 277:107464. [PMID: 38851006 DOI: 10.1016/j.jenvrad.2024.107464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Demand for accurate estimation of coastal blue carbon sequestration rates in a regular interval has recently surged due to the increasing awareness of nature-based climate solutions to alleviate adverse impacts stemming from the recent global warming. The robust estimation method is, however, far from well-established. The international community requires, moreover, to quantify its effect of "management." This article tries to provide the environmental isotope community with basic biophysical features of coastal blue carbon ecosystems to identify a suitable set of environmental isotopes for promoting coastal ocean-based climate solutions. This article reviews (i) the primary biophysical characteristics of coastal blue carbon ecosystems and hydrology, (ii) their consequential impact on the accumulation and preservation of organic carbon (OC) in the sediment column, (iii) suitable environmental isotopes to quantifying the sedimentary organic carbon accumulation, outwelling of the carbon-containing byproducts of decomposition of biogenic organic matter and acid neutralizing alkalinity produced in situ sediment to the offshore. Above-ground biomass is not cumulative over the years except for mangrove forests within coastal blue carbon systems. Non-gaseous carbon sequestration and loss occur mainly as a form of sediment organic carbon (SOC) and dissolved carbon in an intertidal and subtidal bottom sediment body in a slow, patchy, and dispersive way, on which this article focuses. Investigating environmental radionuclides is probably the most cost-effective effort to contribute to defining the offshore spatial extent of coastal blue carbon systems except for seagrass beds (e.g., Ra isotopes), to quantify millimeter per year scale carbon accretion and loss within the systems (e.g., 7Be, 210Pb) and a liter per meter of coastline per a day scale water movement from the systems (Ra isotopes). A millimeter-scale spatial and an annual (or less) time-scale resolution offered by the use of environmental isotopes would equip us with a novel tool to enhance the carbon storage capacity of the coastal blue carbon system.
Collapse
Affiliation(s)
- X Ren
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - X L Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - F F Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - J Q Du
- National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - J Z Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - G H Hong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China; Integrated Marine Biosphere Research International Project Office, State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200242, China.
| |
Collapse
|
14
|
Zhong L, Yang SS, Sun HJ, Cui CH, Wu T, Pang JW, Zhang LY, Ren NQ, Ding J. New insights into substrates shaped nutrients removal, species interactions and community assembly mechanisms in tidal flow constructed wetlands treating low carbon-to-nitrogen rural wastewater. WATER RESEARCH 2024; 256:121600. [PMID: 38640563 DOI: 10.1016/j.watres.2024.121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
A limited understanding of microbial interactions and community assembly mechanisms in constructed wetlands (CWs), particularly with different substrates, has hampered the establishment of ecological connections between micro-level interactions and macro-level wetland performance. In this study, CWs with distinct substrates (zeolite, CW_A; manganese ore, CW_B) were constructed to investigate the nutrient removal efficiency, microbial interactions, metabolic mechanisms, and ecological assembly for treating rural sewage with a low carbon-to-nitrogen ratio. CW_B showed higher removal of ammonia nitrogen and total nitrogen by about 1.75-6.75 % and 3.42-5.18 %, respectively, compared to CW_A. Candidatus_Competibacter (denitrifying glycogen-accumulating bacteria) was the dominant microbial genus in CW_A, whereas unclassified_f_Blastocatellaceae (involved in carbon and nitrogen transformation) dominated in CW_B. The null model revealed that stochastic processes (drift) dominated community assembly in both CWs; however, deterministic selection accounted for a higher proportion in CW_B. Compared to those in CW_A, the interactions between microbes in CW_B were more complex, with more key microbes involved in carbon, nitrogen, and phosphorus conversion; the synergistic cooperation of functional bacteria facilitated simultaneous nitrification-denitrification. Manganese ores favour biofilm formation, increase the activity of the electron transport system, and enhance ammonia oxidation and nitrate reduction. These results elucidated the ecological patterns exhibited by microbes under different substrate conditions thereby contributing to our understanding of how substrates shape distinct microcosms in CW systems. This study provides valuable insights for guiding the future construction and management of CWs.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen-Hao Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group Co., Ltd., Beijing 100096, China; China Energy Conservation and Environmental Protection Group, CECEP Digital Technology Co., Ltd., Beijing 100096, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Zhuang X, Wang S, Wu S. Electron Transfer in the Biogeochemical Sulfur Cycle. Life (Basel) 2024; 14:591. [PMID: 38792612 PMCID: PMC11123123 DOI: 10.3390/life14050591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Microorganisms are key players in the global biogeochemical sulfur cycle. Among them, some have garnered particular attention due to their electrical activity and ability to perform extracellular electron transfer. A growing body of research has highlighted their extensive phylogenetic and metabolic diversity, revealing their crucial roles in ecological processes. In this review, we delve into the electron transfer process between sulfate-reducing bacteria and anaerobic alkane-oxidizing archaea, which facilitates growth within syntrophic communities. Furthermore, we review the phenomenon of long-distance electron transfer and potential extracellular electron transfer in multicellular filamentous sulfur-oxidizing bacteria. These bacteria, with their vast application prospects and ecological significance, play a pivotal role in various ecological processes. Subsequently, we discuss the important role of the pili/cytochrome for electron transfer and presented cutting-edge approaches for exploring and studying electroactive microorganisms. This review provides a comprehensive overview of electroactive microorganisms participating in the biogeochemical sulfur cycle. By examining their electron transfer mechanisms, and the potential ecological and applied implications, we offer novel insights into microbial sulfur metabolism, thereby advancing applications in the development of sustainable bioelectronics materials and bioremediation technologies.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (X.Z.); (S.W.)
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Tesoriero AJ, Wherry SA, Dupuy DI, Johnson TD. Predicting Redox Conditions in Groundwater at a National Scale Using Random Forest Classification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5079-5092. [PMID: 38451152 PMCID: PMC10956438 DOI: 10.1021/acs.est.3c07576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Redox conditions in groundwater may markedly affect the fate and transport of nutrients, volatile organic compounds, and trace metals, with significant implications for human health. While many local assessments of redox conditions have been made, the spatial variability of redox reaction rates makes the determination of redox conditions at regional or national scales problematic. In this study, redox conditions in groundwater were predicted for the contiguous United States using random forest classification by relating measured water quality data from over 30,000 wells to natural and anthropogenic factors. The model correctly predicted the oxic/suboxic classification for 78 and 79% of the samples in the out-of-bag and hold-out data sets, respectively. Variables describing geology, hydrology, soil properties, and hydrologic position were among the most important factors affecting the likelihood of oxic conditions in groundwater. Important model variables tended to relate to aquifer recharge, groundwater travel time, or prevalence of electron donors, which are key drivers of redox conditions in groundwater. Partial dependence plots suggested that the likelihood of oxic conditions in groundwater decreased sharply as streams were approached and gradually as the depth below the water table increased. The probability of oxic groundwater increased as base flow index values increased, likely due to the prevalence of well-drained soils and geologic materials in high base flow index areas. The likelihood of oxic conditions increased as topographic wetness index (TWI) values decreased. High topographic wetness index values occur in areas with a propensity for standing water and overland flow, conditions that limit the delivery of dissolved oxygen to groundwater by recharge; higher TWI values also tend to occur in discharge areas, which may contain groundwater with long travel times. A second model was developed to predict the probability of elevated manganese (Mn) concentrations in groundwater (i.e., ≥50 μg/L). The Mn model relied on many of the same variables as the oxic/suboxic model and may be used to identify areas where Mn-reducing conditions occur and where there is an increased risk to domestic water supplies due to high Mn concentrations. Model predictions of redox conditions in groundwater produced in this study may help identify regions of the country with elevated groundwater vulnerability and stream vulnerability to groundwater-derived contaminants.
Collapse
Affiliation(s)
- Anthony J. Tesoriero
- U.S.
Geological Survey, 601 SW Second Avenue, Suite 1950, Portland, Oregon 97204, United States
| | - Susan A. Wherry
- U.S.
Geological Survey, 601 SW Second Avenue, Suite 1950, Portland, Oregon 97204, United States
| | - Danielle I. Dupuy
- U.S.
Geological Survey, 6000
J Street, Placer Hall, Sacramento, California 95819, United States
| | - Tyler D. Johnson
- U.S.
Geological Survey, 4165
Spruance Road, Suite 200, San Diego, California 92101, United States
| |
Collapse
|
17
|
Fan B, Zhao C, Zhao L, Wang M, Sun N, Li Z, Yang F. Biochar application can enhance phosphorus solubilization by strengthening redox properties of humic reducing microorganisms during composting. BIORESOURCE TECHNOLOGY 2024; 395:130329. [PMID: 38224785 DOI: 10.1016/j.biortech.2024.130329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Phosphorus (P) in nature mostly exists in an insoluble state, and humic reducing microorganisms (HRMs) can dissolve insoluble substances through redox properties. This study aimed to investigate the correlations between insoluble P and dominant HRMs amenable to individual culture during biochar composting. These analyses revealed that, in comparison to the control, biochar addition increased the relative abundance of dominant HRMs by 20.3% and decreased redox potential (Eh) levels by 15.4% hence, enhancing the moderately-labile-P and non-labile-P dissolution. The pathways underlying the observed effects were additionally assessed through structural equation modeling, revealing that biochar addition promoted insoluble P dissolution through both the direct effects of bacterial community structure as well as the direct effects of HRMs community structure and indirect effects based on Eh of HRMs community structure. This research offers a better understanding of the effect of HRMs on insoluble P during the composting process.
Collapse
Affiliation(s)
- Bowen Fan
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China; College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Changjiang Zhao
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Liqin Zhao
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengmeng Wang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ning Sun
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zoutong Li
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang 163319, China; Engineering Research Center of Crop Straw Utilization, Daqing, Heilongjiang 163319, China
| | - Fengjun Yang
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
18
|
Li F, Yin H, Zhu T, Zhuang W. Understanding the role of manganese oxides in retaining harmful metals: Insights into oxidation and adsorption mechanisms at microstructure level. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:89-106. [PMID: 38445215 PMCID: PMC10912526 DOI: 10.1016/j.eehl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024]
Abstract
The increasing intensity of human activities has led to a critical environmental challenge: widespread metal pollution. Manganese (Mn) oxides have emerged as potentially natural scavengers that perform crucial functions in the biogeochemical cycling of metal elements. Prior reviews have focused on the synthesis, characterization, and adsorption kinetics of Mn oxides, along with the transformation pathways of specific layered Mn oxides. This review conducts a meticulous investigation of the molecular-level adsorption and oxidation mechanisms of Mn oxides on hazardous metals, including adsorption patterns, coordination, adsorption sites, and redox processes. We also provide a comprehensive discussion of both internal factors (surface area, crystallinity, octahedral vacancy content in Mn oxides, and reactant concentration) and external factors (pH, presence of doped or pre-adsorbed metal ions) affecting the adsorption/oxidation of metals by Mn oxides. Additionally, we identify existing gaps in understanding these mechanisms and suggest avenues for future research. Our goal is to enhance knowledge of Mn oxides' regulatory roles in metal element translocation and transformation at the microstructure level, offering a framework for developing effective metal adsorbents and pollution control strategies.
Collapse
Affiliation(s)
- Feng Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianqiang Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Wen Zhuang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| |
Collapse
|
19
|
Li D, Liu L, Zhang G, Ma C, Wang H. Sulfur-manganese carbonate composite autotrophic denitrification: nitrogen removal performance and biochemistry mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116048. [PMID: 38309233 DOI: 10.1016/j.ecoenv.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/06/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
A novel composite sulfur-manganese carbonate autotrophic denitrification (SMAD) system was developed to reduce sulfate production and provide pH buffer function while improving denitrification efficiency without external organics. The average removal efficiency of total nitrogen (TN) was 98.09% and 96.29%, and that of NO3--N was 99.53% and 97.77%, respectively, in the SMAD system with a hydraulic retention time (HRT) of 6 h and 3 h. They were significantly higher than that in the controls (quartz sand, manganese carbonate ore, and sulfur systems). The H+ produced by the sulfur autotrophic denitrification (SAD) process promoted the release of Mn2+ in the SMAD system. And this system had a stable pH with no accumulation of NO2--N. The decrease of sulfate and formation of Mn oxides through Mn2+ electron donation confirmed the presence of the manganese autotrophic denitrification (MAD) process in the SMAD system. Dominant functional bacteria in the SMAD system were Thiobacillus, Chlorobium, and Sulfurimonas, which were linked to nitrogen, sulfur, and manganese conversion and promoted denitrification. Meanwhile, Flavobacterium participating in Mn2+ oxidation was found only in the SMAD system. The SMAD system provided a new strategy for advanced tailwater treatment.
Collapse
Affiliation(s)
- Duo Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding 071002, PR China; College of Life Science, Hebei University, Baoding 071002, PR China
| | - Ling Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, PR China; College of Life Science, Hebei University, Baoding 071002, PR China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, PR China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, PR China; College of Life Science, Hebei University, Baoding 071002, PR China.
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding 071002, PR China; College of Life Science, Hebei University, Baoding 071002, PR China
| |
Collapse
|
20
|
Samperio-Ramos G, Hernández-Sánchez O, Camacho-Ibar VF, Pajares S, Gutiérrez A, Sandoval-Gil JM, Reyes M, De Gyves S, Balint S, Oczkowski A, Ponce-Jahen SJ, Cervantes FJ. Ammonium loss microbiologically mediated by Fe(III) and Mn(IV) reduction along a coastal lagoon system. CHEMOSPHERE 2024; 349:140933. [PMID: 38092166 DOI: 10.1016/j.chemosphere.2023.140933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/17/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Anaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the 15N isotope-tracing technique and molecular analyses. Sediments were collected across three sectors (inlet, transition, and inner) in a coastal lagoon system (Bahia de San Quintin, Mexico) dominated by seagrass meadows. The positive relationship between 30N2 production rates and dissimilatory Fe and Mn reduction provided evidence for Feammox's and Mnammox's co-occurrence. N loss through NC-Anammox was detected in subtidal sediments, with potential rates of 0.07-0.62 μg N g-1 day-1. NC-Anammox process in vegetated sediments tended to be higher than those in adjacent unvegetated ones. NC-Anammox rates showed a subsurface peak (between 5 and 15 cm) in the vegetated sediments but decreased consistently with depth in the adjacent bare bottoms. Thus, the presence/absence of seagrasses and sediment characteristics, particularly the availability of organic carbon and microbiologically reducible Fe(III) and Mn(IV), affected the abundance of dissimilatory metal-reducing bacteria, which mediated NC-Anammox activity and the associated N removal. An annual loss of 32.31 ± 3.57 t N was estimated to be associated with Feammox and Mnammox within the investigated area, accounting for 2.8-4.7% of the gross total import of reactive N from the ocean into the Bahia de San Quintin. Taken as a whole, this study reveals the distribution patterns and controlling factors of the NC-Anammox pathways along a coastal lagoon system. It improves our understanding of the coupling between N and trace metal cycles in coastal environments.
Collapse
Affiliation(s)
- Guillermo Samperio-Ramos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico.
| | - Oscar Hernández-Sánchez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Víctor F Camacho-Ibar
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Silvia Pajares
- Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Aaron Gutiérrez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - José Miguel Sandoval-Gil
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Mauricio Reyes
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Sebastian De Gyves
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico; Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico
| | - Sawyer Balint
- ORISE Participant, Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, RI, USA
| | - Autumn Oczkowski
- Atlantic Coastal Environmental Sciences Division, US Environmental Protection Agency, Narragansett, RI, USA
| | - Sergio J Ponce-Jahen
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Mexico
| | - Francisco J Cervantes
- Laboratory for Research on Advanced Processes for Water Treatment, Engineering Institute, Campus Juriquilla, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
21
|
Wu X, Zhao X, Wu W, Hou J, Zhang W, Tang DKH, Zhang X, Yang G, Zhang Z, Yao Y, Li R. Biotic and abiotic effects of manganese salt and apple branch biochar co-application on humification in the co-composting of hog manure and sawdust. CHEMICAL ENGINEERING JOURNAL 2024; 482:149077. [DOI: 10.1016/j.cej.2024.149077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
22
|
Jiang Z, Huang X, Wang S, Xiong J, Xie C, Chen Y. Divalent manganese stimulates the removal of nitrate by anaerobic sludge. RSC Adv 2024; 14:2447-2452. [PMID: 38223698 PMCID: PMC10784783 DOI: 10.1039/d3ra07088c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024] Open
Abstract
This study investigated the effect of different concentrations of Mn2+ on the removal of nitrate by anaerobic sludge and changes in the microbial communities through batch experiments. The results showed that the addition of Mn2+ promoted nitrate removal by anaerobic sludge; the nitrate was completely removed within 6 d in the treatment group with >5 mM Mn2+. With the increase in Mn2+, the concentration of nitrite and nitrous oxide increased in the first 4 d and then decreased to 0 μM after 8 d of incubation. The increasing tendency of ammonium increased firstly and then decreased with the addition of Mn2+ compared to A. Moreover, the Mn2+ removal efficiency gradually decreased with the increase of Mn2+ concentration. The changes of microflora structure in sludge before and after adding Mn2+ were analyzed, and the results revealed that the microbial communities in the sludge may have evolved towards an energy-efficient association of short-cut nitrification, denitrification, and anaerobic ammonia oxidation after adding Mn2+. Mn2+ stimulated the removal of nitrate by anaerobic sludge mainly by promoting the growth of PHOS-HE36.
Collapse
Affiliation(s)
- Zhaojie Jiang
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
| | - Xuejiao Huang
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University Nanning Guangxi 530004 +86 18577976592
- Guangxi Bossco Environmental Protection Technology Co., Ltd. Nanning 530007 Guangxi China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University Nanning Guangxi 530004 China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- Guangxi Bossco Environmental Protection Technology Co., Ltd. Nanning 530007 Guangxi China
| | - Chunmin Xie
- Guangxi Bossco Environmental Protection Technology Co., Ltd. Nanning 530007 Guangxi China
| | - Yongli Chen
- Guangxi Bossco Environmental Protection Technology Co., Ltd. Nanning 530007 Guangxi China
| |
Collapse
|
23
|
Dopson M, Rezaei Somee M, González-Rosales C, Lui LM, Turner S, Buck M, Nilsson E, Westmeijer G, Ashoor K, Nielsen TN, Mehrshad M, Bertilsson S. Novel candidate taxa contribute to key metabolic processes in Fennoscandian Shield deep groundwaters. ISME COMMUNICATIONS 2024; 4:ycae113. [PMID: 39421601 PMCID: PMC11484514 DOI: 10.1093/ismeco/ycae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
The continental deep biosphere contains a vast reservoir of microorganisms, although a large proportion of its diversity remains both uncultured and undescribed. In this study, the metabolic potential (metagenomes) and activity (metatranscriptomes) of the microbial communities in Fennoscandian Shield deep subsurface groundwaters were characterized with a focus on novel taxa. DNA sequencing generated 1270 de-replicated metagenome-assembled genomes and single-amplified genomes, containing 7 novel classes, 34 orders, and 72 families. The majority of novel taxa were affiliated with Patescibacteria, whereas among novel archaea taxa, Thermoproteota and Nanoarchaeota representatives dominated. Metatranscriptomes revealed that 30 of the 112 novel taxa at the class, order, and family levels were active in at least one investigated groundwater sample, implying that novel taxa represent a partially active but hitherto uncharacterized deep biosphere component. The novel taxa genomes coded for carbon fixation predominantly via the Wood-Ljungdahl pathway, nitrogen fixation, sulfur plus hydrogen oxidation, and fermentative pathways, including acetogenesis. These metabolic processes contributed significantly to the total community's capacity, with up to 9.9% of fermentation, 6.4% of the Wood-Ljungdahl pathway, 6.8% of sulfur plus 8.6% of hydrogen oxidation, and energy conservation via nitrate (4.4%) and sulfate (6.0%) reduction. Key novel taxa included the UBA9089 phylum, with representatives having a prominent role in carbon fixation, nitrate and sulfate reduction, and organic and inorganic electron donor oxidation. These data provided insights into deep biosphere microbial diversity and their contribution to nutrient and energy cycling in this ecosystem.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Maryam Rezaei Somee
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Lauren M Lui
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Stephanie Turner
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Moritz Buck
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Kamal Ashoor
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Torben N Nielsen
- Molecular Ecosystems Biology Department, Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, 75005 Uppsala, Sweden
| |
Collapse
|
24
|
Shi Y, Huang H, Zheng L, Tian Y, Gong Z, Wang J, Li W, Gao S. Releases of microplastics and chemicals from nonwoven polyester fabric-based polyurethane synthetic leather by photoaging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166584. [PMID: 37634718 DOI: 10.1016/j.scitotenv.2023.166584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
The nonwoven PET fabrics are chemically, mechanically and thermally treated fiber aggregate without weaving, knitting or braiding, which could be used as a base to make polyurethane (PU) synthetic leather through a series of processing. Our research systematically compared the photoaging behaviors of pure non-woven PET base fabric (NPET-P) and PU synthetic leather (nonwoven PET-base fabrics with PU coating, NPET-U), and their possibilities for microplastic fibers (MPFs) generation and chemical transformation in water. NPET-U was photoaged to a higher oxidation degree with higher O/C ratios and more distinct changes in chemical structures. The amount of MPFs released from NPET-U (1.98 × 107 g/fibers) was significantly lower than that from NPET-P (4.76 × 107 g/fibers) after 360 h light irradiation (p value <0.05) with a slower degradation rate and delayed MPFs release. The lengths and diameters of released MPFs from NPET-U varied within a smaller range than that from NPET-P exposed to UV light irradiation. Natural sunlight aging of fabrics for 365 days was found to be equivalent to approximately 85.3-127.2 h UV aging in the laboratory, which indicated the lab accelerated experiments was extraordinarily intense to simulate natural sunlight aging. Furthermore, abundant calcium and sulfur-contained chemicals were detected in original fabrics and the leachate of 360 h light-aged fabrics using the inductively coupled plasma optical emission spectrometer (ICP-OES). The organic components of the leachate were separated according to their molecular weight with the changes of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and the UV response over aging time. UV stimulation aggravated the role of plastic polymers as disinfection by-product (DBP) precursors. Nevertheless, although NPET-U could produce more nitrogen-contained chemicals, it had similar formation potentials of nitrogen-containing DBPs as NPET-P. The discussion lucubrated the potential risks of the production of MPFs and chemical release in the leachate with regard to combined plastic pollution.
Collapse
Affiliation(s)
- Yanqi Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Hexinyue Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lezhou Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yechao Tian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jiahao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
25
|
Chen S, Fu W, Cai L, Xing Z, Mou B, Wang Y, Wu S, Zhao T. Metabolic diversity shapes vegetation-enhanced methane oxidation in landfill covers: Multi-omics study of rhizosphere microorganisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:151-161. [PMID: 37918308 DOI: 10.1016/j.wasman.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/02/2023] [Accepted: 10/21/2023] [Indexed: 11/04/2023]
Abstract
Vegetation root exudates have the ability to shape soil microbial community structures, thereby enhancing CH4 bio-oxidation capacity in landfill cover systems. In this study, the CH4 oxidation capacity of indigenous vegetation rhizosphere microorganisms within operational landfill covers in Chongqing, China, was investigated for the first time, with the objective of identifying suitable plant candidates for CH4 mitigation initiatives within landfill cover systems. Furthermore, a multi-omics methodology was employed to explore microbial community structures and metabolic variances within the rhizospheric environment of diverse vegetation types. The primary aim was to elucidate the fundamental factors contributing to divergent CH4 oxidation capacities observed in rhizosphere soils. The findings demonstrated that herbaceous vegetation predominated in landfill covers. Notably, Rumex acetosa exhibited the highest CH4 oxidation capacity in the rhizosphere soil, approximately 20 times greater than that in non-rhizosphere soil. Root exudates played a crucial role in inducing the colonization of CH4-oxidizing functional microorganisms in the rhizosphere, subsequently prompting the development of specific metabolic pathways. This process, in turn, enhanced the functional activity of the microorganisms while concurrently bolstering their tolerance to microbial pollutants. Consequently, the addition of substances like Limonexic acid strengthened the CH4 bio-oxidation process, thereby underscoring the suitability of Rumex acetosa and similar vegetation species as preferred choices for landfill cover vegetation restoration.
Collapse
Affiliation(s)
- Shangjie Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Wenting Fu
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Limin Cai
- Tangshan Juncai Environmental Technology Co., LTD, Hebei 063000, China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Baozhong Mou
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yongqiong Wang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shan Wu
- Jiujiang Puze Environmental Resources Co., LTD, Jiangxi 330077, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
26
|
Wang M, Wang X, Zhou S, Chen Z, Chen M, Feng S, Li J, Shu W, Cao B. Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem. WATER RESEARCH 2023; 243:120343. [PMID: 37482007 DOI: 10.1016/j.watres.2023.120343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Acid mine drainage (AMD) serves as an ideal model system for investigating microbial ecology, interaction, and assembly mechanism in natural environments. While previous studies have explored the structure and function of microbial communities in AMD, the succession patterns of microbial association networks and underlying assembly mechanisms during natural attenuation processes remain elusive. Here, we investigated prokaryotic microbial diversity and community assembly along an AMD-impacted river, from the extremely acidic, heavily polluted headwaters to the nearly neutral downstream sites. Microbial diversity was increased along the river, and microbial community composition shifted from acidophile-dominated to freshwater taxa-dominated communities. The complexity and relative modularity of the microbial networks were also increased, indicating greater network stability during succession. Deterministic processes, including abiotic selection of pH and high contents of sulfur and iron, governed community assembly in the headwaters. Although the stochasticity ratio was increased downstream, manganese content, microbial negative cohesion, and relative modularity played important roles in shaping microbial community structure. Overall, this study provides valuable insights into the ecological processes that govern microbial community succession in AMD-impacted riverine ecosystems. These findings have important implications for in-situ remediation of AMD contamination.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Wang
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sining Zhou
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zifeng Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Mengyun Chen
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shiwei Feng
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jintian Li
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Baichuan Cao
- Institute of Ecological Science and Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
27
|
Jia L, Zhou Q, Li Y, Wu W. Application of manganese oxides in wastewater treatment: Biogeochemical Mn cycling driven by bacteria. CHEMOSPHERE 2023:139219. [PMID: 37327824 DOI: 10.1016/j.chemosphere.2023.139219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Manganese oxides (MnOx) are recognized as a strongest oxidant and adsorbent, of which composites have been proved to be effective in the removal of contaminants from wastewater. This review provides a comprehensive analysis of Mn biochemistry in water environment including Mn oxidation and Mn reduction. The recent research on the application of MnOx in the wastewater treatment was summarized, including the involvement of organic micropollutant degradation, the transformation of nitrogen and phosphorus, the fate of sulfur and the methane mitigation. In addition to the adsorption capacity, the Mn cycling mediated by Mn(II) oxidizing bacteria and Mn(IV) reducing bacteria is the driving force for the MnOx utilization. The common category, characteristics and functions of Mn microorganisms in recent studies were also reviewed. Finally, the discussion on the influence factors, microbial response, reaction mechanism and potential risk of MnOx application in pollutants' transformation were proposed, which might be the promising opportunities for the future investigation of MnOx application in wastewater treatment.
Collapse
Affiliation(s)
- Lixia Jia
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Qi Zhou
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Yuanwei Li
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Weizhong Wu
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China; The Key Laboratory of Water and Sediment Sciences (Peking University), Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
28
|
Lu Q, Xu X, Fang W, Wang H, Liang Z, Cai R, Hu Z, Shim H, Rossetti S, Wang S. Metal(loid)s in organic-matter-polluted urban rivers in China: Spatial pattern, ecological risk and reciprocal interactions with aquatic microbiome. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131781. [PMID: 37315412 DOI: 10.1016/j.jhazmat.2023.131781] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Black-odorous urban rivers can serve as reservoirs for heavy metals and other pollutants, in which sewage-derived labile organic matter triggering the water blackening and odorization largely determine the fate and ecological impact of the heavy metals. Nonetheless, information on the pollution and ecological risk of heavy metals and their reciprocal impact on microbiome in organic matter-polluted urban rivers remain unknown. In this study, sediment samples were collected and analyzed from 173 typical black-odorous urban rivers in 74 cities across China, providing a comprehensive nationwide assessment of heavy metal contamination. The results revealed substantial contamination levels of 6 heavy metals (i.e., Cu, Zn, Pb, Cr, Cd, and Li), with average concentrations ranging from 1.85 to 6.90 times higher than their respective background values in soil. Notably, the southern, eastern, and central regions of China exhibited particularly elevated contamination levels. In comparison to oligotrophic and eutrophic waters, the black-odorous urban rivers triggered by organic matter exhibited significantly higher proportions of the unstable form of these heavy metals, indicating elevated ecological risks. Further analyses suggested the critical roles of organic matter in shaping the form and bioavailability of heavy metals through fueling microbial processes. In addition, most heavy metals had significantly higher but varied impact on the prokaryotic populations relative to eukaryotes.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiangping Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Huimin Wang
- School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Ran Cai
- Beijing Capital Eco-Environment Protection Group, Beijing 100044, China
| | - Zhuofeng Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macao Special Administrative Region of China
| | - Simona Rossetti
- Water Research Institute, IRSA-CNR, Via Salaria km 29, 300, Monterotondo, RM 00015, Italy
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
29
|
Ao M, Deng T, Sun S, Li M, Li J, Liu T, Yan B, Liu WS, Wang G, Jing D, Chao Y, Tang Y, Qiu R, Wang S. Increasing soil Mn abundance promotes the dissolution and oxidation of Cr(III) and increases the accumulation of Cr in rice grains. ENVIRONMENT INTERNATIONAL 2023; 175:107939. [PMID: 37137179 DOI: 10.1016/j.envint.2023.107939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/16/2023] [Indexed: 05/05/2023]
Abstract
Hexavalent chromium (Cr(VI)) is more readily taken up by plants than trivalent chromium (Cr(III)) due to its similar chemical structure to phosphate and sulfate. In paddy soils, Cr(VI) of natural origin are mainly produced from Cr(III) oxidized by O2 and Mn(III/IV) oxides, which are affected by rice radial oxygen loss (ROL) and Mn(II)-oxidizing microorganisms (MOM). However, little is known about the effect of ROL and Mn abundance on rice Cr uptake. Here, we investigated the effects on Cr(VI) generation and the subsequent Cr uptake and accumulation with the involvement of two rice cultivars with distinct ROL capacities by increasing soil Mn abundance. Results showed that Mn(II) addition to the soil led to more Cr(III) being released into the pore water, and the dissolved Cr(III) was oxidized to Cr(VI) by ROL and biogenic Mn(III/IV) oxides. The concentration of Cr(VI) in soil and pore water increased linearly with the addition of Mn(II) doses. Mn(II) addition promoted the root-to-shoot translocation and grain accumulation of Cr derived mainly from newly generated Cr(VI) in the soil. These results emphasize that rice ROL and MOM promote the oxidative dissolution of Cr(III) at a high level of soil Mn, resulting in more Cr accumulation in rice grains and increasing dietary Cr exposure risks.
Collapse
Affiliation(s)
- Ming Ao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shengsheng Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Bofang Yan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen-Shen Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Dedao Jing
- Zhenjiang Institute of Agricultural Sciences in Hilly Region of Jiangsu, Jurong 212400, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Heavy Metal Contaminated Soil Remediation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Li Y, Liu Y, Feng L, Zhang L. Coupled mixotrophic denitrification and utilization of refractory organics driven by Mn redox circulation for significantly enhanced nitrogen removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130595. [PMID: 37055997 DOI: 10.1016/j.jhazmat.2022.130595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 12/10/2022] [Indexed: 06/19/2023]
Abstract
Coupled mixotrophic denitrification and degradation of organics driven by redox transition of Mn for nitrogen removal has attracted much attention. Herein, this study explored the removal performance and mechanisms for nitrogen and refractory organics from secondary effluent in up-flow MnOx biofilter. Results showed that the removal of organics and nitrate was significantly enhanced by the synergistic process of heterotrophic denitrification and Mn(II)-driven autotrophic denitrification (MnAD), which were originated from the facilitation of Mn circulation. But nitrate removal was closely related to the types of carbon source and Mn(II) concentration. Single small molecular carbon source (glucose) performed better than mixed carbon source (humic acid and glucose) in nitrate removal process (74.8% in stage 1-2 vs. 54.1% in stage 3-5). And raising external Mn(II) concentration increased the contribution of MnAD (60.2% in stage 5 vs. 46.5% in stage 3) to nitrate removal. Furthermore, the relationship between Mn/N transformation and microbial community structure shifts revealed that the redox transition between Mn(II) and Mn(IV) promoted the enrichment of denitrogenation bacteria and functional genes, thus contributing to pollutants removal. Our studies expand the knowledge of MnOx-mediated pollutants removal processes and support the potential application of MnOx for removal of residual refractory organics and nitrogen.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
31
|
Ju J, Feng Y, Li H, Xue Z, Ma R, Li Y. Research advances, challenges and perspectives for recovering valuable metals from deep-sea ferromanganese minerals: A comprehensive review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
32
|
Li Y, Liu Y, Feng L, Zhang L. A review: Manganese-driven bioprocess for simultaneous removal of nitrogen and organic contaminants from polluted waters. CHEMOSPHERE 2023; 314:137655. [PMID: 36603680 DOI: 10.1016/j.chemosphere.2022.137655] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/26/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Water pollutants, such as nitrate and organics have received much attention for their harms to ecological environment and human health. The redox transformation between Mn(Ⅱ) and Mn(Ⅳ) for nitrogen and organics removal have been recognized for a long time. Mn(Ⅱ) can act as inorganic electron donor to drive autotrophic denitrification so as to realize simultaneous removal of Mn(Ⅱ), nitrate and organic pollutants. Mn oxides (MnOx) also play an important role in the adsorption and degradation of some organic contaminants and they can change or create new oxidation pathways in the nitrogen cycle. Herein, this paper provides a comprehensive review of nitrogen and organic contaminants removal pathways through applying Mn(Ⅱ) or MnOx as forerunners. The main current knowledge, developments and applications, pollutants removal efficiency, as well as microbiology and biochemistry mechanisms are summarized. Also reviewed the effects of factors such as the carbon source, the environmental factors and operation conditions have on the process. Research gaps and application potential are further proposed and discussed. Overall, Mn-based biotechnology towards advanced wastewater treatment has a promising prospect, which can achieve simultaneous removal of nitrogen and organic contaminants, and minimize sludge production.
Collapse
Affiliation(s)
- Yingying Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
33
|
Ke T, Zhang D, Guo H, Xiu W, Zhao Y. Geogenic arsenic and arsenotrophic microbiome in groundwater from the Hetao Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158549. [PMID: 36075436 DOI: 10.1016/j.scitotenv.2022.158549] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
High arsenic (As) in groundwater is an environmental issue of global concern, which is closely related to microbe-mediated As biogeochemical cycling. However, the distribution of genes related to As cycling and underlying microbial As biogeochemical processes in high As groundwater remain elusive. Hence, we profiled the As cycling genes (arsC, arrA, and aioA genes) and indigenous microbial communities in groundwater from a typical high As area, the Hetao Basin from China, using amplicon sequencing and qPCR techniques. Here, we revealed the significant difference in microbial community structure between low As groundwater samples (LG) and high As groundwater samples (HG). Acinetobacter, Thiovirga, Hydrogenophaga, and Sulfurimonas were dominant in LG, while Aquabcterium, Acinetobacter, Sphingomonas, Pseudomonas, Desulfomicrobium, Hydrogenophaga, and Nitrospira were predominant in HG. Shannon and Chao indices of the microbial communities in HG were significantly higher than those of in LG. Alpha diversity and abundance of arsC and arrA genes were higher than those of aioA genes. The significant positive correlation was uncovered between the abundances of arsC and aioA genes, suggesting the cooccurrence of As functional genes in groundwater. Sphingopyxis, Agrobacterium, Klebsiella, Hoeflea, and Aeromonas represented the dominant taxa within the As (V) reducers communities. Distance-based redundancy analysis showed that ORP, pH, Astot, Mn, and DOC were the key factors shaping the diverse microbial populations, while ORP, S2-, As(III), Fe(II), NH4+, pH, Mn, SO42-, As(V), temperature, and P as the main drivers affecting arsenotrophic microbiota. This work provides an insight into microbial communities linked to As biogeochemical processes in high As groundwater, playing a fundamental role in groundwater As cycling.
Collapse
Affiliation(s)
- Tiantian Ke
- Ministry of Education, Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Di Zhang
- Ministry of Education, Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Huaming Guo
- Ministry of Education, Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China.
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing, China
| | - Yi Zhao
- Ministry of Education, Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| |
Collapse
|
34
|
Zhao G, Wang W, Zheng L, Chen L, Duan G, Chang R, Chen Z, Zhang S, Dai M, Yang G. Catalase-peroxidase StKatG is a bacterial manganese oxidase from endophytic Salinicola tamaricis. Int J Biol Macromol 2022; 224:281-291. [DOI: 10.1016/j.ijbiomac.2022.10.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
|
35
|
The “Infernaccio” Gorges: Microbial Diversity of Black Deposits and Isolation of Manganese-Solubilizing Bacteria. BIOLOGY 2022; 11:biology11081204. [PMID: 36009831 PMCID: PMC9404752 DOI: 10.3390/biology11081204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary “Infernaccio” gorges are one of the Earth’s hidden habitats in Central Italy. Beyond the deep incisions and high slopes, these gorges are characterized by black deposits in gorge walls and covering rock surfaces. Several geological events have shaped these unique geological formations and their microbiota. This study investigated microbial contribution to black deposit formation and isolating Mn-oxide-solubilizing bacteria. Our results provided evidence of the putative role of Bacteria and Archaea in forming manganese oxide deposits. Findings also showed that these deposits are a source of valuable strains with manganese oxide bioleaching properties, essential for bioremediation and metal recovery. Abstract The present study explored the microbial diversity of black deposits found in the “Infernaccio” gorge. X-ray Powdered Diffraction (XRPD) was used to investigate the crystallinity of the samples and to identify the minerals. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDS) were used to detect the bacterial imprints, analyze microbe–mineral interactions, and highlight the chemical element distribution in the black deposits. 16S rRNA gene metabarcoding allowed the study of Archaea and Bacteria communities. Mn-oxide-solubilizing isolates were also obtained and characterized by culturable and molecular approaches. The multidisciplinary approach showed the occurrence of deposits composed of birnessite, diopside, halloysite, and leucite. Numerous bacterial imprints confirmed the role of microorganisms in forming these deposits. The Bacteria and Archaea communities associated with these deposits and runoff waters are dynamic and shaped by seasonal changes. The uncultured and unknown taxa are the most common and abundant. These amplicon sequence variants (ASVs) were mainly assigned to Proteobacteria and Bacteroidetes phyla. Six isolates showed interesting Mn solubilization abilities under microaerophilic conditions. Molecular characterization associated isolates to Brevibacterium, Bacillus, Neobacillus, and Rhodococcus genera. The findings enriched our knowledge of geomicrobiological aspects of one of the Earth’s hidden habitats. The study also unveiled the potential of this environment as an isolation source of biotechnologically relevant bacteria.
Collapse
|
36
|
Dong H, Huang L, Zhao L, Zeng Q, Liu X, Sheng Y, Shi L, Wu G, Jiang H, Li F, Zhang L, Guo D, Li G, Hou W, Chen H. A critical review of mineral-microbe interaction and coevolution: mechanisms and applications. Natl Sci Rev 2022; 9:nwac128. [PMID: 36196117 PMCID: PMC9522408 DOI: 10.1093/nsr/nwac128] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The mineral-microbe interactions play important roles in environmental change, biogeochemical cycling of elements, and formation of ore deposits. Minerals provide both beneficial (physical and chemical protection, nutrients, and energy) and detrimental (toxic substances and oxidative pressure) effects to microbes, resulting in mineral-specific microbial colonization. Microbes impact dissolution, transformation, and precipitation of minerals through their activity, resulting in either genetically-controlled or metabolism-induced biomineralization. Through these interactions minerals and microbes coevolve through Earth history. The mineral-microbe interactions typically occur at microscopic scale but the effect is often manifested at global scale. Despite advances achieved through decades of research, major questions remain. Four areas are identified for future research: integrating mineral and microbial ecology, establishing mineral biosignatures, linking laboratory mechanistic investigation to field observation, and manipulating mineral-microbe interactions for the benefit of humankind.
Collapse
Affiliation(s)
- Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Linduo Zhao
- Illinois Sustainable Technology Center , Illinois State Water Survey, , Champaign , IL 61820 , USA
- University of Illinois at Urbana-Champaign , Illinois State Water Survey, , Champaign , IL 61820 , USA
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Xiaolei Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Liang Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan 430074 , China
| | - Fangru Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Li Zhang
- Department of Geology and Environmental Earth Science, Miami University , Oxford , OH 45056 , USA
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Weiguo Hou
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| | - Hongyu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China
| |
Collapse
|