1
|
Chapman M, Barnes AN. A scoping review of waterborne and water-related disease in the Florida environment from 1999 to 2022. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:585-601. [PMID: 37148256 DOI: 10.1515/reveh-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/08/2023]
Abstract
Florida's environments are suitable reservoirs for many disease-causing agents. Pathogens and toxins in Florida waterways have the potential to infect mosquito vectors, animals, and human hosts. Through a scoping review of the scientific literature published between 1999 and 2022, we examined the presence of water-related pathogens, toxins, and toxin-producers in the Florida environment and the potential risk factors for human exposure. Nineteen databases were searched using keywords relating to the waterborne, water-based toxins, and water-related vector-borne diseases which are reportable to the Florida Department of Health. Of the 10,439 results, 84 titles were included in the final qualitative analysis. The resulting titles included environmental samples of water, mosquitoes, algae, sand, soil/sediment, air, food, biofilm, and other media. Many of the waterborne, water-related vector-borne, and water-based toxins and toxin-producers of public health and veterinary importance from our search were found to be present in Florida environments. Interactions with Florida waterways can expose humans and animals to disease and toxins due to nearby human and/or animal activity, proximal animal or human waste, failing or inadequate water and/or sanitation, weather patterns, environmental events, and seasonality, contaminated food items, preference of agent for environmental media, high-risk populations, urban development and population movement, and unregulated and unsafe environmental activities. A One Health approach will be imperative to maintaining healthy waterways and shared environments throughout the state to protect the health of humans, animals, and our ecosystems.
Collapse
Affiliation(s)
- McKinley Chapman
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| | - Amber N Barnes
- Department of Public Health, University of North Florida, Jacksonville, FL, USA
| |
Collapse
|
2
|
Zhou Q, Huang J, Wen S, Lou Y, Qiu S, Li H, Zhou R, Tang J. Occurrence of pathogenic Mycobacteria avium and Pseudomonas aeruginosa in outdoor decorative fountain water and the associated microbial community. JOURNAL OF WATER AND HEALTH 2024; 22:1663-1676. [PMID: 39340379 DOI: 10.2166/wh.2024.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 09/30/2024]
Abstract
Outdoor decorative fountains usually attract residents to visit. However, opportunistic pathogens (OPs) can proliferate and grow in the stagnant fountain water, posing potential health risks to visitors due to the inhalation of spaying aerosols. In this study, the abundance of selected OPs and associated microbial communities in three large outdoor decorative fountain waters were investigated using quantitative PCR and 16S rRNA sequencing. The results indicated that Mycobacteria avium and Pseudomonas aeruginosa were consistently detected in all decorative fountain waters throughout the year. Redundancy analysis showed that OPs abundance was negatively correlated with water temperature but positively correlated with nutrient concentrations. The gene copy numbers of M. avium varied between 2.4 and 3.9 log10 (gene copies/mL), which were significantly lower than P. aeruginosa by several orders of magnitude, reaching 6.5-7.1 log10 (gene copies/mL) during winter. The analysis of taxonomic composition and prediction of functional potential also revealed pathogenic microorganisms and infectious disease metabolic pathways associated with microbial communities in different decorative fountain waters. This study provided a deeper understanding of the pathogenic conditions of the outdoor decorative fountain water, and future works should focus on accurately assessing the health risks posed by OPs in aerosols.
Collapse
Affiliation(s)
- Qiaomei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou 310018, China E-mail:
| | - Shilin Wen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yucheng Lou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shanshan Qiu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huanxuan Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rongbing Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Abeles SR, Kline A, Lee P. Climate change and resilience for antimicrobial stewardship and infection prevention. Curr Opin Infect Dis 2024; 37:270-276. [PMID: 38843434 DOI: 10.1097/qco.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW This review covers recent research regarding the challenges posed by climate change within the areas of antimicrobial stewardship and infection prevention, and ways to build resiliency in these fields. RECENT FINDINGS Infectious disease patterns are changing as microbes adapt to climate change and changing environmental factors. Capacity for testing and treating infectious diseases is challenged by newly emerging diseases, which exacerbate challenges to antimicrobial stewardship and infection prevention.Antimicrobial resistance is accelerated due to environmental factors including air pollution, plastic pollution, and chemicals used in food systems, which are all impacted by climate change.Climate change places infection prevention practices at risk in many ways including from major weather events, increased risk of epidemics, and societal disruptions causing conditions that can overwhelm health systems. Researchers are building resilience by advancing rapid diagnostics and disease modeling, and identifying highly reliable versus low efficiency interventions. SUMMARY Climate change and associated major weather and socioeconomic events will place significant strain on healthcare facilities. Work being done to advance rapid diagnostics, build supply chain resilience, improve predictive disease modeling and surveillance, and identify high reliability versus low yield interventions will help build resiliency in antimicrobial stewardship and infection prevention for escalating challenges due to climate change.
Collapse
Affiliation(s)
- Shira R Abeles
- Division of Infectious Diseases and Global Public Health, Department of Medicine
| | - Ahnika Kline
- Associate Director, Clinical Microbiology Laboratory, Department of Pathology, University of California, San Diego
| | - Pamela Lee
- Division of Infectious Diseases, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
4
|
Drewry KR, Jones CN, Hayes W, Beighley RE, Wang Q, Hochard J, Mize W, Fowlkes J, Goforth C, Pieper KJ. Using Inundation Extents to Predict Microbial Contamination in Private Wells after Flooding Events. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5220-5228. [PMID: 38478973 DOI: 10.1021/acs.est.3c09375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Disaster recovery poses unique challenges for residents reliant on private wells. Flooding events are drivers of microbial contamination in well water, but the relationship observed between flooding and contamination varies substantially. Here, we investigate the performance of different flood boundaries─the FEMA 100 year flood hazard boundary, height above nearest drainage-derived inundation extents, and satellite-derived extents from the Dartmouth Flood Observatory─in their ability to identify well water contamination following Hurricane Florence. Using these flood boundaries, we estimated about 2600 wells to 108,400 private wells may have been inundated─over 2 orders of magnitude difference based on boundary used. Using state-generated routine and post-Florence testing data, we observed that microbial contamination rates were 7.1-10.5 times higher within the three flood boundaries compared to routine conditions. However, the ability of the flood boundaries to identify contaminated samples varied spatially depending on the type of flooding (e.g., riverine, overbank, coastal). While participation in testing increased after Florence, rates were overall still low. With <1% of wells tested, there is a critical need for enhanced well water testing efforts. This work provides an understanding of the strengths and limitations of inundation mapping techniques, which are critical for guiding postdisaster well water response and recovery.
Collapse
Affiliation(s)
- Kyla R Drewry
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - C Nathan Jones
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35401, United States
| | - Wesley Hayes
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - R Edward Beighley
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Qi Wang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jacob Hochard
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming 82072, United States
| | - Wilson Mize
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, North Carolina 27609, United States
| | - Jon Fowlkes
- Division of Public Health, North Carolina Department of Health and Human Services, Raleigh, North Carolina 27609, United States
| | - Chris Goforth
- State Laboratory of Public Health, North Carolina Department of Health and Human Services, Raleigh, North Carolina 27609, United States
| | - Kelsey J Pieper
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Modra H, Ulmann V, Gersl M, Babak V, Konecny O, Hubelova D, Caha J, Kudelka J, Falkinham JO, Pavlik I. River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria. MICROBIAL ECOLOGY 2023; 87:15. [PMID: 38102317 PMCID: PMC10724323 DOI: 10.1007/s00248-023-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.
Collapse
Affiliation(s)
- Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00, Ostrava, Czech Republic
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Ondrej Konecny
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Caha
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Kudelka
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | | | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Haston JC, Cope JR. Amebic encephalitis and meningoencephalitis: an update on epidemiology, diagnostic methods, and treatment. Curr Opin Infect Dis 2023; 36:186-191. [PMID: 37093056 PMCID: PMC10798061 DOI: 10.1097/qco.0000000000000923] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
PURPOSE OF REVIEW Free-living amebae (FLA) including Naegleria fowleri , Balamuthia mandrillaris , and Acanthamoeba species can cause rare, yet severe infections that are nearly always fatal. This review describes recent developments in epidemiology, diagnosis, and treatment of amebic meningoencephalitis. RECENT FINDINGS Despite similarities among the three pathogenic FLA, there are notable variations in disease presentations, routes of transmission, populations at risk, and outcomes for each. Recently, molecular diagnostic tools have been used to diagnose a greater number of FLA infections. Treatment regimens for FLA have historically relied on survivor reports; more data is needed about novel treatments, including nitroxoline. SUMMARY Research to identify new drugs and guide treatment regimens for amebic meningoencephalitis is lacking. However, improved diagnostic capabilities may lead to earlier diagnoses, allowing earlier treatment initiation and improved outcomes. Public health practitioners should continue to prioritize increasing awareness and providing education to clinicians, laboratorians, and the public about amebic infections.
Collapse
Affiliation(s)
- Julia C. Haston
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer R. Cope
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Mawari G, Kumar N, Sarkar S, Frank AL, Daga MK, Singh MM, Joshi TK, Singh I. Human Health Risk Assessment due to Heavy Metals in Ground and Surface Water and Association of Diseases With Drinking Water Sources: A Study From Maharashtra, India. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221146020. [PMID: 36582432 PMCID: PMC9793032 DOI: 10.1177/11786302221146020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Contamination of freshwater sources can be caused by both anthropogenic and natural processes. According to Central Pollution Control Board, Maharashtra along with 2 other states, contribute 80% of hazardous waste generated in India, including heavy metal pollution. Hence, it is important to quantify heavy metal concentrations in drinking water sources in such areas. MATERIALS AND METHODS Water samples were analyzed for toxic elements (F, As, Cd, Hg, Pb, Ni, Cu, Zn, Mn, and Cr) using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) Agilent 7500. Health risks due to ingestion and dermal contact was assessed. A total of 557 people were randomly selected, with consumers from all 4 types of water sources that is surface water, hand pump, wells, and municipal water. Spot urine samples were collected from 47 people after considering inclusion and exclusion criteria. Urine was collected for estimating mercury and arsenic levels in the study participants. RESULTS Arsenic contributes the most health risk from ingestion from water. Among surface water users, 14 people (32%) reported frequent loose stool (P-value < .05) (OR 2.5), and 11 people (23%) reported frequent abdominal pain (OR 1.9). Hand pump and well water users reported frequent abdominal pain (27%) (OR 1.4) and gastric discomfort (31%) (P-value < .05) (OR 3) respectively. The mean value of urinary Hg and As were 4.91 ± 0.280 and 42.04 ± 2.635 µg/L respectively. CONCLUSION Frequent loose stool, gastric discomfort, and frequent abdominal pain were associated with the various sources of drinking water. Urine Hg levels were found higher than the NHANES (USA) Survey. It is recommended that frequent monitoring of drinking water should be enforced around the industrial hub, so that appropriate actions can be taken if present in excess.
Collapse
Affiliation(s)
- Govind Mawari
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Naresh Kumar
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Sayan Sarkar
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Arthur L Frank
- Department of Environmental and
Occupational Health, Drexel University, Philadelphia, PA, USA
| | - Mradul Kumar Daga
- Department of Internal Medicine and
Infectious Disease, Institute of Liver and Biliary Sciences, New Delhi, India
| | | | - Tushar Kant Joshi
- Department Center for Occupational and
Environment Health, Maulana Azad Medical College, New Delhi, India
| | - Ishwar Singh
- Department of ENT, Maulana Azad Medical
College, New Delhi, India
| |
Collapse
|
8
|
Bottled and Well Water Quality in a Small Central Appalachian Community: Household-Level Analysis of Enteric Pathogens, Inorganic Chemicals, and Health Outcomes in Rural Southwest Virginia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148610. [PMID: 35886462 PMCID: PMC9319903 DOI: 10.3390/ijerph19148610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
Consumption of unsafe drinking water is associated with a substantial burden of disease globally. In the US, ~1.8 million people in rural areas lack reliable access to safe drinking water. Our objective was to characterize and assess household-level water sources, water quality, and associated health outcomes in Central Appalachia. We collected survey data and water samples (tap, source, and bottled water) from consenting households in a small rural community without utility-supplied water in southwest Virginia. Water samples were analyzed for physicochemical parameters, total coliforms, E. coli, nitrate, sulfate, metals (e.g., arsenic, cadmium, lead), and 30+ enteric pathogens. Among the 69% (n = 9) of households that participated, all had piped well water, though 67% (n = 6) used bottled water as their primary drinking water source. Total coliforms were detected in water samples from 44.4% (n = 4) of homes, E. coli in one home, and enteric pathogens (Aeromonas, Campylobacter, Enterobacter) in 33% (n = 3) of homes. Tap water samples from 11% (n = 1) of homes exceeded the EPA MCL for nitrate, and 33% (n = 3) exceeded the EPA SMCL for iron. Among the 19 individuals residing in study households, reported diarrhea was 25% more likely in homes with measured E. coli and/or specific pathogens (risk ratio = 1.25, cluster-robust standard error = 1.64, p = 0.865). Although our sample size was small, our findings suggest that a considerable number of lower-income residents without utility-supplied water in rural areas of southwest Virginia may be exposed to microbiological and/or chemical contaminants in their water, and many, if not most, rely on bottled water as their primary source of drinking water.
Collapse
|