1
|
Yan C, Liu L, Zhang T, Hu Y, Pan H, Cui C. A comprehensive review on human enteric viruses in water: Detection methods, occurrence, and microbial risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136373. [PMID: 39531817 DOI: 10.1016/j.jhazmat.2024.136373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human enteric viruses, such as norovirus, adenovirus, rotavirus, and enterovirus, are crucial targets in controlling biological contamination in water systems worldwide. Due to their small size and low concentrations in water, effective virus concentration and detection methods are essential for ensuring microbial safety. This paper reviews the typical and innovative methods for concentrating and detecting human enteric viruses, highlights viral contamination levels across different water bodies, and discusses the removal efficiencies of virus through various treatment technologies. The application and current gaps of quantitative microbial risk assessment (QMRA) for evaluating the risks of human enteric viruses is also explored. Innovative methods such as digital polymerase chain reaction and isothermal amplification show promise in sensitivity and convenience, however, distinguishing between infectious and non-infectious viruses should be a key focus of future detection techniques. The highest concentrations of human enteric viruses were detected in wastewater, ranging from 103 to 106 copies/L, while drinking water showed significantly lower concentrations, often below 102 copies/L. QMRA studies suggest that exposure to human enteric viruses, whether through contaminated drinking water, occupational contact, or accidental wastewater discharge, could result in a life expectancy of 1.96 × 10-4 to 4.53 × 10-1 days/year.
Collapse
Affiliation(s)
- Chicheng Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lingli Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tingyuan Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Hongchen Pan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Endo N, Hisahara A, Kameda Y, Mochizuki K, Kitajima M, Yasojima M, Daigo F, Takemori H, Nakamura M, Matsuda R, Iwamoto R, Nojima Y, Ihara M, Tanaka H. Enabling quantitative comparison of wastewater surveillance data across methods through data standardization without method standardization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176073. [PMID: 39250965 DOI: 10.1016/j.scitotenv.2024.176073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Wastewater surveillance for COVID-19 and other pathogens has expanded globally. Rapid development and availability of various assays has facilitated swift adoption of wastewater surveillance in localities with diverse requirements. However, it presents challenges in comparing data due to methodological variations. Using surrogates for recovery control to address quantification biases has limitations as the recovery of surrogates and target pathogens often diverges significantly. Using non-spiked field-obtained wastewater samples as reference samples in an inter-lab study, this article proposes a straightforward, inexpensive, and most representative way of measuring relative quantification biases that occurs in analyzing field wastewater samples. Five labs participated in the study, testing five types of assays, resulting in a total of seven methods of lab-assay combinations. Each method quantified the concentration of SARS-CoV-2 and pepper mild mottle virus (PMMoV) RNAs in two types of reference samples. The results showed significant variations in quantification among methods, but the relative quantification biases were consistent across reference samples. This suggests that relative quantification biases measured with the reference samples are contingent on methods rather than wastewater samples, and that the once-determined method-specific factors can be used to correct for quantification biases in routine wastewater surveillance results. Subsequent data standardization was performed on year-long observational data from seven cities, serving as a preliminary validation of the proposed approach. This process demonstrated the potential for quantitative data comparison through the bias correction factors obtained in this inter-lab study.
Collapse
Affiliation(s)
- Noriko Endo
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Aika Hisahara
- Water and Sewage Management Department, Water and Disaster Management Bureau, Ministry of Land, Infrastructure, Transportation and Tourism, Japan
| | - Yukiko Kameda
- NJS Co., Ltd., 1-1-1, Shibaura, Minato-ku, Tokyo, Japan
| | | | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan; Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Makoto Yasojima
- Shimadzu Techno-Research, Inc., 1 Nishinokyo Shimoai-cho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Fumi Daigo
- Shimadzu Techno-Research, Inc., 1 Nishinokyo Shimoai-cho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Hiroaki Takemori
- Shimadzu Techno-Research, Inc., 1 Nishinokyo Shimoai-cho, Nakagyo-ku, Kyoto 604-8436, Japan
| | - Masafumi Nakamura
- Hiyoshi Corporation, 908 Kitanosho, Omihachiman, Shiga 523-8555, Japan
| | - Ryo Matsuda
- Hiyoshi Corporation, 908 Kitanosho, Omihachiman, Shiga 523-8555, Japan
| | - Ryo Iwamoto
- AdvanSentinel Inc., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan; Shionogi & Co., Ltd., 3-1-8, Doshomachi, Chuo-ku, Osaka 541-0045, Japan
| | - Yasuhiro Nojima
- Kitasato Research Center for Environmental Science, 1-15-1, Kitazato, Minami-ku, Sagamihara-shi, Kanagawa 252-0329, Japan
| | - Masaru Ihara
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku, Kochi 783-8502, Japan
| | - Hiroaki Tanaka
- Water and Civil Engineering Division, Shinshu University, 4-17-1, Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
3
|
Perez-Zabaleta M, Williams C, Cetecioglu Z. Development and implementation of assays to monitor human adenovirus F40/41 in wastewater: Trends preceding, during, and following the non-A-to-E hepatitis outbreak in Stockholm. ENVIRONMENT INTERNATIONAL 2024; 190:108937. [PMID: 39126729 DOI: 10.1016/j.envint.2024.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Human adenovirus (HAdV) type F41 has been identified as a possible cause of the non-A-to-E hepatitis outbreak. This study uses wastewater monitoring to track HAdV F40 and F41, supporting clinical investigations and providing insights into the pathogen's role in the outbreak. Given the limited clinical monitoring in Sweden of HAdV-F40/41, this approach also helps estimate the true infection burden of this pathogen during the outbreak. This study developed three qPCR assays for the hexon, penton, and fiber genes of HAdV F40 and F41. The hexon assay was F41-specific, while the fiber assay detected multiple HAdV-F strains. Comprehensive monitoring of HAdV-F40/41 levels in Stockholm's wastewater was conducted over 1.5 years, capturing the period before, during, and after the outbreak. A significant infection wave was observed in spring 2022, with strains beyond lineage 2 contributing to the outbreak. Moreover, simultaneous SARS-CoV-2 surveillance revealed that HAdV-F infections peaked at different times from COVID-19, but the HAdV-F wave aligned with the relaxation of pandemic restrictions. These findings offer valuable insights for future HAdV-F investigations and confirm its role in the non-A-to-E hepatitis outbreak.
Collapse
Affiliation(s)
- Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden.
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, SE-171 65 Solna, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden
| |
Collapse
|
4
|
Kanamori D, Sakai J, Iijima T, Oono Y, Malla B, Haramoto E, Hayakawa S, Komine-Aizawa S, Maesaki S, Vorup-Jensen T, Kilgore PE, Kohase H, Hoshino T, Seki M. SARS-CoV-2 detection in pediatric dental clinic wastewater reflects the number of local COVID-19 cases in children under 10 years old. Sci Rep 2024; 14:12187. [PMID: 38806581 PMCID: PMC11133353 DOI: 10.1038/s41598-024-63020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
This was the first longitudinal study to analyze dental clinic wastewater to estimate asymptomatic SARS-CoV-2 infection trends in children. We monitored wastewater over a 14-month period, spanning three major COVID-19 waves driven by the Alpha, Delta, and Omicron variants. Each Saturday, wastewater was sampled at the Pediatric Dental Clinic of the only dental hospital in Japan's Saitama Prefecture. The relationship between the weekly number of cases in Saitama Prefecture among residents aged < 10 years (exposure) and wastewater SARS-CoV-2 RNA detection (outcome) was examined. The number of cases was significantly associated with wastewater SARS-CoV-2 RNA positivity (risk ratio, 5.36; 95% confidence interval, 1.72-16.67; Fisher's exact test, p = 0.0005). A sample from Week 8 of 2022 harbored the Omicron variant. Compared to sporadic individual testing, this approach allows continuous population-level surveillance, which is less affected by healthcare seeking and test availability. Since wastewater from pediatric dental clinics originates from the oral cavities of asymptomatic children, such testing can provide important information regarding asymptomatic COVID-19 in children, complementing clinical pediatric data.
Collapse
Affiliation(s)
- Dai Kanamori
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, 350-0495, Japan
| | - Takahiro Iijima
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Yuka Oono
- Division of Dental Anesthesiology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, 350-0283, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi, 400-8511, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi, 400-8511, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, 350-0495, Japan
| | - Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Paul Evan Kilgore
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hikaru Kohase
- Division of Dental Anesthesiology, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Saitama, 350-0283, Japan
| | - Tomonori Hoshino
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| | - Mitsuko Seki
- Division of Pediatric Dentistry, Department of Human Development and Fostering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan.
| |
Collapse
|
5
|
Zheng X, Zhao K, Xue B, Deng Y, Xu X, Yan W, Rong C, Leung K, Wu JT, Leung GM, Peiris M, Poon LLM, Zhang T. Tracking diarrhea viruses and mpox virus using the wastewater surveillance network in Hong Kong. WATER RESEARCH 2024; 255:121513. [PMID: 38555782 DOI: 10.1016/j.watres.2024.121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
The wastewater surveillance network successfully established for COVID-19 showed great potential to monitor other infectious viruses, such as norovirus, rotavirus and mpox virus. In this study, we established and validated detection methods for these viruses in wastewater. We developed a supernatant-based method to detect RNA viruses from wastewater samples and applied it to the monthly diarrhea viruses (norovirus genogroup I & II, and rotavirus) surveillance in wastewater treatment plants (WWTPs) at a city-wide level for 16 months. Significant correlations were observed between the diarrhea viruses concentrations in wastewater and detection rates in faecal specimens by clinical surveillance. The highest norovirus concentration in wastewater was obtained in winter, consistent with the seasonal pattern of norovirus outbreak in Hong Kong. Additionally, we established a pellet-based method to monitor DNA viruses in wastewater and detected weak signals for mpox virus in wastewater from a WWTP serving approximately 16,700 people, when the first mpox patient in Hong Kong was admitted to the hospital within the catchment area. Genomic sequencing provided confirmatory evidence for the validity of the results. Our findings emphasized the efficacy of the wastewater surveillance network in WWTPs as a cost-effective tool to track the transmission trend of diarrhea viruses and to provide sensitive detection of novel emerging viruses such as mpox virus in low-prevalence areas. The developed methods and surveillance results provide confidence for establishing robust wastewater surveillance programs to control infectious diseases in the post-pandemic era.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Keyue Zhao
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bingjie Xue
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chao Rong
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China; The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; HKU-Pasteur Research Pole, The University of Hong Kong, Sassoon Road, Hong Kong, China; Centre For Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, Hong Kong, China.
| |
Collapse
|
6
|
Ryon MG, Langan LM, Brennan C, O'Brien ME, Bain FL, Miller AE, Snow CC, Salinas V, Norman RS, Bojes HK, Brooks BW. Influences of 23 different equations used to calculate gene copies of SARS-CoV-2 during wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170345. [PMID: 38272099 DOI: 10.1016/j.scitotenv.2024.170345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019, the use of wastewater-based surveillance (WBS) has increased dramatically along with associated infrastructure globally. However, due to the global nature of its application, and various workflow adaptations (e.g., sample collection, water concentration, RNA extraction kits), numerous methods for back-calculation of gene copies per volume (gc/L) of sewage have also emerged. Many studies have considered the comparability of processing methods (e.g., water concentration, RNA extraction); however, for equations used to calculate gene copies in a wastewater sample and subsequent influences on monitoring viral trends in a community and its association with epidemiological data, less is known. Due to limited information on how many formulas exist for the calculation of SARS-CoV-2 gene copies in wastewater, we initially attempted to quantify how many equations existed in the referred literature. We identified 23 unique equations, which were subsequently applied to an existing wastewater dataset. We observed a range of gene copies based on use of different equations, along with variability of AUC curve values, and results from correlation and regression analyses. Though a number of individual laboratories appear to have independently converged on a similar formula for back-calculation of viral load in wastewater, and share similar relationships with epidemiological data, differential influences of various equations were observed for variation in PCR volumes, RNA extraction volumes, or PCR assay parameters. Such observations highlight challenges when performing comparisons among WBS studies when numerous methodologies and back-calculation methods exist. To facilitate reproducibility among studies, the different gc/L equations were packaged as an R Shiny app, which provides end users the ability to investigate variability within their datasets and support comparisons among studies.
Collapse
Affiliation(s)
- Mia G Ryon
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA.
| | - Christopher Brennan
- Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77843-2475, USA
| | - Megan E O'Brien
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Fallon L Bain
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Aubree E Miller
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Christine C Snow
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA
| | - Victoria Salinas
- Environmental Epidemiology and Disease Registries, Texas Department of State Health Services, Austin, TX 78756, USA
| | - R Sean Norman
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, 921 Assembly St., Columbia, SC 28208, USA
| | - Heidi K Bojes
- Environmental Epidemiology and Disease Registries, Texas Department of State Health Services, Austin, TX 78756, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, One Bear Place #97178, Waco, TX 76798, USA; Department of Public Health, Baylor University, One Bear Place #97343, Waco, TX 76798, USA.
| |
Collapse
|
7
|
Sharma V, Takamura H, Biyani M, Honda R. Real-Time On-Site Monitoring of Viruses in Wastewater Using Nanotrap ® Particles and RICCA Technologies. BIOSENSORS 2024; 14:115. [PMID: 38534222 DOI: 10.3390/bios14030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is an effective and efficient tool for the early detection of infectious disease outbreaks in a community. However, currently available methods are laborious, costly, and time-consuming due to the low concentration of viruses and the presence of matrix chemicals in wastewater that may interfere with molecular analyses. In the present study, we designed a highly sensitive "Quick Poop (wastewater with fecal waste) Sensor" (termed, QPsor) using a joint approach of Nanotrap microbiome particles and RICCA (RNA Isothermal Co-Assisted and Coupled Amplification). Using QPsor, the WBE study showed a strong correlation with standard PEG concentrations and the qPCR technique. Using a closed format for a paper-based lateral flow assay, we were able to demonstrate the potential of our assay as a real-time, point-of-care test by detecting the heat-inactivated SARS-CoV-2 virus in wastewater at concentrations of 100 copies/mL and within one hour. As a proof-of-concept demonstration, we analyzed the presence of viral RNA of the SARS-CoV-2 virus and PMMoV in raw wastewater samples from wastewater treatment plants on-site and within 60 min. The results show that the QPsor method can be an effective tool for disease outbreak detection by combining an AI-enabled case detection model with real-time on-site viral RNA extraction and amplification, especially in the absence of intensive clinical laboratory facilities. The lab-free, lab-quality test capabilities of QPsor for viral prevalence and transmission in the community can contribute to the efficient management of pandemic situations.
Collapse
Affiliation(s)
- Vishnu Sharma
- BioSeeds Corporation, Ishikawa Create Labo-202, Asahidai 2-13, Nomi 923-1211, Ishikawa, Japan
| | - Hitomi Takamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1164, Ishikawa, Japan
| | - Manish Biyani
- BioSeeds Corporation, Ishikawa Create Labo-202, Asahidai 2-13, Nomi 923-1211, Ishikawa, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1164, Ishikawa, Japan
| |
Collapse
|
8
|
El Soufi G, Di Jorio L, Gerber Z, Cluzel N, Van Assche J, Delafoy D, Olaso R, Daviaud C, Loustau T, Schwartz C, Trebouet D, Hernalsteens O, Marechal V, Raffestin S, Rousset D, Van Lint C, Deleuze JF, Boni M, Rohr O, Villain-Gambier M, Wallet C. Highly efficient and sensitive membrane-based concentration process allows quantification, surveillance, and sequencing of viruses in large volumes of wastewater. WATER RESEARCH 2024; 249:120959. [PMID: 38070350 DOI: 10.1016/j.watres.2023.120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Wastewater-based epidemiology is experiencing exponential development. Despite undeniable advantages compared to patient-centered approaches (cost, anonymity, survey of large populations without bias, detection of asymptomatic infected peoples…), major technical limitations persist. Among them is the low sensitivity of the current methods used for quantifying and sequencing viral genomes from wastewater. In situations of low viral circulation, during initial stages of viral emergences, or in areas experiencing heavy rains, the extremely low concentrations of viruses in wastewater may fall below the limit of detection of the current methods. The availability during crisis and the cost of the commercial kits, as well as the requirement of expensive materials such as high-speed centrifuge, can also present major blocks to the development of wastewater-based epidemiological survey, specifically in low-income countries. Thereby, highly sensitive, low cost and standardized methods are still needed, to increase the predictability of the viral emergences, to survey low-circulating viruses and to make the results from different labs comparable. Here, we outline and characterize new protocols for concentrating and quantifying SARS-CoV-2 from large volumes (500 mL-1 L) of untreated wastewater. In addition, we report that the methods are applicable for monitoring and sequencing. Our nucleic acid extraction technique (the routine C: 5 mL method) does not require sophisticated equipment such as automatons and is not reliant on commercial kits, making it readily available to a broader range of laboratories for routine epidemiological survey. Furthermore, we demonstrate the efficiency, the repeatability, and the high sensitivity of a new membrane-based concentration method (MBC: 500 mL method) for enveloped (SARS-CoV-2) and non-enveloped (F-specific RNA phages of genogroup II / FRNAPH GGII) viruses. We show that the MBC method allows the quantification and the monitoring of viruses in wastewater with a significantly improved sensitivity compared to the routine C method. In contexts of low viral circulation, we report quantifications of SARS-CoV-2 in wastewater at concentrations as low as 40 genome copies per liter. In highly diluted samples collected in wastewater treatment plants of French Guiana, we confirmed the accuracy of the MBC method compared to the estimations done with the routine C method. Finally, we demonstrate that both the routine C method processing 5 mL and the MBC method processing 500 mL of untreated wastewater are both compatible with SARS-CoV-2 sequencing. We show that the quality of the sequence is correlated with the concentration of the extracted viral genome. Of note, the quality of the sequences obtained with some MBC processed wastewater was improved by dilutions or enzyme substitutions suggesting the presence of specific enzyme inhibitors in some wastewater. To the best of our knowledge, our MBC method is one of the first efficient, sensitive, and repeatable method characterized for SARS-CoV-2 quantification and sequencing from large volumes of wastewater.
Collapse
Affiliation(s)
- G El Soufi
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - L Di Jorio
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - Z Gerber
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - N Cluzel
- Maison des Modélisations Ingénieries et Technologies (SUMMIT), Sorbonne Université, Paris 75005, France
| | - J Van Assche
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Delafoy
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - R Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - C Daviaud
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - T Loustau
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - C Schwartz
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France
| | - D Trebouet
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - O Hernalsteens
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - V Marechal
- INSERM, Centre de Recherche Saint-Antoine, Sorbonne Université, Paris 75012, France; OBEPINE Consortium, Paris, France
| | - S Raffestin
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - D Rousset
- Institut Pasteur de la Guyane, French Guiana, Cayenne 97300, France; OBEPINE Consortium, Paris, France
| | - C Van Lint
- Department of Molecular Biology (DBM), Service of Molecular Virology, Université Libre de Bruxelles (ULB), Gosselies 6041, Belgium
| | - J F Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry 91057, France
| | - M Boni
- French Armed Forces Biomedical Research Institute, 91220 Brétigny-sur-Orge, France; OBEPINE Consortium, Paris, France
| | - O Rohr
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France.
| | - M Villain-Gambier
- CNRS, IPHC, UMR 7178, Université de Strasbourg, Strasbourg F-67000, France
| | - C Wallet
- DHPI UR 7292, IUT Louis Pasteur, Université de Strasbourg, Schiltigheim, France; OBEPINE Consortium, Paris, France
| |
Collapse
|
9
|
Torres-Franco AF, Leroy-Freitas D, Martinez-Fraile C, Rodríguez E, García-Encina PA, Muñoz R. Partitioning and inactivation of enveloped and nonenveloped viruses in activated sludge, anaerobic and microalgae-based wastewater treatment systems. WATER RESEARCH 2024; 248:120834. [PMID: 37984037 DOI: 10.1016/j.watres.2023.120834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Anaerobic and microalgae-based technologies for municipal wastewater treatment have emerged as sustainable alternatives to activated sludge systems. However, viruses are a major sanitary concern for reuse applications of liquid and solid byproducts from these technologies. To assess their capacity to reduce viruses during secondary wastewater treatment, enveloped Phi6 and nonenveloped MS2 bacteriophages, typically used as surrogates of several types of wastewater viruses, were spiked into batch bioreactors treating synthetic municipal wastewater (SMWW). The decay of Phi6 and MS2 in anaerobic and microalgae-based reactors was compared with the decay in activated sludge batch reactors for 96 h (Phi6) and 144 h (MS2). In each reactor, bacteriophages in the soluble and solids fractions were titered, allowing the assessment of virus partitioning to biomass over time. Moreover, the influence of abiotic conditions such as agitation, oxygen absence and light excess in activated sludge, anaerobic and microalgae reactors, respectively, was assessed using dedicated SMWW control reactors. All technologies showed Phi6 and MS2 reductions. Phi6 was reduced in at least 4.7 to 6.5 log10 units, with 0 h concentrations ranging from 5.0 to 6.5 log10 PFU mL-1. Similarly, reductions achieved for MS2 were of at least 3.9 to 7.2 log10 units, from starting concentrations of 8.0 to 8.6 log10 PFU mL-1. Log-logistic models adjusted to bacteriophages' decay indicated T90 values in activated sludge and microalgae reactors of 2.2 and 7.9 h for Phi6 and of 1.0 and 11.5 h for MS2, respectively, all within typical hydraulic retention times (HRT) of full-scale operation. In the case of the microalgae technology, T99 values for Phi6 and MS2 of 12.7 h and 13.6 h were also lower than typical operating HRTs (2-10 d), while activated sludge and anaerobic treatment achieved less than 99 % of Phi6 and 50 % of MS2 inactivation within 12 h of typical HRT, respectively. Thus, the microalgae-based treatment exhibited a higher potential to reduce the disinfection requirements of treated wastewater.
Collapse
Affiliation(s)
- Andrés F Torres-Franco
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| | - Deborah Leroy-Freitas
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Cristina Martinez-Fraile
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Elisa Rodríguez
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Pedro A García-Encina
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina. s/n, 47011 Valladolid, Spain.
| |
Collapse
|
10
|
Jobling K, Quintela-Baluja M, Hassard F, Adamou P, Blackburn A, Research Team T, McIntyre-Nolan S, O'Mara O, Romalde JL, Di Cesare M, Graham DW. Comparison of gene targets and sampling regimes for SARS-CoV-2 quantification for wastewater epidemiology in UK prisons. JOURNAL OF WATER AND HEALTH 2024; 22:64-76. [PMID: 38295073 PMCID: wh_2023_093 DOI: 10.2166/wh.2023.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Prisons are high-risk settings for infectious disease transmission, due to their enclosed and semi-enclosed environments. The proximity between prisoners and staff, and the diversity of prisons reduces the effectiveness of non-pharmaceutical interventions, such as social distancing. Therefore, alternative health monitoring methods, such as wastewater-based epidemiology (WBE), are needed to track pathogens, including SARS-CoV-2. This pilot study assessed WBE to quantify SARS-CoV-2 prevalence in prison wastewater to determine its utility within a health protection system for residents. The study analysed 266 samples from six prisons in England over a 12-week period for nucleoprotein 1 (N1 gene) and envelope protein (E gene) using quantitative reverse transcriptase-polymerase chain reaction. Both gene assays successfully detected SARS-CoV-2 fragments in wastewater samples, with both genes significantly correlating with COVID-19 case numbers across the prisons (p < 0.01). However, in 25% of the SARS-positive samples, only one gene target was detected, suggesting that both genes be used to reduce false-negative results. No significant differences were observed between 14- and 2-h composite samples, although 2-h samples showed greater signal variance. Population normalisation did not improve correlations between the N1 and E genes and COVID-19 case data. Overall, WBE shows considerable promise for health protection in prison settings.
Collapse
Affiliation(s)
- Kelly Jobling
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; The authors contributed equally to the manuscript. E-mail:
| | - Marcos Quintela-Baluja
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; The authors contributed equally to the manuscript
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, UK
| | - Panagiota Adamou
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Adrian Blackburn
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | | | | | - Jesus L Romalde
- CRETUS, Departamento de Microbiología y Parasitología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
11
|
Zhao B, Fujita T, Nihei Y, Yu Z, Chen X, Tanaka H, Ihara M. Tracking community infection dynamics of COVID-19 by monitoring SARS-CoV-2 RNA in wastewater, counting positive reactions by qPCR. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166420. [PMID: 37611711 DOI: 10.1016/j.scitotenv.2023.166420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Wastewater-based epidemiology has proved useful for monitoring the COVID-19 infection dynamics in communities. However, in regions of low prevalence, low concentrations of SARS-CoV-2 RNA in wastewater make this difficult. Here, we used real-time reverse-transcription PCR (RT-qPCR) to monitor SARS-CoV-2 RNA in wastewater from October 2020 to December 2022 during the third, fourth, fifth, sixth, seventh, and eighth waves of the COVID-19 outbreak in Japan. Viral RNA was below the limit of detection in all samples during the third and fourth waves. However, by counting the number of positive replicates in qPCR of each sample, we found that the positive ratio to all replicates in wastewater was significantly correlated with the number of clinically confirmed cases by the date of symptom onset during the third, fourth, and fifth waves. Time-step analysis indicated that, for 2 days either side of symptom onset, COVID-19 patients excreted in their feces large amounts of virus that wastewater surveillance could detect. We also demonstrated that the viral genome copy number in wastewater, as estimated from the positive ratio of SARSA-CoV-2 RNA, was correlated with the number of clinically confirmed cases. The positive count method is thus useful for tracing COVID-19 dynamics in regions of low prevalence.
Collapse
Affiliation(s)
- Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Tomonori Fujita
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Yoshiaki Nihei
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Water Agency Inc., 3-25 Higashi-Goken-cho, Shinjuku-ku, Tokyo 162-0813, Japan
| | - Zaizhi Yu
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Xiaohan Chen
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe-Otsu, Nankoku city, Kochi 783-8502, Japan.
| |
Collapse
|
12
|
Alamin M, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Tanaka H, Watanabe T, Honda R. Reduction of SARS-CoV-2 by biological nutrient removal and disinfection processes in full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165097. [PMID: 37356766 PMCID: PMC10290167 DOI: 10.1016/j.scitotenv.2023.165097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Detection of SARS-CoV-2 RNA in wastewater poses people's concerns regarding the potential risk in water bodies receiving wastewater treatment effluent, despite the infectious risk of SARS-CoV-2 in wastewater being speculated to be low. Unlike well-studied nonenveloped viruses, SARS-CoV-2 in wastewater is present abundantly in both solid and liquid fractions of wastewater. Reduction of SARS-CoV-2 in past studies were likely underestimated, as SARS-CoV-2 in influent wastewater were quantified in either solid or liquid fraction only. The objectives of this study were (i) to clarify the reduction in SARS-CoV-2 RNA during biological nutrient removal and disinfection processes in full-scale WWTPs, considering the SARS-CoV-2 present in both solid and liquid fractions of wastewater, and (ii) to evaluate applicability of pepper mild mottle virus (PMMoV) as a performance indicator for reduction of SARS-CoV-2 in WWTPs. Accordingly, large amount of SARS-CoV-2 RNA were partitioned in the solid fraction of influent wastewater for composite sampling than grab sampling. When SARS-CoV-2 RNA in the both solid and liquid fractions were considered, log reduction values (LRVs) of SARS-CoV-2 during step-feed multistage biological nitrogen removal (SM-BNR) and enhanced biological phosphorus removal (EBPR) processes ranged between>2.1-4.4 log and did not differ significantly from those in conventional activated sludge (CAS). The LRVs of SARS-CoV-2 RNA in disinfection processes by ozonation and chlorination did not differ significantly. PMMoV is a promising performance indicator to secure reduction of SARS-CoV-2 in WWTPs, because of its higher persistence in wastewater treatment processes and abundance at a detectable concentration even in the final effluent after disinfection.
Collapse
Affiliation(s)
- Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | | | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; College of Environment, Hohai University, Nanjing 210098, China
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan; Faculty of Agriculture and Marine Science, Kochi University, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan
| | | | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Japan.
| |
Collapse
|
13
|
Perez-Zabaleta M, Archer A, Khatami K, Jafferali MH, Nandy P, Atasoy M, Birgersson M, Williams C, Cetecioglu Z. Long-term SARS-CoV-2 surveillance in the wastewater of Stockholm: What lessons can be learned from the Swedish perspective? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160023. [PMID: 36356735 PMCID: PMC9640212 DOI: 10.1016/j.scitotenv.2022.160023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) can be used to track the spread of SARS-CoV-2 in a population. This study presents the learning outcomes from over two-year long monitoring of SARS-CoV-2 in Stockholm, Sweden. The three main wastewater treatment plants in Stockholm, with a total of six inlets, were monitored from April 2020 until June 2022 (in total 600 samples). This spans five major SARS-CoV-2 waves, where WBE data provided early warning signals for each wave. Further, the measured SARS-CoV-2 content in the wastewater correlated significantly with the level of positive COVID-19 tests (r = 0.86; p << 0.0001) measured by widespread testing of the population. Moreover, as a proof-of-concept, six SARS-CoV-2 variants of concern were monitored using hpPCR assay, demonstrating that variants can be traced through wastewater monitoring. During this long-term surveillance, two sampling protocols, two RNA concentration/extraction methods, two calculation approaches, and normalization to the RNA virus Pepper mild mottle virus (PMMoV) were evaluated. In addition, a study of storage conditions was performed, demonstrating that the decay of viral RNA was significantly reduced upon the addition of glycerol to the wastewater before storage at -80 °C. Our results provide valuable information that can facilitate the incorporation of WBE as a prediction tool for possible future outbreaks of SARS-CoV-2 and preparations for future pandemics.
Collapse
Affiliation(s)
- Mariel Perez-Zabaleta
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Amena Archer
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Kasra Khatami
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Mohammed Hakim Jafferali
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Prachi Nandy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Merve Atasoy
- Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden
| | - Madeleine Birgersson
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Zeynep Cetecioglu
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; Department of Chemical Engineering, KTH Royal Institute of Technology, SE-10044, Sweden.
| |
Collapse
|
14
|
Burnet JB, Cauchie HM, Walczak C, Goeders N, Ogorzaly L. Persistence of endogenous RNA biomarkers of SARS-CoV-2 and PMMoV in raw wastewater: Impact of temperature and implications for wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159401. [PMID: 36240930 PMCID: PMC9554201 DOI: 10.1016/j.scitotenv.2022.159401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 05/28/2023]
Abstract
Understanding the persistence of SARS-CoV-2 biomarkers in wastewater should guide wastewater-based epidemiology users in selecting best RNA biomarkers for reliable detection of the virus during current and future waves of the pandemic. In the present study, the persistence of endogenous SARS-CoV-2 were assessed during one month for six different RNA biomarkers and for the pepper mild mottle virus (PMMoV) at three different temperatures (4, 12 and 20 °C) in one wastewater sample. All SARS-CoV-2 RNA biomarkers were consistently detected during 6 days at 4° and differences in signal persistence among RNA biomarkers were mostly observed at 20 °C with N biomarkers being globally more persistent than RdRP, E and ORF1ab ones. SARS-CoV-2 signal persistence further decreased in a temperature dependent manner. At 12 and 20 °C, RNA biomarker losses of 1-log10 occurred on average after 6 and 4 days, and led to a complete signal loss after 13 and 6 days, respectively. Besides the effect of temperature, SARS-CoV-2 RNA signals were more persistent in the particulate phase compared to the aqueous one. Finally, PMMoV RNA signal was highly persistent in both phases and significantly differed from that of SARS-CoV-2 biomarkers. We further provide a detailed overview of the latest literature on SARS-CoV-2 and PMMoV decay rates in sewage matrices.
Collapse
Affiliation(s)
- Jean-Baptiste Burnet
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Henry-Michel Cauchie
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Cécile Walczak
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Nathalie Goeders
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | - Leslie Ogorzaly
- Luxembourg Institute of Science and Technology (LIST), Environmental Research & Innovation Department, 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| |
Collapse
|
15
|
Farkas K, Williams R, Alex-Sanders N, Grimsley JMS, Pântea I, Wade MJ, Woodhall N, Jones DL. Wastewater-based monitoring of SARS-CoV-2 at UK airports and its potential role in international public health surveillance. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001346. [PMID: 36963000 PMCID: PMC10021541 DOI: 10.1371/journal.pgph.0001346] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/24/2022] [Indexed: 01/20/2023]
Abstract
It is well established that air travel plays a key role in the global spread of many enteric and respiratory diseases, including COVID-19. Even with travel restrictions (e.g. mask wearing, negative COVID-19 test prior to departure), SARS-CoV-2 may be transmitted by asymptomatic or pre-symptomatic individuals carrying the virus. Due to the limitation of current clinical surveillance approaches, complementary methods need to be developed to allow estimation of the frequency of SARS-CoV-2 entry across international borders. Wastewater-based epidemiology (WBE) represents one such approach, allowing the unbiased sampling of SARS-CoV-2 carriage by passenger cohorts entering via airports. In this study, we monitored sewage in samples from terminals (n = 150) and aircraft (n = 32) at three major international airports in the UK for 1-3 weeks in March 2022. As the raw samples were more turbid than typical municipal wastewater, we used beef extract treatment followed by polyethylene glycol (PEG) precipitation to concentrate viruses, followed by reverse transcription quantitative PCR (RT-qPCR) for the detection of SARS-CoV-2 and a faecal indicator virus, crAssphage. All samples taken from sewers at the arrival terminals of Heathrow and Bristol airports, and 85% of samples taken from sites at Edinburgh airport, were positive for SARS-CoV-2. This suggests a high COVID-19 prevalence among passengers and/or airport staff members. Samples derived from aircraft also showed 93% SARS-CoV-2 positivity. No difference in viral prevalence was found before and after COVID-19 travel restrictions were lifted. Our results suggest that WBE is a useful tool for monitoring the global transfer rate of human pathogens and other disease-causing agents across international borders and should form part of wider international efforts to monitor and contain the spread of future disease outbreaks.
Collapse
Affiliation(s)
- Kata Farkas
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, United Kingdom
| | - Rachel Williams
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Natasha Alex-Sanders
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Jasmine M. S. Grimsley
- Data, Analytics, and Surveillance Group, UK Health Security Agency, London, United Kingdom
- The London Data Company, London, United Kingdom
| | - Igor Pântea
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Matthew J. Wade
- Data, Analytics, and Surveillance Group, UK Health Security Agency, London, United Kingdom
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Woodhall
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Davey L. Jones
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Food Futures Institute, Murdoch University, Murdoch, Australia
| |
Collapse
|
16
|
Zahmatkesh S, Rezakhani Y, Chofreh AG, Karimian M, Wang C, Ghodrati I, Hasan M, Sillanpaa M, Panchal H, Khan R. SARS-CoV-2 removal by mix matrix membrane: A novel application of artificial neural network based simulation in MATLAB for evaluating wastewater reuse risks. CHEMOSPHERE 2023; 310:136837. [PMID: 36252897 PMCID: PMC9560862 DOI: 10.1016/j.chemosphere.2022.136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 05/09/2023]
Abstract
The COVID-19 outbreak led to the discovery of SARS-CoV-2 in sewage; thus, wastewater treatment plants (WWTPs) could have the virus in their effluent. However, whether SARS-CoV-2 is eradicated by sewage treatment is virtually unknown. Specifically, the objectives of this study include (i) determining whether a mixed matrixed membrane (MMM) is able to remove SARS-CoV-2 (polycarbonate (PC)-hydrous manganese oxide (HMO) and PC-silver nanoparticles (Ag-NP)), (ii) comparing filtration performance among different secondary treatment processes, and (iii) evaluating whether artificial neural networks (ANNs) can be employed as performance indicators to reduce SARS-CoV-2 in the treatment of sewage. At Shariati Hospital in Mashhad, Iran, secondary treatment effluent during the outbreak of COVID-19 was collected from a WWTP. There were two PC-Ag-NP and PC-HMO processes at the WWTP targeted. RT-qPCR was employed to detect the presence of SARS-CoV-2 in sewage fractions. For the purposes of determining SARS-CoV-2 prevalence rates in the treated effluent, 10 L of effluent specimens were collected in middle-risk and low-risk treatment MMMs. For PC-HMO, the log reduction value (LRV) for SARS-CoV-2 was 1.3-1 log10 for moderate risk and 0.96-1 log10 for low risk, whereas for PC-Ag-NP, the LRV was 0.99-1.3 log10 for moderate risk and 0.94-0.98 log10 for low risk. MMMs demonstrated the most robust absorption performance during the sampling period, with the least significant LRV recorded in PC-Ag-NP and PC-HMO at 0.94 log10 and 0.96 log10, respectively.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran; Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Abdoulmohammad Gholamzadeh Chofreh
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Melika Karimian
- Faculty of Civil Engineering, Architecture and Urban Planning, University of Eyvanekey, Iran
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Iman Ghodrati
- Department of Computer Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| | - Mudassir Hasan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Mika Sillanpaa
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Hitesh Panchal
- Mechanical Engineering Department, Government Engineering College, Patan, Gujarat, India
| | - Ramsha Khan
- Faculty of Civil Engineering, Institute of Technology, Shri Ramswaroop Memorial University, Barabanki, 225003, UP, India
| |
Collapse
|
17
|
Wang R, Alamin M, Tsuji S, Hara-Yamamura H, Hata A, Zhao B, Ihara M, Honda R. Removal performance of SARS-CoV-2 in wastewater treatment by membrane bioreactor, anaerobic-anoxic-oxic, and conventional activated sludge processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158310. [PMID: 36030862 PMCID: PMC9411102 DOI: 10.1016/j.scitotenv.2022.158310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The potential risk of SARS-CoV-2 in treated effluent from a wastewater treatment plant (WWTP) is concerned since SARS-CoV-2 is contained in wastewater during the COVID-19 outbreak. However, the removal of SARS-CoV-2 in WWTP has not been well investigated. The objectives of this study were (i) to clarify the removal performance of SARS-CoV-2 during wastewater treatment, (ii) to compare the removal performance of different secondary treatment processes, and (iii) to evaluate applicability of pepper mild mottle of virus (PMMoV) as a performance indicator for the reduction of SARS-CoV-2 RNA in wastewater treatment. Influent wastewater, secondary-treatment effluent (before chlorination), and final effluent (after chlorination) samples were collected from a WWTP from May 28 to September 24, 2020, during the COVID-19 outbreak in Japan. The target WWTP had three parallel treatment systems employing conventional activated sludge (CAS), anaerobic-anoxic -oxic (A2O), and membrane bioreactor (MBR) processes. SARS-CoV-2 in both the liquid and solid fractions of the influent wastewater was concentrated and quantified using RT-qPCR. SARS-CoV-2 in treated effluent was concentrated from 10 L samples to achieve a detection limit as low as 10 copies/L. The log reduction value (LRV) of SARS-CoV-2 was 2.7 ± 0.86 log10 in CAS, 1.6 ± 0.50 log10 in A2O, and 3.6 ± 0.62 log10 in MBR. The lowest LRV observed during the sampling period was 2.8 log10 in MBR, 1.2 log10 in CAS, and 1.0 log10 in A2O process, indicating that the MBR had the most stable reduction performance. PMMoV was found to be a good indicator virus to evaluate reduction performance of SARS-CoV-2 independent of the process configuration because the LRV of PMMoV was significantly lower than that of SARS-CoV-2 in the CAS, A2O and MBR processes.
Collapse
Affiliation(s)
- Rongxuan Wang
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Md Alamin
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shohei Tsuji
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Akihiko Hata
- Department of Environmental and Civil Engineering, Toyama Prefectural University, Imizu, Japan
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, PR China; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu, Japan.
| |
Collapse
|
18
|
Dimitrakopoulos L, Kontou A, Strati A, Galani A, Kostakis M, Kapes V, Lianidou E, Thomaidis N, Markou A. Evaluation of viral concentration and extraction methods for SARS-CoV-2 recovery from wastewater using droplet digital and quantitative RT-PCR. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100224. [PMID: 37520924 PMCID: PMC9222221 DOI: 10.1016/j.cscee.2022.100224] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 05/19/2023]
Abstract
The ongoing pandemic caused by the emergence of SARS-CoV-2 has resulted in millions of deaths worldwide despite the various measures announced by the authorities. Wastewater-based epidemiology has the ability to provide a day-to-day estimation of the number of infected people in a fast and cost-effective manner. However, owing to the complex nature of wastewater, wastewater monitoring for viral genome copies is affected by the extensive viral fragmentation that takes place all the way to the sewage and the analytical lab. The aim of this study was to evaluate different methodologies for the concentration and extraction of viruses in wastewaters and to select and improve an option that maximizes the recovery of SARS-CoV-2. We compare 5 different concentration methods and 4 commercially available kits for the RNA extraction. To evaluate the performance and the recovery of these, SARS-CoV-2 isolated from patients was used as a spike control. Additionally, the presence of SARS-CoV-2 in all wastewater samples was determined using reverse transcription quantitative PCR (RT-qPCR) and reverse transcription droplet digital PCR (RT-ddPCR), targeting three genetic markers (N1, N2 and N3). Using spiked samples, recoveries were estimated 2.1-37.6% using different extraction kits and 0.1-2.1% using different concentration kits. It was found that a direct capture-based method, evaluated against a variety of concentration methods, is the best in terms of recovery, time and cost. Interestingly, we noticed a good agreement between the results provided by RT-qPCR and RT-ddPCR in terms of recovery. This evaluation can serve as a guide for laboratories establishing a protocol to perform wastewater monitoring of SARS-CoV-2. Overall, data presented here reinforces the validity of WBE for SARS-CoV-2 surveillance, uncovers potential caveats in the selection of concentration and extraction protocols and points towards optimal solutions to maximize its potential.
Collapse
Affiliation(s)
- Lampros Dimitrakopoulos
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Kontou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Areti Strati
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Aikaterini Galani
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Vasileios Kapes
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Evrikleia Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece
| |
Collapse
|
19
|
Bitter LC, Kibbee R, Jiménez GC, Örmeci B. Wastewater Surveillance of SARS-CoV-2 at a Canadian University Campus and the Impact of Wastewater Characteristics on Viral RNA Detection. ACS ES&T WATER 2022; 2:2034-2046. [PMID: 37552746 PMCID: PMC9128010 DOI: 10.1021/acsestwater.2c00060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 05/28/2023]
Abstract
Because of the increased population density, high-risk behavior of young students, and lower vaccination rates, university campuses are considered hot spots for COVID-19 transmission. This study monitored the SARS-CoV-2 RNA levels in the wastewater of a Canadian university campus for a year to provide actionable information to safely manage COVID-19 on campus. Wastewater samples were collected from the campus sewer and residence buildings to identify changes, peaks, and hotspots and search for associations with campus events, social gatherings, long weekends, and holidays. Furthermore, the impact of wastewater parameters (total solids, volatile solids, temperature, pH, turbidity, and UV absorbance) on SARS-CoV-2 detection was investigated, and the efficiency of ultrafiltration and centrifugation concentration methods were compared. RT-qPCR was used for detecting SARS-CoV-2 RNA. Wastewater signals largely correlated positively with the clinically confirmed COVID-19 cases on campus. Long weekends and holidays were often followed by increased viral signals, and the implementation of lockdowns quickly decreased the case numbers. In spite of online teaching and restricted access to campus, the university represented a microcosm of the city and mirrored the same trends. Results indicated that the centrifugation concentration method was more sensitive for wastewater with high solids content and that the ultrafiltration concentration method was more sensitive for wastewater with low solids content. Wastewater characteristics collected from the buildings and the campus sewer were different. Statistical analysis was performed to manifest the observations. Overall, wastewater surveillance provided actionable information and was also able to bring high-risk factors and events to the attention of decision-makers, enabling timely corrective measures.
Collapse
Affiliation(s)
- Lena Carolin Bitter
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| | - Richard Kibbee
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| | - Gabriela C. Jiménez
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| | - Banu Örmeci
- Department of Civil and Environmental Engineering,
Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S
5B6, Canada
| |
Collapse
|
20
|
Yu L, Tian Z, Joshi DR, Yuan L, Tuladhar R, Zhang Y, Yang M. Detection of SARS-CoV-2 and Other Viruses in Wastewater: Optimization and Automation of an Aluminum Hydroxide Adsorption-Precipitation Method for Virus Concentration. ACS ES&T WATER 2022; 2:2175-2184. [PMID: 37552732 PMCID: PMC9115887 DOI: 10.1021/acsestwater.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/18/2023]
Abstract
This study aimed to provide a low-cost technique for virus detection in wastewater by improving an aluminum hydroxide adsorption-precipitation method. The releasing efficiency of viruses trapped by the aluminum hydroxide precipitates was improved by adding ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) to dissolve the precipitates at a Na2EDTA·2H2O:AlCl3 molar ratio of 1.8-3.6. The recovery rates of the improved method for seven viruses, including SARS-CoV-2-abEN pseudovirus and six animal viruses, were 5.9-22.3% in tap water and 4.9-35.1% in wastewater. Rotavirus A (9.0-4.5 × 103 copies/mL), porcine circovirus type 2 (5.8-6.4 × 105 copies/mL), and porcine parvovirus (5.6-2.7 × 104 copies/mL) were detected in China's pig farm wastewater, while rotavirus A (2.0 × 103 copies/mL) was detected in hospital wastewater. SARS-CoV-2 was detected in hospital wastewater (8.4 × 102 to 1.4 × 104 copies/mL), sewage (6.4 × 10 to 2.3 × 103 copies/mL), and river water (6.6 × 10 to 9.3 × 10 copies/mL) in Nepal. The method was automized, with a rate of recovery of 4.8 ± 1.4% at a virus concentration of 102 copies/mL. Thus, the established method could be used for wastewater-based epidemiology with sufficient sensitivity in coping with the COVID-19 epidemic and other virus epidemics.
Collapse
Affiliation(s)
- Lina Yu
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - Dev Raj Joshi
- Central Department of Microbiology,
Tribhuvan University, GPO 44613 Kirtipur, Kathmandu,
Nepal
| | - Lin Yuan
- Beijing Sino-science Gene Technology
Company, Ltd., Beijing 102629, China
| | - Reshma Tuladhar
- Central Department of Microbiology,
Tribhuvan University, GPO 44613 Kirtipur, Kathmandu,
Nepal
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic
Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Min Yang
- Sino-Danish College, University of
Chinese Academy of Sciences, Beijing 100190,
China
- University of Chinese Academy of
Sciences, Beijing 100049, China
- Key Laboratory of Drinking Water Science and Technology,
Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Zheng X, Li S, Deng Y, Xu X, Ding J, Lau FTK, In Yau C, Poon LLM, Tun HM, Zhang T. Quantification of SARS-CoV-2 RNA in wastewater treatment plants mirrors the pandemic trend in Hong Kong. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157121. [PMID: 35787900 PMCID: PMC9249664 DOI: 10.1016/j.scitotenv.2022.157121] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) for the SARS-CoV-2 virus in wastewater treatment plants (WWTPs) has emerged as a cost-effective and unbiased tool for population-level testing in the community. In the present study, we conducted a 6-month wastewater monitoring campaign from three WWTPs of different flow rates and catchment area characteristics, which serve 28 % (2.1 million people) of Hong Kong residents in total. Wastewater samples collected daily or every other day were concentrated using ultracentrifugation and the SARS-CoV-2 virus RNA in the supernatant was detected using the N1 and E primer sets. The results showed significant correlations between the virus concentration and the number of daily new cases in corresponding catchment areas of the three WWTPs when using 7-day moving average values (Kendall's tau-b value: 0.227-0.608, p < 0.001). SARS-CoV-2 virus concentration was normalized to a fecal indicator using PMMoV concentration and daily flow rates, but the normalization did not enhance the correlation. The key factors contributing to the correlation were also evaluated, including the sampling frequency, testing methods, and smoothing days. This study demonstrates the applicability of wastewater surveillance to monitor overall SARS-CoV-2 pandemic dynamics in a densely populated city like Hong Kong, and provides a large-scale longitudinal reference for the establishment of the long-term sentinel surveillance in WWTPs for WBE of pathogens which could be combined into a city-wide public health observatory.
Collapse
Affiliation(s)
- Xiawan Zheng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shuxian Li
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaoqing Xu
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jiahui Ding
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Frankie T K Lau
- Drainage Services Department, The Government of the Hong Kong Special Administrative Region of the People's Republic of China, Wanchai, Hong Kong, China
| | - Chung In Yau
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Hein M Tun
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
22
|
Tanimoto Y, Ito E, Miyamoto S, Mori A, Nomoto R, Nakanishi N, Oka N, Morimoto T, Iwamoto T. SARS-CoV-2 RNA in Wastewater Was Highly Correlated With the Number of COVID-19 Cases During the Fourth and Fifth Pandemic Wave in Kobe City, Japan. Front Microbiol 2022; 13:892447. [PMID: 35756040 PMCID: PMC9223763 DOI: 10.3389/fmicb.2022.892447] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the current coronavirus disease 2019 (COVID-19) pandemic and associated respiratory infections, has been detected in the feces of patients. Therefore, determining SARS-CoV-2 RNA levels in sewage may help to predict the number of infected people within the area. In this study, we quantified SARS-CoV-2 RNA copy number using reverse transcription quantitative real-time PCR with primers and probes targeting the N gene, which allows the detection of both wild-type and variant strain of SARS-CoV-2 in sewage samples from two wastewater treatment plants (WWTPs) in Kobe City, Japan, during the fourth and fifth pandemic waves of COVID-19 between February 2021 and October 2021. The wastewater samples were concentrated via centrifugation, yielding a pelleted solid fraction and a supernatant, which was subjected to polyethylene glycol (PEG) precipitation. The SARS-CoV-2 RNA was significantly and frequently detected in the solid fraction than in the PEG-precipitated fraction. In addition, the copy number in the solid fraction was highly correlated with the number of COVID-19 cases in the WWTP basin (WWTP-A: r = 0.8205, p < 0.001; WWTP-B: r = 0.8482, p < 0.001). The limit of capturing COVID-19 cases per 100,000 people was 0.75 cases in WWTP-A and 1.20 cases in WWTP-B, respectively. Quantitative studies of RNA in sewage can be useful for administrative purposes related to public health, including issuing warnings and implementing preventive measures within sewage basins.
Collapse
Affiliation(s)
- Yoshihiko Tanimoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Erika Ito
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Sonoko Miyamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Ai Mori
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Ryohei Nomoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Noriko Nakanishi
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| | - Naohiro Oka
- Planning Division, Sewage Works Department, Public Construction Projects Bureau, Kobe City, Japan
| | - Takao Morimoto
- Planning Division, Sewage Works Department, Public Construction Projects Bureau, Kobe City, Japan
| | - Tomotada Iwamoto
- Department of Infectious Diseases, Kobe Institute of Health, Kobe City, Japan
| |
Collapse
|
23
|
Barbé L, Schaeffer J, Besnard A, Jousse S, Wurtzer S, Moulin L, Le Guyader FS, Desdouits M. SARS-CoV-2 Whole-Genome Sequencing Using Oxford Nanopore Technology for Variant Monitoring in Wastewaters. Front Microbiol 2022; 13:889811. [PMID: 35756003 PMCID: PMC9218694 DOI: 10.3389/fmicb.2022.889811] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 01/21/2023] Open
Abstract
Since the beginning of the Coronavirus Disease-19 (COVID-19) pandemic, multiple Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mutations have been reported and led to the emergence of variants of concern (VOC) with increased transmissibility, virulence or immune escape. In parallel, the observation of viral fecal shedding led to the quantification of SARS-CoV-2 genomes in wastewater, providing information about the dynamics of SARS-CoV-2 infections within a population including symptomatic and asymptomatic individuals. Here, we aimed to adapt a sequencing technique initially designed for clinical samples to apply it to the challenging and mixed wastewater matrix, and hence identify the circulation of VOC at the community level. Composite raw sewage sampled over 24 h in two wastewater-treatment plants (WWTPs) from a city in western France were collected weekly and SARS-CoV-2 quantified by RT-PCR. Samples collected between October 2020 and May 2021 were submitted to whole-genome sequencing (WGS) using the primers and protocol published by the ARTIC Network and a MinION Mk1C sequencer (Oxford Nanopore Technologies, Oxford, United Kingdom). The protocol was adapted to allow near-full genome coverage from sewage samples, starting from ∼5% to reach ∼90% at depth 30. This enabled us to detect multiple single-nucleotide variant (SNV) and assess the circulation of the SARS-CoV-2 VOC Alpha, Beta, Gamma, and Delta. Retrospective analysis of sewage samples shed light on the emergence of the Alpha VOC with detection of first co-occurring signature mutations in mid-November 2020 to reach predominance of this variant in early February 2021. In parallel, a mutation-specific qRT-PCR assay confirmed the spread of the Alpha VOC but detected it later than WGS. Altogether, these data show that SARS-CoV-2 sequencing in sewage can be used for early detection of an emerging VOC in a population and confirm its ability to track shifts in variant predominance.
Collapse
Affiliation(s)
- Laure Barbé
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Julien Schaeffer
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Alban Besnard
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | - Sarah Jousse
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| | | | - Laurent Moulin
- R&D Laboratory, DRDQE, Eau de Paris, Ivry-sur-Seine, France
| | | | - Marion Desdouits
- Laboratoire de Microbiologie (LSEM, Unité MASAE), IFREMER, Nantes, France
| |
Collapse
|