1
|
Wang R, Lu P, Chen F, Huang Y, Ding H, Cheng T. Groundwater resistant gene accumulation in mining-agriculture complex zones: Insights from metagenomic analysis of subterranean mineral and terrestrial agricultural interactions. ENVIRONMENTAL RESEARCH 2024; 263:120138. [PMID: 39393455 DOI: 10.1016/j.envres.2024.120138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
During the Mining-Agriculture Complex Areas, the mining and agriculture activities could lead to an excessive presence of sulfate content in the regional groundwater. Sulfate exhibits the potential to influence the positive accumulation of RGs, although its mechanisms remain inadequately explored. To address this gap, this study analyzed the RGs buildup mechanisms in the groundwater of the mining-agriculture complex area. Results showed a widespread presence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), especially in coal-seams crevice groundwater. And iron and sulfur are primary environmental factors conducive to RGs accumulation through a synergistic interaction. Microbial annotation of gene sets sourced from coal-seams crevice groundwater samples unveiled part of sulfur-metabolizing microorganisms that were hosts of both ARGs and MRGs. Mechanistic insights revealed that iron may stimulates reactive oxygen species (ROS) generation, facilitating RGs accumulation, while adjusting sulfur metabolism and the synthesis of iron-sulfur clusters, thereby augmenting microbial growth which as predominant hosts of RGs, thereby intensifying the buildup of RGs.
Collapse
Affiliation(s)
- Rui Wang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Ping Lu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Fangfang Chen
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yanchang Huang
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Haoran Ding
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Tianhang Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
2
|
Song Y, Guo J, Li F, Wang J, Ma F, Wu G, Li G. Investigation into factors controlling groundwater evolution in mining areas with an integrated approach. Heliyon 2024; 10:e38860. [PMID: 39430531 PMCID: PMC11490811 DOI: 10.1016/j.heliyon.2024.e38860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
The study of groundwater evolution is of great significance for water resource protection and management, groundwater pollution control, and ecological environment protection. Experts and scholars have found that the hydrochemical processes and evolutionary patterns of groundwater are determined by both natural processes and human activities. However, there is relatively little research on the evolution of groundwater in mining areas where human activities have a significant impact. Therefore, to study the main controlling factors affecting the hydrogeochemical evolution of groundwater in mining areas, this paper proposes a method combining mixed ratio calculation and multivariate statistical analysis. Firstly, a total of 40 groundwater samples are classified into six clusters via hierarchical cluster analysis. By comprehensively analyzing the spatial location of the samples, it was found that there was no obvious distribution pattern of groundwater in space. Furthermore, the rationality of the cluster analysis is evaluated via principal component analysis. Next, hydrochemical and isotopic analyses were conducted to determine the source of groundwater in the mining area, and a three terminal element mixing model was established to identify the source of pollutants and calculate the terminal element mixing ratio. The research results indicate that groundwater in mining areas is formed by a mixture of shallow bedrock fissure water, deep bedrock fissure water, and rainwater, and the mixing effect is the main factor affecting the evolution of groundwater in mining areas, with a more significant impact than the depth of groundwater circulation. In addition, different types and degrees of water-rock interaction in different regions have altered the hydrochemical characteristics of groundwater in mining areas, such as the dissolution of multiple minerals, cation exchange, and common ion effects. Based on the above analysis results, a water circulation model for the mining area has been established. The findings of this study not only contribute to the protection of shallow fissure groundwater in the study area, but also provide a basis for investigating the groundwater evolution patterns in other metal mines.
Collapse
Affiliation(s)
- Yewei Song
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Guo
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| | - Fangrui Li
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fengshan Ma
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| | - Gaofeng Wu
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang Li
- Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029,China
- Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
3
|
Tian Y, Liu Q, Ji Y, Dang Q, Liu Y, Su J. Hydrogeochemical characteristics and agricultural suitability of shallow groundwater quality in a concentrated coalfield area of Huaibei Plain, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:889. [PMID: 39230748 DOI: 10.1007/s10661-024-12981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Groundwater is one of the chief water sources for agricultural activities in an aggregation of coal mines surrounded by agricultural areas in the Huaibei Plain. However, there have been few reports on whether mining-affected groundwater can be adopted for agricultural irrigation. We attempted to address this question through collecting 71 shallow groundwater samples from 12 coal mining locations. The Piper trilinear chart, the Gibbs diagram, the proportional coefficient of major ions, and principal component analysis were examined to characterize the source, origin, and formation process of groundwater chemical composition. The suitability for agricultural irrigation was evaluated by a final zonation map that establishes a comprehensive weighting model based on analytic hierarchy process and criteria importance though the intercriteria correlation (AHP-CRITIC). The results revealed that the groundwater was classified as marginally alkaline water with a predominant cation of HCO3- and anion of Na+. Total hardness, total dissolved solids, sulfate (SO42-), sodium (Na+), and fluoride (F-) were the primary ions that exceeded the standard. The results also indicated that the dominant hydrochemical facies were Ca-HCO3 and Na-Cl. The dissolution of carbonate, silicate, sulfate minerals, along with cation exchange, were the main natural drivers controlling the hydrogeochemical process of groundwater. The zonation map suggested that 43.17%, 18.85%, and 37.98% of the study area were high, mediate, and low suitability zones, respectively. These results from this study can support policymakers for better managing groundwater associated with a concentration of underground coal mines.
Collapse
Affiliation(s)
- Yushan Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Quanli Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yao Ji
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yue Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Zhan H, Liu S, Wu Q, Liu W, Shi L, Liu D. Effects of deep coal mining on groundwater hydrodynamic and hydrochemical processes in a multi-aquifer system: Insights from a long-term study of mining areas in ecologically fragile western China. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104386. [PMID: 38908281 DOI: 10.1016/j.jconhyd.2024.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
The groundwater hydrodynamic and hydrochemical process of the multi-aquifer system will experience complicated and serious influence under deep coal mining disturbance. There is relatively little research that has integrated hydrodynamic and hydrochemical properties of groundwater to investigate the spatiotemporal distribution characteristics and evolution patterns of hydrogeochemistry and hydrodynamic information in deep multi-aquifer systems. The study of the groundwater hydrodynamic and hydrochemical spatiotemporal coupling response of multi-aquifer systems under the deep and special thick coal seam mining-motivated effect in ecologically fragile western mining areas is of great significance for the safe mining of coal resources and ecological environment protection. In this research, the hydrochemical analysis data composed of 218 groundwater samples from Tangjiahui coalfield, Northwest China with 1526 measurements and a 6-year (2016-2021) sampling period were collected for studying the hydrogeochemical spatiotemporal evolution process and governing mechanism of the multi-aquifer system using hierarchical cluster analysis, ion-ratio method, saturation index and multidimensional statistical analysis. Additionally, wavelet analysis and cross-wavelet coherence analysis were implemented to quantitatively recognize the spatiotemporal variation characteristics of hydrodynamic information and analyze the coherence relationships between time series. The results demonstrate that the hydrochemical characteristics exhibit significant spatial differences, while the temporal variation of hydrochemical characteristics in the Permian Shanxi Formation fractured sandstone aquifer (PSFFA), mine water (MW), and Ordovician karst limestone aquifer (OKA) is not significant. The water-rock interaction is the predominant control mechanism for the spatial evolution of hydrogeochemistry in the research area. Moreover, the large-scale mining of deep coal seams controls the type and degree of water-rock interactions by damaging the structure of aquifers and altering the hydrodynamic conditions of groundwater. The period from 2016 to 2021 exhibits multi-time scale characteristics in time series of precipitation, mine water discharge, and the water level of PSFFA and OKA. The mine water discharge has a positive correlation with the water level of PSFFA and OKA, whereas the significant period of precipitation and the water level of PSFFA coherence is not obvious. The research findings not only provide in-depth insights to protect the groundwater resources in water-shortage mining areas but also promote the secure mining of deep coal resources.
Collapse
Affiliation(s)
- Hao Zhan
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; Key Laboratory of Mine Water Hazard Controlling, National Mine Safety Administration, Beijing 100083, China; University of Mining and Technology (Beijing) Inner Mongolia Research Institute, Ordos 017000, Inner Mongolia, China.
| | - Shouqiang Liu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; Key Laboratory of Mine Water Hazard Controlling, National Mine Safety Administration, Beijing 100083, China; University of Mining and Technology (Beijing) Inner Mongolia Research Institute, Ordos 017000, Inner Mongolia, China; State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China.
| | - Qiang Wu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; Key Laboratory of Mine Water Hazard Controlling, National Mine Safety Administration, Beijing 100083, China; University of Mining and Technology (Beijing) Inner Mongolia Research Institute, Ordos 017000, Inner Mongolia, China.
| | - Weitao Liu
- State Key Laboratory of Strata Intelligent Control and Green Mining Co-founded by Shandong Province and the Ministry of Science and Technology, Qingdao 266590, China.
| | - Lihu Shi
- CNACG Ecological Environment Technology Co., Ltd., Beijing 100067, China.
| | - Dong Liu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, China University of Mining and Technology, Beijing 100083, China; College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China; Key Laboratory of Mine Water Hazard Controlling, National Mine Safety Administration, Beijing 100083, China; University of Mining and Technology (Beijing) Inner Mongolia Research Institute, Ordos 017000, Inner Mongolia, China.
| |
Collapse
|
5
|
Wang C, Luo A, Qu S, Liang X, Xiao B, Mu W, Wang Y, Yu R. Anthropogenic processes drive spatiotemporal variability of sulfate in groundwater from a multi-aquifer system: Dilution caused by mine drainage. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104358. [PMID: 38692144 DOI: 10.1016/j.jconhyd.2024.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
The water quality evolution of surface and groundwater caused by mining activities and mine drainage is a grave public concern worldwide. To explore the effect of mine drainage on sulfate evolution, a multi-aquifer system in a typical coal mine in Northwest China was investigated using multi-isotopes (δ34SSO4, δ18OSO4, δD, and δ18Owater) and Positive Matrix Factorization (PMF) model. Before mining, the Jurassic aquifer was dominated by gypsum dissolution, accompanied by cation exchange and bacterial sulfate reduction, and the phreatic aquifers and surface water were dominated by carbonate dissolution. Significant increase in sulfate in phreatic aquifers due to mine drainage during the early stages of coal mining. However, in contrast to common mining activities that result in sulfate contamination from pyrite oxidation, mine drainage in this mining area resulted in accelerated groundwater flow and enhanced hydraulic connections between the phreatic and confined aquifers. Dilution caused by the altered groundwater flow system controlled the evolution of sulphate, leading to different degrees of sulfate decrease in all aquifers and surface water. As the hydrogeochemical characteristic of Jurassic aquifer evolved toward phreatic aquifer, this factor should be considered to avoid misjudgment in determining the source of mine water intrusion. The study reveals the hydrogeochemical evolution induced by mine drainage, which could benefit to the management of groundwater resources in mining areas.
Collapse
Affiliation(s)
- Chenyu Wang
- China University of Geosciences, Beijing 100083, China
| | - Ankun Luo
- Xi'an Research Institute of China Coal Technology & Engineering Group Corp, Xi'an 710054, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Xiangyang Liang
- Xi'an Research Institute of China Coal Technology & Engineering Group Corp, Xi'an 710054, China
| | - Binhu Xiao
- Xi'an Research Institute of China Coal Technology & Engineering Group Corp, Xi'an 710054, China
| | - Wenping Mu
- China University of Geosciences, Beijing 100083, China
| | - Yuqin Wang
- China University of Geosciences, Beijing 100083, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
6
|
Luo A, Dong S, Wang H, Ji Z, Wang T, Hu X, Wang C, Qu S, Zhang S. Impact of long-term mining activity on groundwater dynamics in a mining district in Xinjiang coal Mine Base, Northwest China: insight from geochemical fingerprint and machine learning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32136-32151. [PMID: 38644426 DOI: 10.1007/s11356-024-33401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Long-term coal mining could lead to a serious of geo-environmental problems. However, less comprehensive identification of factors controlling the groundwater dynamics were involved in previous studies. This study focused on 68 groundwater samples collected before and after mining activities, Self-Organizing Maps (SOM) combining with Principal Component Analysis (PCA) derived that the groundwater samples were classified into five clusters. Clusters 1-5 (C1-C5) represented the groundwater quality affected by different hydrochemical processes, mainly including mineral (carbonate and evaporite) dissolution and cation exchange, which were controlled by the hydrochemical environment at different stages of mining activities. Combining with the time-series data, the Extreme Gradient Boosting Decision Trees (XGBoost) derived that the mine water inflow (feature relative importance of 40.0%) and unit goaf area (feature relative importance of 29.2%) were dominant factors affecting the confined groundwater level, but had less or lagged impact on phreatic groundwater level. This was closely related to the height of the water flow fractured zone and hydraulic connection between aquifers. The results of this study on the coupled evolution of groundwater dynamics could enhance our understanding of the effects of mining on aquifer systems and contribute to the prevention of water hazards in the coalfields.
Collapse
Affiliation(s)
- Ankun Luo
- Xi' an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp, Xi' an, 710077, China
- Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi' an, 700077, China
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, 100083, China
| | - Shuning Dong
- Xi' an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp, Xi' an, 710077, China
- Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi' an, 700077, China
| | - Hao Wang
- Xi' an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp, Xi' an, 710077, China
- Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi' an, 700077, China
| | - Zhongkui Ji
- Xi' an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp, Xi' an, 710077, China
- Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi' an, 700077, China
| | - Tiantian Wang
- Xi' an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp, Xi' an, 710077, China
- Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi' an, 700077, China
| | - Xiaoyu Hu
- Xi' an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp, Xi' an, 710077, China
- Shaanxi Key Laboratory of Prevention and Control Technology for Coal Mine Water Hazard, Xi' an, 700077, China
- China Coal Research Institute, Beijing, 100013, China
| | - Chenyu Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, 100083, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China.
| | - Shouchuan Zhang
- Chinese Academy of Geological Science, Beijing, 100037, China
| |
Collapse
|
7
|
Yang X, Chu T, Wang L, Li H, Wang J, Yu M. Mechanochemical evolution of coal microscopic groups: A new pathway for mechanical forces acting on coal spontaneous combustion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171471. [PMID: 38458468 DOI: 10.1016/j.scitotenv.2024.171471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/10/2024]
Abstract
Coal spontaneous combustion (CSC) remains a significant threat to regional ecological environments. As coal mining operations extend deeper into the earth, the increasingly complex mechanical force conditions in deep-seated mines escalate the potential risk of CSC. Mechanical forces such as ground stress and mechanical cutting are traditionally believed to be linked to CSC through the following pathway: mechanical forces act → mechanical energy is input → mechanical crushing and pulverization occur → coal-oxygen contact area increases → CSC accelerates. Noteworthily, these forces do more than just physically break coal; they also trigger a mechanochemical effect (MCE) that alters coal's microscopic chemistry. However, an independent evaluation of its influence on CSC was lacking. This study characterized coal's microscopic chemical group responses to the MCE. It was found that the MCE led to the degradation of aliphatic side chains while enhancing the polycondensation of aromatic ring structures, indicating a synergistic effect. Additionally, an increase in oxygen-containing functional groups, such as alkyl/aryl ethers, suggested enhanced interactions of the coal microscopic groups with oxygen due to mechanical forces. Based on these findings, an MCE-modified coal macromolecular model was developed and molecular quantum mechanical calculations were conducted. The results indicated that the MCE boosted coal macromolecule reactivity, thus facilitating easier activation. These conclusions were validated through modern thermal analysis tests. Finally, this study proposed a new pathway of mechanical forces acting on CSC: mechanical forces act → mechanical energy is input → the MCE occurs → evolutions of the microscopic groups within coal are induced → Activity of coal molecules is enhanced → CSC accelerates.
Collapse
Affiliation(s)
- Xinlei Yang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Tingxiang Chu
- School of Mine Safety, North China Institute of Science and Technology, Sanhe, Hebei 065201, China.
| | - Liang Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Haitao Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Jiachen Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Minggao Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Ju Q, Hu Y, Liu Q, Chen K, Zhang H, Wu Y. Multiple stable isotopes and geochemical approaches to elucidate groundwater reactive transport paths in mining cities: A case from the northern Anhui, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169706. [PMID: 38159762 DOI: 10.1016/j.scitotenv.2023.169706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Mining cities are ecotone areas where human and natural components interact. Indeed, the negative effects of mining activities on drinking water quality have become a serious public concern worldwide. To elucidate groundwater genesis and reactive transport path controlling the water pollution, a multi-bodies system in the Sunan Mine area in China was considered in this study. The results of the mineral phase characterizations, hydrochemical analysis, and multiple stable isotopes (δ2H/δ18O, δ34S and 87Sr/86Sr) indicated that calcite, dolomite, gypsum, quartz, halite, organic carbon, and gases (O2, CO2 and H2O) were the primary reactants in the aquifer system, accompanied by dissolution and precipitation of minerals, cation exchange, desulfation, and evaporation. An inverse hydrogeochemical model was employed to identify three paths, Path 1 demonstrated that mine water mainly originated from the Quaternary loose aquifer water (QLA), Permian fractured sandstone aquifer water (PFA), and Carbonifer fractured limestone aquifer water (CFA), accompanied by high K++Na+ and HCO3- concentrations due to the carbonate dissolution, halite dissolution, and cation exchange processes. Path 2 showed that the recharge of the CFA and Ordovician fractured limestone aquifer (OFA) occurred from the shallow recharge zone to the deeper OFA water through faults and fractures, mainly involving halite dissolution, carbonate dissolution, and gypsum dissolution. Path 3 demonstrated the interaction between the Hui River, collapsed pond water, and QLA, accompanied by gypsum dissolution, calcite dissolution, and cation exchange. Although the shallow QLA quality met the WHO drinking water standards, the pollution risk from the surface collapse pit water cannot be ignored. Therefore, effective approaches need to be considered in the study area to reduce the connection between the collapse pit water and QLA. The study results can help decision makers to predict water quality of complex water systems in ecotone areas and other similar regions worldwide.
Collapse
Affiliation(s)
- Qiding Ju
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Youbiao Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Coal Industry Engineering Research Center for Comprehensive Prevention and Control of Mine Water Disasters, Huainan 232001, China.
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Coal Industry Engineering Research Center for Comprehensive Prevention and Control of Mine Water Disasters, Huainan 232001, China
| | - Kai Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Haitao Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Youmiao Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
9
|
Yang T, Xu G, Chen K, Sun G, Dang B, Liu M. Characteristics and evolution of karst collapse columns in the Huainan coalfield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165841. [PMID: 37506912 DOI: 10.1016/j.scitotenv.2023.165841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Karst collapse columns (KCCs) seriously affect the mining safety of deep coal seams. This study systematically summarizes and analyzes the development of KCCs, and classifies the different development stage to identify their development stages and evolutionary process in the Huainan coalfield. The evolution models for KCC development are given, combining with the exploration strata data from boreholes, the groundwater flow data of regional field, the hydrogeochemical data from the relative aquifers of KCC, and the hydrodynamic parameters. The results show that first types of KCCs are discovered in Liuzhuang and the Pansan mine, which is broken and disorganized, with a high degree of filling and cementation, and with the low permeability and velocity, and lower storage capacity. The KCCs in the Xieqiao and Zhangji mine have various morphologies and size differences. Their internal rocks are broken and semi-cemented, with a coefficient of permeability between 0.2 and 0.5 m/d and a specific discharge between 0.1 and 0.2 L/s•m. The KCCs are located in the cone of depression and are part of a sink area with moderate water-richness, where upper and lower aquifers have close hydraulic connections with mixed water quality. The internal core of the KCCs in the Gubei Mine is close to the center of the cone of depression which is highly broken and disorganized, with a high permeability, and a specific discharge more than 1.5 L/s•m. The intensity of runoff increases as its vertical depth also increases, especially the local areas are a higher hydraulic conductivity. Based on comprehensive hydrogeological characteristics, the KCCs development is divided into three stages: growing stage, declining stage, and dead stage. According to their characteristics of different stages, a series of evolutionary processes are established. Combining the sedimentological, karstological, and hydrogeological theories, some measures have been taken for prevention and control of mine water hazard in the various developmental stages. Hence, this research not only provides a new classified approach for KCC stages, but also an essential reference for a better understanding the mechanism of water inrush of KCCs in Northern China.
Collapse
Affiliation(s)
- Tingting Yang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, PR China
| | - Guangquan Xu
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, PR China.
| | - Kai Chen
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, PR China
| | - Gui Sun
- Department of Geology and Hydrogeology, Huainan Mining Group, Huainan 232001, PR China
| | - Baoquan Dang
- Department of Geology and Hydrogeology, Huainan Mining Group, Huainan 232001, PR China
| | - Mancai Liu
- Department of Geology and Hydrogeology, Huainan Mining Group, Huainan 232001, PR China
| |
Collapse
|
10
|
Qu S, Luo Y, Duan L, Pei S, Miao P, Wang C, Liu T, Yu R. Deciphering spatio-seasonal patterns, driving forces, and human health risks of nitrate and fluoride enriched water bodies in the Inner Mongolia Reaches of the Yellow River Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111423-111440. [PMID: 37816964 DOI: 10.1007/s11356-023-29914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
The ecology and environment of the Yellow River Basin is threatened by fluoride and nitrate contamination induced by anthropogenic activity and geogenic factors. As a result, deciphering the spatio-temporal variability of fluoride and nitrate contamination in this area remains a challenge. Three hundred eighty-six samples of surface water and groundwater from the Inner Mongolia Reaches of the Yellow River Basin were taken for this investigation. According to the results of the multivariate statistical and geostatistical analyses, the fluoride pollution was primarily discovered in the middle and lower reaches of the study area and was determined to be more severe during the dry season. In contrast, nitrate contamination was found to be more severe during the wet season while being widely distributed in groundwater and concentrated in areas with intensive agricultural activities. The primary mechanisms governing the spatial-seasonal patterns of NO3- and F- pollution were shown by the principal component analysis, isotopic, and hydrochemical diagrams. The water-rock interaction or evaporation was crucial in the enrichment of F-. The human inputs (e.g., fertilizer or sewage) dominated fluoride and nitrate contamination. Additionally, the alkaline environment played a role in the generation of NO3- and F-. The health risk assessment concluded that the threat of fluoride contamination was greater than that of nitrate contamination. Children faced the greatest health risks, followed by females and males. These findings would serve as a guide for water management and pollution control in the Yellow River Basin.
Collapse
Affiliation(s)
- Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Yanyun Luo
- Water and Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Limin Duan
- Water and Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Sensen Pei
- Water and Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ping Miao
- River and Lake Protection Center, Ordos Water Conservancy Bureau, Ordos, 017000, China
| | - Chenyu Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, 100083, China
| | - Tingxi Liu
- Water and Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
11
|
Ju Q, Hu Y, Xie Z, Liu Q, Zhang Z, Liu Y, Peng T, Hu T. Characterizing spatial dependence of boron, arsenic, and other trace elements for Permian groundwater in Northern Anhui plain coal mining area, China, using spatial autocorrelation index and geostatistics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39184-39198. [PMID: 36598722 DOI: 10.1007/s11356-022-25019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Anthropogenic and geological factors play an essential role in the variability of groundwater quality, resulting in a weak spatial dependence of groundwater trace elements. Thus, it is an essential study to investigate the factors affecting groundwater quality and its spatial abundance of trace elements (including As, B, and other metalloids). In this study, samples are obtained from a Permian sandstone fracture aquifer in a coal mining area. A multivariate statistical analysis, hydrogeochemistry modeling, and spatial autocorrelation analysis were used to analyze the data. The results showed that Moran index was positive for all trace elements, which had good spatial autocorrelation. The Local indicators of spatial association (LISA) indicated that trace elements were clustered. The hydrogeochemical modeling results indicated that the precipitation and stability of iron-phase minerals, such as rhodochrosite and arsenic (As) absorption on the surface of iron-phase minerals in the aquifer, may limit concentrations in the southern region. The spatial autocorrelations of both As and Boron (B) were positive (high-high) in the western areas, indicating that As contamination occurred from both natural geological causes and human coal mining activities. In contrast, B contamination was mainly linked to the influence of human agricultural or industrial activities. Over 96% of the groundwater concentrations of As (10 μg/L) and B (300 μg/L) in the study area exceeded World Health Organization (WHO) limits. Overall, the results of this work could help decision-makers involved in regional water quality management visualize disperse zones where specific anthropogenic and geological processes may threaten groundwater quality.
Collapse
Affiliation(s)
- Qiding Ju
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China.
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China.
| | - Youbiao Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhigang Xie
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Zhiguo Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yu Liu
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan, 232001, China
| | - Taosheng Peng
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Taifeng Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| |
Collapse
|
12
|
Ju Q, Hu Y, Liu Q, Chai H, Chen K, Zhang H, Wu Y. Source apportionment and ecological health risks assessment from major ions, metalloids and trace elements in multi-aquifer groundwater near the Sunan mine area, Eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160454. [PMID: 36436624 DOI: 10.1016/j.scitotenv.2022.160454] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Evaluating the ecological health risks created by major ions, metalloids and trace elements concentrations in groundwater and pollution sources were essential to effectively protect groundwater resources. For this study, A total of 93 samples were collected from multiple aquifers in the Sunan mining area, eastern China. The Positive matrix factorization (PMF) model results revealed the following sources, in percentages. The Quaternary loose aquifer (QLA) water includes CaMg mineral dissolution (30.3 %), salinity (28.2 %), metal industrial wastewater (26.3 %), iron and manganese minerals (8.0 %) and coal gangue (7.2 %). The Permian fractured sandstone aquifer (PFA) water includes CaMg mineral dissolution sources (29.8 %), mine wastewater (28.6 %), aluminosilicate (21.6 %) and pyrite source (20.0 %). The Carbonifer fractured limestone aquifer (CFA) water includes and mine wastewater (34.2 %), CaMg mineral dissolution (25.4 %), pyrite (22.6 %) and aluminosilicate (17.7 %). The Ordovician fractured limestone aquifer (OFA) water includes manganese and aluminum metal minerals (27.9 %), halite dissolution materials (24.9 %), industrial and agricultural waste water (24.0 %) and calcium‑magnesium minerals (23.2 %). A PMF-based assessment of ecological health risk indicates that the concentrations of elements As and Co are the dominant elements impacting non-carcinogenic and carcinogenic risks; and As, Cr, and Cu are the dominant elements impacting potential ecological risks. These mainly originate from geological sources, coal gangue sources, mine drainage sources and agricultural sewage discharge sources. The study showed the sources of groundwater pollution in multiple aquifers and their priority treatment areas, providing a basis for groundwater management and protection.
Collapse
Affiliation(s)
- Qiding Ju
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Youbiao Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Coal Industry Engineering Research Center for Comprehensive Prevention and Control of Mine Water Disasters, Huainan 232001, China.
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Coal Industry Engineering Research Center for Comprehensive Prevention and Control of Mine Water Disasters, Huainan 232001, China
| | - Huichan Chai
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kai Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Haitao Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Youmiao Wu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
13
|
Mao H, Wang C, Qu S, Liao F, Wang G, Shi Z. Source and evolution of sulfate in the multi-layer groundwater system in an abandoned mine-Insight from stable isotopes and Bayesian isotope mixing model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160368. [PMID: 36414065 DOI: 10.1016/j.scitotenv.2022.160368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The source and evolution of sulfate (SO42-) in groundwater from abandoned mines are widely concerned environmental issues. Herein, major dissolved ions, multi-isotopes (δ34S, δ18Osulfate, δ2H and δ18Owater), machine learning (Self-organizing maps) and Bayesian isotope mixing model were used to identify the source and evolution of SO42- in an abandoned mine (Fengfeng mine, northern China) with a multi-layer groundwater system. Groundwater in the study area was mainly divided into three clusters (Cluster I, Cluster II and Cluster III), dominated by Na-SO4, Ca-SO4 and Ca-HCO3 types, respectively. According to δ2H and δ18Owater, groundwater in the study area mainly originated from atmospheric precipitation. δ34S, δ18Osulfate and SO42- suggested that bacterial sulfate reduction did not affect the SO42- isotopic composition. Dual SO42- isotopes, and MixSIAR model revealed that the main source of SO42- in the study area was pyrite oxidation/gypsum dissolution, accounting for an average of 57.4 % (gypsum), 71.24 % (pyrite oxidation) and 52.93 % (pyrite oxidation) of SO42- in the samples of Clusters I-III, respectively. Combined with the hydrochemical diagrams, the evolution of SO42- in different clusters of samples was derived. Cluster I was mainly gypsum dissolution; In contrast, Clusters II and III were mainly pyrite oxidation accompanied by carbonate dissolution, and Cluster II was also influenced by cation exchange. These findings will help in developing management strategies for protecting groundwater quality, which will provide a reference for the study of solute sources and S cycling in abandoned mines.
Collapse
Affiliation(s)
- Hairu Mao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Chenyu Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Shen Qu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Fu Liao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China.
| | - Zheming Shi
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
14
|
Chen J, Gui H, Guo Y, Li J. Spatial distributions of microbial diversity in the contaminated deep groundwater: A case study of the Huaibei coalfield. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120866. [PMID: 36529341 DOI: 10.1016/j.envpol.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The impact of coal mining activities on the structure of groundwater microbial communities in coal mining areas has gradually received academic attention. In this study, hydrochemical analysis and sequencing of the V4 region of the 16S rRNA gene were carried out using groundwater samples from the fourth aquifer in the loose layer of Cenozoic, the sandstone fissure aquifer in the coal measure strata of Permian, the Carboniferous Taiyuan Formation limestone aquifer, and the Ordovician limestone aquifer, at depths of 250 m, 600 m, 750 m, and 1000 m in monitoring wells. Results showed that the operational taxonomy units (OTUs) in the deep groundwater ecosystem were clustered distinguishably between the contaminated and the uncontaminated aquifers. The microbial community alpha-diversity of groundwater was significantly correlated with depth, and the richness of microbial community composition decreased with increasing depth. Proteobacteria (34.41%-97.41%), was found to be the dominant phylum, Gammaproteobacteria (10.05%-92.06%) was the dominant class and "Unassigned" (4.12%-64.72%) was dominant at the genus level. The number of endemic bacteria in the four aquifers was 1, 33, 99 and 11, respectively. It was also found that F-, oxidation-reduction potential (ORP), and TOC were the main environmental variables affecting the groundwater all OTUs, abundant OTUs, and rare OTUs, respectively. These results indicate that the activity of rare OTU subcommunities increases gradually with increasing aquifer depth and that mining significantly enriched Thiovirga in deep groundwater. In addition, it was found that with the increase of depth, the effect of ORP on microbial community abundance decreased. This study deepens our understanding of the evolution characteristics of microbial communities in deep groundwater in coal mining areas. The unique characteristics of microbial communities characteristics of four aquifers with different depths provide a microbial perspective for understanding the characteristics of deep aquifers.
Collapse
Affiliation(s)
- Jiayu Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China; National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China.
| | - Yan Guo
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Jun Li
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| |
Collapse
|
15
|
Qiu H, Gui H, Xu H, Cui L, Yu H. Occurrence, controlling factors and noncarcinogenic risk assessment based on Monte Carlo simulation of fluoride in mid-layer groundwater of Huaibei mining area, North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159112. [PMID: 36181800 DOI: 10.1016/j.scitotenv.2022.159112] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Fluoride groundwater pollution is a major challenge to ensuring a safe groundwater supply for the global community. This study emphasized mid-layer groundwater (MG) as the main water supply source in the Huaibei mining area, North China. A total of 74 groundwater samples were taken to determine the hydrochemistry, source provenance, driving forces of high-fluoride groundwater, and associated probabilistic health risk using Monte Carlo simulation. The fluoride concentration in 55.56 % of the MG samples exceeded the Chinese drinking water permissible limit of 1 mg/L. In addition, MG is characterized by the hydrochemical faces of HCO3- type and Na+ type, lower Ca2+ and higher TDS concentration. Fluoride enrichment was predominantly controlled by the geogenic sources of fluorite dissolution, silicate weathering and lateral supply from the Carboniferous Taiyuan Formation limestone aquifer (CLA). In addition, the driving forces of high-fluoride groundwater were an alkaline environment, low Ca2+ concentration, high Na+ and HCO3- concentration, cation exchange between Ca2+ and Na+ on the surface of clay minerals, and competitive adsorption of HCO3-. The health risk assessment of F- for noncarcinogenic risk showed that the HQ values of 28.16 % of groundwater samples exceeded the safety limit of 1 for infants, followed by 2.1 % for children and 0 % for both adult females and males. Infants and children are more prone to the impact of excessive F-. The findings of this study will provide new insights into the geochemical behavior of F- and the safety of drinking water.
Collapse
Affiliation(s)
- Huili Qiu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; School of Information Engineering, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China.
| | - Haifeng Xu
- School of Information Engineering, Suzhou University, Suzhou 234000, PR China
| | - Lin Cui
- School of Information Engineering, Suzhou University, Suzhou 234000, PR China
| | - Hao Yu
- National Engineering Research Center of Coal Mine Water Hazard Controlling, Suzhou University, Suzhou 234000, PR China; Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, PR China
| |
Collapse
|
16
|
Wang C, Liao F, Wang G, Qu S, Mao H, Bai Y. Hydrogeochemical evolution induced by long-term mining activities in a multi-aquifer system in the mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158806. [PMID: 36115401 DOI: 10.1016/j.scitotenv.2022.158806] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
The hydrogeochemical evolution of groundwater is related to and affected by long-term mining activities, which may deteriorate the quality of groundwater. The Fengfeng mine in Handan, North China has a 30-y history of coal mining with long-term mining activities and complex geological conditions, resulting in a complex hydrogeochemical environment in the mining region. In this study, the hydrogeochemical evolution mechanism of groundwater in a multi-aquifer system in the Fengfeng Mining Area was investigated using machine learning (self-organizing maps combined with K-means clustering) and sulfur and oxygen isotopes (δ34SSO4 and δ18OSO4). The hydrogeochemical characteristics of different aquifers in the mining area changed to different degrees after mining compared with the characteristics before mining. The spatiotemporal variations in groundwater components were found to be controlled by pyrite oxidation, gypsum dissolution, and carbonate dissolution, which are affected by mining activities. Pyrite oxidation primarily occurred in the Carboniferous thin-layer limestone aquifer (CLA) and Permian sandstone aquifer (PSA). The hydrogeochemical evolution in the Ordovician limestone aquifer (OLA), the main aquifer in the study area, was affected by leakage recharge from CLA and PSA caused by mining activities. The results showed that owing to the effects of long-term mining, the altered groundwater flow system affected the evolution of groundwater components in each aquifer, particularly the sulfate concentration. This study reveals a distinct hydrogeochemical evolution induced by mining activities, which can provide a basis for groundwater resource management in mining areas.
Collapse
Affiliation(s)
- Chenyu Wang
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Shen Qu
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Yunfei Bai
- State Key Laboratory of Biogeology and Environmental Geology, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
17
|
Urseler N, Bachetti R, Biolé F, Morgante V, Morgante C. Atrazine pollution in groundwater and raw bovine milk: Water quality, bioaccumulation and human risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158498. [PMID: 36063942 DOI: 10.1016/j.scitotenv.2022.158498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Atrazine herbicide can bioaccumulate over time and thus affect humans for generations to come. However, scarce studies have evaluated its bioaccumulation potential in bovine milk, a nutritional staple for children and the elderly both domestically and internationally. This study aimed to determine its concentration in groundwater and bovine milk, as well as the risks it is likely to pose for human health. Eighteen dairy farms in the Pampean plain of Argentina were analyzed. A strong correlation was found between the chemical composition and the geomorphological characteristics of the plain. In addition, increased salinity was observed in the groundwater at greater distances from the aquifer's recharge area. Atrazine was quantified in 50 % of the groundwater samples (at values ranging from 0.07 to 1.40 μg/L), and in 89 % of the bovine milk samples (from 2.51 to 20.97 μg/L). Moreover, atrazine levels in 44.4 % of the groundwater samples and 11.1 % of the bovine milk samples (n = 18) exceeded the limits internationally established as safe for human consumption. The hazard quotient (HQ) values of the compound were negligible for children and adults, both in groundwater (child = 9.7E-4, adult = 4.5E-4) and in milk (child = 1.0E-2, adult = 1.6E-3). The estimated cancer risk (CR) values need further evaluation (child = 7.8E-6, adult = 3.6E-6 in groundwater; child = 6.6E-5, adult = 1.3E-5 in milk). In both types of samples, the HQ and CR of residual atrazine were higher for children than for adults. Nevertheless, bioaccumulation factors suggest that dairy cows have a moderate capacity to incorporate atrazine from abiotic matrices. This is the first report on residual atrazine in bovine milk in Argentina. The results presented here indicate that the status of atrazine contamination in the area should continue to be monitored in order to assess its long-term impact on public health.
Collapse
Affiliation(s)
- Noelia Urseler
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María, Instituto Multidisciplinario de Investigación y Transferencia Agro-alimentaria y Biotecnológica, IMITAB-CONICET, Av. Arturo Jauretche 1555 (CP 5900), Villa María, Córdoba, Argentina.
| | - Romina Bachetti
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María, Instituto Multidisciplinario de Investigación y Transferencia Agro-alimentaria y Biotecnológica, IMITAB-CONICET, Av. Arturo Jauretche 1555 (CP 5900), Villa María, Córdoba, Argentina
| | - Fernanda Biolé
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María, Instituto Multidisciplinario de Investigación y Transferencia Agro-alimentaria y Biotecnológica, IMITAB-CONICET, Av. Arturo Jauretche 1555 (CP 5900), Villa María, Córdoba, Argentina
| | - Verónica Morgante
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Avenida Viel 1497, Santiago de Chile, Chile
| | - Carolina Morgante
- Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas (IAPCByA), Universidad Nacional de Villa María, Instituto Multidisciplinario de Investigación y Transferencia Agro-alimentaria y Biotecnológica, IMITAB-CONICET, Av. Arturo Jauretche 1555 (CP 5900), Villa María, Córdoba, Argentina
| |
Collapse
|
18
|
Chen G, Xu Z, Rudakov D, Sun Y, Li X. Deep Groundwater Flow Patterns Induced by Mine Water Injection Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15438. [PMID: 36497520 PMCID: PMC9736939 DOI: 10.3390/ijerph192315438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Mine water injection into deep formations is one of the effective approaches for reducing the drainage from coal mines in the arid and semi-arid region of the Ordos basin, China. Many coal mines are attempting to execute the related projects. Under the influence of groundwater protection, the understanding of regional groundwater flow is becoming highly important to the mine water monitoring, whereas quite few academic research teams focus on the deep groundwater flow pattern by mine water injection. This paper reveals the spatial distribution of Liujiagou Formation that is in positive correlation with the terrain, and its local thickness is influenced by the dominant W-E and NE-SW directions of geological structures. Only a part of sandstone rocks consists of aquifers, the rest 61.9% of relatively dry rock provide the enhanced storage space and partial mudstone aquicludes decrease the possibility of the vertical leakage for mine water. The dynamic storage capacity is evaluated at 2.36 Mm3 per 1 km2 and over 25.10 billion m3 in this study area. Two hydrogeologic cross-sections of basin-scale identify the W-E and N-S regional groundwater flow directions, with the lower Yellow River catchment becoming the discharged region. The hierarchically and steadily nested flow systems containing coal mining claims are influenced by coal mining activity. The groundwater depression cone in a shallow coal measure aquifer is caused by mine water drainage whereas the groundwater mound in Liujiagou Formation is generated by mine water injection activity. The numerical simulation revealed that the groundwater head rebound is slightly decreased and will not recover to its initial baseline within 500 years due to its low porosity and permeability. This study elucidates the deep groundwater flow patterns induced by mine water injection and provides a practical methodology for the management and pollution monitoring of mine water injection activity.
Collapse
Affiliation(s)
- Ge Chen
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhimin Xu
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
| | - Dmytro Rudakov
- Department of Hydrogeology and Engineering Geology, Dnipro University of Technology, av. Dmytra Yavornytskoho, 19, 49005 Dnipro, Ukraine
| | - Yajun Sun
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Li
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
19
|
Ju Q, Hu Y, Chen K, Liu Q. Hydrogeochemical Processes and Connection of Multi-Layer Groundwater System in Sunan Mining Area, Eastern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912392. [PMID: 36231694 PMCID: PMC9566173 DOI: 10.3390/ijerph191912392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/01/2023]
Abstract
Groundwater is an important freshwater resource in the world and serves as the main source of water for mining areas in Northern China. Coal mining may cause changes in water quality. As such, to identify ways to prevent water contamination, this study investigates the hydrogeochemical processes and transport paths of a complex aquifer system in the Sunan mining area in Northern China. Using the APFS-MLR model, a geographic information system (GIS) spatial analysis, and a hydrochemical correlation analysis method, this study identifies the potential mineral phases in groundwater, the spatial distribution of mineral reactions, and the contribution rate of these reactions to hydrochemical variables. Inverse modeling is used to verify hydrogeochemical process. The study reveals the relationship between multiple aquifers and four hydrological transport paths. Here, Path 1 and Path 2 show that the Quaternary aquifer, Carboniferous aquifer, and Ordovician aquifer are recharging the Permian aquifer through mineral dissolution and precipitation, cation exchange, and sulfate reduction. On the other hand, Path 3 and Path 4 show that tthe connections of Carboniferous and Ordovician limestone aquifers are dominated by the dissolution and precipitation of minerals and cation exchange, and that they are mainly recharged by the Quaternary aquifer. In the future, the water level of the Permian aquifer may rise somewhat after mining ends, and the mixing of water from the Permian aquifer, Quaternary aquifer, Carboniferous aquifer, and Ordovician aquifer could cause cross-pollution. In addition, sewage produced by human activities may recharge the deep water through the shallow water, polluting the deep karst water. As such, measures should be taken to reduce the hydraulic connection between Permian mine water and karst aquifers. The results of this study may benefit water quality predictions and treatment approaches in other complex multi-layer aquifer areas in the world.
Collapse
Affiliation(s)
- Qiding Ju
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Youbiao Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kai Chen
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| |
Collapse
|
20
|
Chen K, Liu Q, Yang T, Ju Q, Feng Y. Statistical analyses of hydrochemistry in multi-aquifers of the Pansan coalmine, Huainan coalfield, China: implications for water-rock interaction and hydraulic connection. Heliyon 2022; 8:e10690. [PMID: 36164538 PMCID: PMC9508562 DOI: 10.1016/j.heliyon.2022.e10690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Understanding the groundwater hydrogeochemical processes and aquifer hydraulic connections are essential for effective prevention of water inrush in concealed coal mines. In this study, 40 groundwater samples were collected from the loose layer aquifer (LA), coal measure aquifer (CA), and limestone aquifer (LA) in the Pansan coal mine, Huanan coalfield, China, and the major ion concentrations were analyzed by bivariate diagrams (Na+ + K+ - Cl− versus Ca2+ + Mg2+ - SO42− - HCO3− and CAI-I versus CAI-II), multivariate statistical methods, and receptor model in order to identify the water-rock interactions and aquifer hydraulic connections. Piper diagram showed that groundwater in LA and TA was dominated by the Na–Cl type, while groundwater in CA was mainly of the Na–HCO3 type. Based on the results of bivariate diagrams and PCA/FA, weathering of silicate minerals and cation exchange (source 1), sulfate dissolution (source 2) and chloride dissolution (source 3) were the main processes controlling the groundwater chemistry. Unmix model revealed that the mean contribution of source 1 to CA samples was 74%, while LA and TA samples have higher contributions from evaporite dissolution (source 2 and source 3) relative to CA samples. Moreover, both clustering analysis methods (Q-type hierarchical and K-means cluster) confirmed the existence of a hydraulic connection between LA and TA in the northeastern part of the study area. It is concluded that the application of multivariate statistical analysis to interpret groundwater chemistry can provide useful guidance to prevent water inrush in coal mines.
Collapse
Affiliation(s)
- Kai Chen
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China.,State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Huainan 232001, China
| | - Qimeng Liu
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China
| | - Tingting Yang
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China.,State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Huainan 232001, China
| | - Qiding Ju
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China.,State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Huainan 232001, China
| | - Yu Feng
- School of Earth and Environment, Anhui University of Science & Technology, Huainan 232001, China
| |
Collapse
|