1
|
Prajapati A, Jadhao P, Kumar AR. Atmospheric microplastics deposition in a central Indian city: Distribution, characteristics and seasonal variations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126183. [PMID: 40185191 DOI: 10.1016/j.envpol.2025.126183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/15/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Atmospheric microplastics (AMPs) transport and deposition in urban areas contribute to microplastics pollution. The present study investigates AMPs deposition, characteristics, potential sources, and the influence of meteorological factors in a central Indian city. AMPs were collected over three land-use types, viz. institutional, commercial, and industrial areas, during four seasons: summer, monsoon, autumn, and winter. The deposition flux of microplastics ranged from 212.53 ± 52.32 to 543.25 ± 71.23 particles/m2/day. The AMPs were predominantly fibres (87.84 %), followed by films (5.43 %), with particle size <1000 μm contributed 43.67 %. The predominant polymer types identified were polyethylene terephthalate (PET, 37.39 %), nylon (20.49 %), and polypropylene (PP, 10.27 %). Higher deposition fluxes were recorded in summer, with 491.06 ± 73.37 particles/m2/day. Correlation analysis revealed a negative correlation between rainfall and AMPs deposition, suggesting a potential cleaning role of rainfall. The estimated annual deposition flux of AMPs in Nagpur city was 3.22 × 1013 particles. Higher AMPs deposition was attributed to plastic waste littering, industrial emissions, and textiles. The estimated mean annual inhalation exposures of AMPs of size 50-250 μm for children and adults were 7375.84 ± 1312.89 and 3738.17 ± 665.39 MPs/kg-bw/year, respectively. The findings of this study contribute to understanding the fate of AMPs and its implications for human exposure. The findings underscore the importance of reducing and managing plastic waste.
Collapse
Affiliation(s)
- Archana Prajapati
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| | - Pradip Jadhao
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Acadamy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, 201002, India
| | - Asirvatham Ramesh Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, 440020, India; Acadamy of Scientific and Innovative Research (AcSIR), Ghaziabad, New Delhi, 201002, India.
| |
Collapse
|
2
|
Rindelaub JD, Salmond JA, Fan W, Miskelly GM, Dirks KN, Henning S, Conrath T, Stratmann F, Coulson G. Aerosol mass concentrations and dry/wet deposition of atmospheric microplastics at a remote coastal location in New Zealand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126034. [PMID: 40090453 DOI: 10.1016/j.envpol.2025.126034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/18/2025]
Abstract
This study quantified airborne microplastic concentrations by mass and number counts using both active and passive sampling at a remote coastal location in Southern New Zealand. Seven polymers were quantified using pyrolysis gas chromatography mass spectrometry (Pyr-GC/MS) in atmospheric samples, finding that plastics comprised at least 0.14 % of total suspended particulate mass at the remote coastal site. Air parcel back trajectories suggest that airborne microplastics at the site, observed at an average concentration of 65 ± 6 ng m-3, have origins from the Southern Ocean. Additionally, the results demonstrate that reporting atmospheric deposition of microplastics by number counts may underestimate the true amount of plastics present in samples, as size limitations associated with microscopic imaging do not allow for quantification of the most abundant sizes and types of environmental microplastics. With current uncertainties related to aerosol formation in the Southern Ocean and the associated impacts on climate forcing, further research is urgently needed on the production of airborne microplastics originating from the Southern Ocean, a possible microplastic reservoir.
Collapse
Affiliation(s)
- Joel D Rindelaub
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand.
| | | | - Wenxia Fan
- University of Auckland, School of Environment, Auckland, New Zealand
| | - Gordon M Miskelly
- University of Auckland, School of Chemical Sciences, Auckland, New Zealand
| | - Kim N Dirks
- University of Auckland, Civil & Environmental Engineering, Auckland, New Zealand
| | - Silvia Henning
- Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Thomas Conrath
- Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Frank Stratmann
- Leibniz-Institute for Tropospheric Research, Leipzig, Germany
| | - Guy Coulson
- The Air Quality Collective, Nelson, New Zealand
| |
Collapse
|
3
|
Li M, Zhao Z, Zhao Z, Li M. Review of Techniques for the Detection, Removal, and Transformation of Environmental Microplastics and Nanoplastics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20560-20589. [PMID: 40152077 DOI: 10.1021/acsami.5c02306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Plastic residues have emerged as a significant challenge in the environmental sector. Microplastics, which are plastic fragments smaller than 5 mm, have the ability to disperse through the atmosphere, oceans, and land, posing a serious threat to human health by accumulating in the food chain. However, their minuscule size makes it difficult to effectively remove them from the environment using the current technologies. This work provides a comprehensive overview of recent advancements in microplastic detection and removal technologies. For detection methods, we discuss commonly used techniques such as microscopic analysis, thermal analysis, mass spectrometry, spectroscopic analysis, and energy spectrometry. We also emphasize the importance of integrating various analytical and data-processing techniques to achieve efficient and nondestructive detection of microplastics. In terms of removal strategies, we explored innovative methods and technologies for extracting microplastics from the environment. These include physical techniques like filtration, adsorption, and magnetic separation; chemical techniques such as coagulation-flocculation-sedimentation and photocatalytic conversion; and bioseparation methods such as activated sludge and biodegradation. We also highlight the promising potential for converting microplastic contaminants into high-value chemicals. Additionally, we identify current technical challenges and suggest future research directions for the detection and removal of microplastics. We advocate for the development of unified and standardized analytical methods to guide further research on the removal and transformation of microplastics.
Collapse
Affiliation(s)
- Miao Li
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongxing Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Chemistry and Chemical Engineering, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Girlanda O, Li G, Mitrano DM, Dreimol CH, Kanji ZA. Ice nucleation onto model nanoplastics in the cirrus cloud regime. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2025; 5:378-393. [PMID: 39989668 PMCID: PMC11836774 DOI: 10.1039/d4ea00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
The proportion of ice crystals in clouds can affect cloud albedo and lifetime, impacting the Earth's radiative budget. Ice nucleating particles (INPs) lower the energy barrier of ice nucleation and thus facilitate primary ice formation in the atmosphere. Atmospheric nanoplastics (NPs) have been detected in remote regions far from emission sources, suggesting that they can become airborne and undergo long-range transport in the atmosphere. During the atmospheric residence of NPs, they could catalyse primary ice crystal formation by acting as INPs. In this study, we present results from laboratory experiments in which model NPs composed of polystyrene and polyacrylonitrile were tested for their ice-nucleating ability using the horizontal ice nucleation chamber (HINC) as a function of ice-nucleation temperature and water saturation ratio. The results showed that NPs can be effective INPs under both cirrus and cold mixed-phase cloud conditions. The surface characteristics and wettability of the NPs were analysed via scanning electron images and dynamic vapour sorption measurements, which revealed the freezing mechanism as a combination of deposition nucleation and pore condensation and freezing. The results highlight the need to enumerate and characterise NPs in the atmosphere, given their potential to get scavenged by clouds via primary ice formation in clouds.
Collapse
Affiliation(s)
- Omar Girlanda
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
| | - Guangyu Li
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
- Laboratory for Microwave Spatial Intelligence and Cloud Platform, Deqing Academy of Satellite Applications Deqing China
| | - Denise M Mitrano
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
| | - Christopher H Dreimol
- Wood Materials Science, Institute for Building Materials, ETH Zürich 8093 Zürich Switzerland
- Cellulose & Wood Materials Laboratory, Empa 8600 Dübendorf Switzerland
| | - Zamin A Kanji
- Department of Environmental Systems Sciences, ETH Zurich 8092 Zurich Switzerland
| |
Collapse
|
5
|
Chang K, Yuan Y, Ma Y, Sun Q, Han Y. Characterization of atmospheric microplastics: A case study in Shenzhen City, a southern coastal area of China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:294. [PMID: 39951201 DOI: 10.1007/s10661-025-13741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/04/2025] [Indexed: 03/11/2025]
Abstract
The sources of atmospheric microplastics (AMPs) are complex and widely distributed. Microplastic pollution is particularly severe in urban areas. In this study, the abundance of AMPs was investigated at ten representative sampling points, with three points at an experimental building, and seven sample points at a residential district, an industrial area, a park, a farmland, a roadside, a river, and a seaside, respectively. The results show that the average abundance of AMPs is 2.22 n/m3, with a range from 1.31 to 4.5 n/m3. Human activities significantly contribute to the release of MPs. Furthermore, the abundance of AMPs decreases with increasing altitude. The predominant colors of AMPs are black and transparent, and particle sizes predominantly range from 50 to 200 µm. The micro-Fourier transform infrared spectrometer (µ-FTIR) analysis indicates that AMPs are primarily composed of polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET), with fibrous shapes being predominant. In the principal component analysis (PCA), it was observed that AMPs exhibit a positive correlation with temperature and a negative correlation with humidity. This research may shed new light on future policy-making in microplastic control.
Collapse
Affiliation(s)
- Kuan Chang
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
- College of Materials Science and Engineering, Taiyuan University of Technology, Yuci District, 209 Daxue Street, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Yuman Yuan
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China
| | - Yong Ma
- College of Materials Science and Engineering, Taiyuan University of Technology, Yuci District, 209 Daxue Street, Jinzhong, Shanxi, 030600, People's Republic of China.
| | - Qian Sun
- College of Health Science and Environmental Engineering, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China.
| | - Yulai Han
- College of New Materials and New Energies, Shenzhen Technology University, 3002 Lantian Road, Pingshan District, Shenzhen, Guangdong, 518118, People's Republic of China.
| |
Collapse
|
6
|
Rivera-Rivera DM, Quintanilla-Villanueva GE, Luna-Moreno D, Sánchez-Álvarez A, Rodríguez-Delgado JM, Cedillo-González EI, Kaushik G, Villarreal-Chiu JF, Rodríguez-Delgado MM. Exploring Innovative Approaches for the Analysis of Micro- and Nanoplastics: Breakthroughs in (Bio)Sensing Techniques. BIOSENSORS 2025; 15:44. [PMID: 39852095 PMCID: PMC11763714 DOI: 10.3390/bios15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks. Effective detection and quantification of MPs and NPs are essential for understanding and mitigating their impacts. Current analytical methods include physical and chemical techniques. Physical methods, such as optical and electron microscopy, provide morphological details but often lack specificity and are time-intensive. Chemical analyses, such as Fourier transform infrared (FTIR) and Raman spectroscopy, offer molecular specificity but face challenges with smaller particle sizes and complex matrices. Thermal analytical methods, including pyrolysis gas chromatography-mass spectrometry (Py-GC-MS), provide compositional insights but are destructive and limited in morphological analysis. Emerging (bio)sensing technologies show promise in addressing these challenges. Electrochemical biosensors offer cost-effective, portable, and sensitive platforms, leveraging principles such as voltammetry and impedance to detect MPs and their adsorbed pollutants. Plasmonic techniques, including surface plasmon resonance (SPR) and surface-enhanced Raman spectroscopy (SERS), provide high sensitivity and specificity through nanostructure-enhanced detection. Fluorescent biosensors utilizing microbial or enzymatic elements enable the real-time monitoring of plastic degradation products, such as terephthalic acid from polyethylene terephthalate (PET). Advancements in these innovative approaches pave the way for more accurate, scalable, and environmentally compatible detection solutions, contributing to improved monitoring and remediation strategies. This review highlights the potential of biosensors as advanced analytical methods, including a section on prospects that address the challenges that could lead to significant advancements in environmental monitoring, highlighting the necessity of testing the new sensing developments under real conditions (composition/matrix of the samples), which are often overlooked, as well as the study of peptides as a novel recognition element in microplastic sensing.
Collapse
Affiliation(s)
- Denise Margarita Rivera-Rivera
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| | | | - Donato Luna-Moreno
- Centro de Investigaciones en Óptica AC, Div. de Fotónica, Loma del Bosque 115, Lomas del Campestre, León 37150, Guanajuato, Mexico; (G.E.Q.-V.); (D.L.-M.)
| | - Araceli Sánchez-Álvarez
- Universidad Tecnológica de León, Electromecánica Industrial, Blvd. Universidad Tecnológica 225, Col. San Carlos, León 37670, Guanajuato, Mexico;
| | - José Manuel Rodríguez-Delgado
- Tecnológico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada Sur 2501, Col. Tecnológico, Monterrey 64849, Nuevo León, Mexico;
| | - Erika Iveth Cedillo-González
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy;
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India;
| | - Juan Francisco Villarreal-Chiu
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| | - Melissa Marlene Rodríguez-Delgado
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico;
- Centro de Investigación en Biotecnología y Nanotecnología (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Km. 10 Autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca 66629, Nuevo León, Mexico
| |
Collapse
|
7
|
Frank YA, Tatsii D, Rednikin AR, Plach A, Rakhmatullina SN, Vorobiev DS, Stohl A. It is snowing microplastics in Western Siberia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125293. [PMID: 39537083 DOI: 10.1016/j.envpol.2024.125293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The atmosphere is an important transport medium for polymeric anthropogenic particles such as microplastics (MPs). The analysis of particles deposited on the snowpack enables monitoring the abundance and transport of MPs and semi-synthetic fibers. In the current study, the abundance of MPs and man-made textile fibers in deposited snow in Western Siberia, Russia, was investigated in a large area ranging from the Altai Mountains (52°01″N) to the Arctic Circle (66°30″N). Rayon fibers accounted for 44% of all detected particles, while the remaining 56% were MPs made of PET, PA, PC, PP and other plastics. The highest number of MPs and fibers per unit area was 2817 ± 915 items m-2 with an estimated daily deposition rate of 25.8 items m-2 d-1. The maximum calculated mass particle load was 4444 ± 1530 mg m-2 or 34.9 ± 12 mg L-1 of melted snow. Particle concentrations in snow were generally higher in the southern parts of Western Siberia but did not significantly correlate with population density. The Lagrangian dispersion model FLEXPART was used to estimate the geographical patterns of potential sources of the fibers detected in the snow in Western Siberia. Our analysis shows that particles can reach the sampling sites via both short-range and long-range atmospheric transport, including the possibility of cross-border transport for the smaller particle sizes.
Collapse
Affiliation(s)
- Yulia A Frank
- Research Centre "Microplastic Siberia", Tomsk State University, Lenina Prospect 36, Tomsk, 634050, Russia.
| | - Daria Tatsii
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, 1010, Vienna, Austria
| | - Alexey R Rednikin
- Research Centre "Microplastic Siberia", Tomsk State University, Lenina Prospect 36, Tomsk, 634050, Russia
| | - Andreas Plach
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, 1010, Vienna, Austria
| | - Svetlana N Rakhmatullina
- Research Centre "Microplastic Siberia", Tomsk State University, Lenina Prospect 36, Tomsk, 634050, Russia
| | - Danil S Vorobiev
- Research Centre "Microplastic Siberia", Tomsk State University, Lenina Prospect 36, Tomsk, 634050, Russia
| | - Andreas Stohl
- Department of Meteorology and Geophysics, University of Vienna, Universitätsring 1, 1010, Vienna, Austria
| |
Collapse
|
8
|
Akbari Dana P, Gaga EO, Gedik K. Analytical Challenges and Strategies for Particle-Based Analysis of Airborne Micro(nano)plastics in Size-Fractionated Samples Using Microscopy, SEM/EDX, and Raman Spectroscopy. Anal Chem 2024; 96:20622-20634. [PMID: 39679663 DOI: 10.1021/acs.analchem.4c05335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Inhalable micro(nano)plastics (MNPs) have emerged as a significant global concern due to their abundance and persistence in the atmosphere. Despite a growing body of literature addressing the analytical requirements of airborne MNPs, the issue of inhalable fractions and analysis of slotted substrates remains unclear. Therefore, the objective of this study is to perform a systematic particle-based analysis and characterization of inhalable microplastics (MPs) collected by a high-volume sampler equipped with a five-stage cascade impactor with a size range of 10 μm to <0.49 μm. The efficacy of collection substrates (Teflon and aluminum) was evaluated, as was the impact of particle transfer from the slotted filters on the analysis area and pretreatment methods including chemical digestion for further analysis. The distribution of MNP particles across different slots of a Teflon filter was investigated using Raman microspectrometry to select an appropriate subsample. The results showed the suitability of Teflon filters without any pretreatment for particles down to a single micrometer. As observed by the SEM/EDX analysis, the airborne particles collected in a filter with a submicrometer range (<0.95 μm) showed a decrease in carbon-rich components compared to those stages with higher cutoff sizes. A minimum of 20 particles were analyzed per 1 cm2 of the slotted filter using Raman spectrometry, which revealed a homogeneous distribution of MPs across different slots and yielded a concentration of 452 ± 134 MP/m3 in the first stage of the cascade sampler. The detected MPs were morphologically classified into two main groups: fragments with a size range of 2.8-24.8 μm and fibers with a size range of 28.6-212 μm. Subsequently, the particles were chemically identified as carbon black (tires) and polypropylene. In conclusion, particle-based analysis of size-segregated airborne MNPs presents certain challenges when attempting to analyze particles as small as a single micrometer due to the fact that the aerodynamic diameter of the particles in question and the corresponding analytical limitations that result from this become particularly problematic, especially for cutoffs smaller than 3 μm.
Collapse
Affiliation(s)
- Parisa Akbari Dana
- Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye
| | - Eftade O Gaga
- Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye
| | - Kadir Gedik
- Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye
- Environmental Research Center (ÇEVMER), Eskişehir Technical University, Eskişehir 26555, Türkiye
| |
Collapse
|
9
|
You T, Feng X, Xu H. The whole life journey and destination of microplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125165. [PMID: 39427952 DOI: 10.1016/j.envpol.2024.125165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Recent reports indicate that ubiquitous microplastics (MPs) in the environment can infiltrate the human body, posing significant health risks and garnering widespread attention. However, public understanding of the intricate processes through which microplastics are transferred to humans remains limited. Consequently, developing effective strategies to mitigate the escalating issue of MPs pollution and safeguard human health is still challenging. In this review, we elucidated the sources and dynamic migration pathways of MPs, examined its complex interactions with other pollutants, and identified primary routes of human exposure. Subsequently, the events and alterations of gut microbiota, gut microbiota metabolism, and intestinal barrier after MPs enter the gut of organisms are unclosed. Additionally, it highlighted the ease with which MPs translocate from the intestine to other organs along with their biological toxicities. Finally, we also emphasized the knowledge gaps in the current research field and proposes future research directions. This review aims to enhance public awareness regarding microplastic pollution and provide valuable references for forthcoming research endeavors as well as policy formulation related to this pressing issue.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
10
|
Zheng K, Wang P, Lou X, Zhou Z, Zhou L, Hu Y, Luan Y, Quan C, Fang J, Zou H, Gao X. A review of airborne micro- and nano-plastics: Sampling methods, analytical techniques, and exposure risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125074. [PMID: 39369871 DOI: 10.1016/j.envpol.2024.125074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Atmospheric Micro- and nano-plastics (MNPs) can be easily inhaled and ingested by humans and have become a global health concern. With the development of instruments and techniques, an increasing number of sampling and analytical methods have been applied to study airborne MNPs. Active samplers and passive collectors are used to collect suspended aerosols and atmospheric depositions. Microscopes and scanning electron microscopy (SEM) have been used to physically identify the MNPs, while Fourier transform infrared (FTIR), Raman spectroscopy, and Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) are used to identify the polymer compositions of the MNPs. However, the diversity of methods and strategies has greatly limited our ability to compare results and assess exposure risks. In this review, we extracted data from PubMed, Embase, and Scopus from 2018 to 2024 that reported sampling methods, analytical techniques, and abundance/deposition of airborne MNPs. Through a systematic review of the included 140 articles, we emphasized the advantages and limitations of different methods for collecting and analyzing airborne MNPs. In addition, we provided an in-depth analysis of the performance of specific methods across different airborne environments. Furthermore, the current knowledge regarding the abundance, deposition, exposure risks of airborne MNPs, and exposure risk assessment models has been discussed. Finally, we provide concrete recommendations for standardization of methods. This review identified knowledge gaps and recommended future research directions for exposure assessment of airborne MNPs.
Collapse
Affiliation(s)
- Kexin Zheng
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Peng Wang
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaoming Lou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhen Zhou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Lifang Zhou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yong Hu
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yuqing Luan
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Changjian Quan
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jiayang Fang
- Taizhou Center for Disease Control and Prevention, Taizhou, Zhejiang, China
| | - Hua Zou
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Xiangjing Gao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Chen G, Zou Y, Xiong G, Wang Y, Zhao W, Xu X, Zhu X, Wu J, Song F, Yu H. Microplastic transport and ecological risk in coastal intruded aquifers based on a coupled seawater intrusion and microplastic risk assessment model. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135996. [PMID: 39383699 DOI: 10.1016/j.jhazmat.2024.135996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Seawater-groundwater interactions can enhance the migration process of microplastics to coastal aquifers, posing increased associated environmental risks. Here, we aim to analyze the relationship between seawater intrusion (SWI) and groundwater microplastic pollution in Laizhou Bay (LZB), which is a typical area of sea-land interactions. The results showed that modern seawater intrusion was the main process controlling the migration of microplastics. The detected microplastics in the study area showed a migration pattern from nearshore marine areas to groundwater aquifers along the SWI direction. In addition, the microplastics also reached the brine formed by palaeo-saltwater intrusion through hydraulic exchange between aquifers. By comparing the spatial distributions of different microplastic parameters, we found that nearshore fisheries, commercial, tourism, textile, and agricultural activities were the main sources of microplastics in groundwater in the study area. A risk assessment model of microplastics associated with SWI was further optimized in this study using a three-level classification system by assigning appropriate weights to different potential influencing factors. The results showed moderate comprehensive ecological risks associated with microplastics from seawater intrusion in the study area, with high microplastic enrichment risks. This study provides a scientific basis for future research on seawater-groundwater interactions and microplastic pollution in coastal regions.
Collapse
Affiliation(s)
- Guangquan Chen
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yinqiao Zou
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Guiyao Xiong
- Key Laboratory of Coastal Science and Integrated Management, Ministry of Natural Resources, Qingdao, Shandong Province 266061, China; Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yancheng Wang
- Four Institute of Oceanography, Ministry of Natural Resources, Beihai 536009, China; School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wenqing Zhao
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Xingyong Xu
- Four Institute of Oceanography, Ministry of Natural Resources, Beihai 536009, China
| | - Xiaobin Zhu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Song
- Information Center (Hydrology and Water Resources Monitoring and Forecasting Center), The Ministry of Water Resources of the People's Republic of China, Beijing 100053, China
| | - Hongjun Yu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao 266237, China.
| |
Collapse
|
12
|
Karapetrova A, Cowger W, Michell A, Braun A, Bair E, Gray A, Gan J. Exploring microplastic distribution in Western North American snow. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136126. [PMID: 39423647 DOI: 10.1016/j.jhazmat.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Microplastic (MP) transport in the atmosphere, one of the least studied environmental compartments because of the relatively small size of air-borne MPs and the challenges in identifying them, may be inferred from their occurrence in snowfall. In this study, 11 sites across western coastal North America were sampled and analyzed for MP presence in fresh snowfall, months-old summer surface snow, and stratified deposits in snow pits. MPs were detected and characterized using a method integrating linear array µ-Fourier Transform Spectroscopy (µFTIR) and batch spectral analysis with open-source platform Open Specy. Recovery rate analysis from sample filtration to data analysis was conducted, and analysis of field or laboratory blanks suggested negligible contamination (≤ 1 polyamide fragment per blank). Concentrations of MPs in the fresh snowfall of remote sites and those proximal to sources were 5.1-150.8 p/L and 104.5-325 p/L of snowmelt water, respectively. Summer surface snow that was several months old had MP concentrations ranging from 57.5-539 p/L of meltwater, and snow sampled at different depths within a snowpack had concentrations ranging from 35-914 p/L. Our results demonstrate a streamlined method that may be used for measuring MPs in remote or pristine environments, contributing to a better understanding of long-range MP transport.
Collapse
Affiliation(s)
- Aleksandra Karapetrova
- Department of Environmental Science, University of California, Riverside, CA 92521, USA.
| | - Win Cowger
- Department of Environmental Science, University of California, Riverside, CA 92521, USA; Moore Institute for Plastic Pollution Research, Long Beach, CA 90803, USA
| | - Alex Michell
- Airborne Snow Observatories, Inc., Mammoth Lakes, CA 93546, USA
| | - Audrey Braun
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | | | - Andrew Gray
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| |
Collapse
|
13
|
Wang Z, Kang S, Zhang Y, Luo X, Kang Q, Chen P, Guo J, Hu Z, Yang Z, Zheng H, Gao T, Yang W. Microplastics in glaciers of Tibetan Plateau: Characteristics and potential sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176370. [PMID: 39299335 DOI: 10.1016/j.scitotenv.2024.176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Microplastics (MPs) in glaciers of remote areas are a hot topic linking the global transport of atmospheric MPs. The Tibetan Plateau (TP) holds large volume of glaciers, providing an effective way to trace MPs transport. Moreover, MPs in glaciers may have adverse effects on the local ecosystem and human health. In this study, we investigate MPs in snowpits collected from six glaciers across the different domain of the TP. The average abundance of MPs in six snowpits is 339.22 ± 51.85 items L-1 (with size ≥10 μm) measured by Agilent 8700 Laser Direct Infrared Chemical Imaging System (LDIR), represented by relatively high MPs abundance in the southern TP and low in the northern TP. The polymers with lower density, namely polyethylene (PE), polyamide (PA), and rubber, are the main MPs types, which are predominated by fragments with sizes smaller than 100 μm in each snowpit. Sources of MPs on glaciers include local tourism and vehicle traffic emissions of MPs. Meanwhile, long-range atmospheric transport of MPs from surrounded regions cannot be ignored. Backward trajectory analysis indicates cross-boundary transport of atmospheric MPs from South Asia play an important role on MPs deposited onto TP glaciers. Analysis further reveals that MPs in glaciers are associated with atmospheric mineral dust deposition. This study provides new data for the investigation of MPs in glaciers of remote areas, and a reference for studying MPs in the ice cores of TP glaciers.
Collapse
Affiliation(s)
- Zhaoqing Wang
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiangqiang Kang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Petroleum Resources and Sate Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Pengfei Chen
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junming Guo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhaofu Hu
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengzheng Yang
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huijun Zheng
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tanguang Gao
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wei Yang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Chen YC, Wei CH, Hsu WT, Proborini WD, Hsiao TC, Liu ZS, Chou HC, Soo JC, Dong GC, Chen JK. Impact of seasonal changes and environmental conditions on suspended and inhalable microplastics in urban air. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124994. [PMID: 39306067 DOI: 10.1016/j.envpol.2024.124994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Microplastics (MPs) are ubiquitous environmental pollutants extensively detected in atmospheric environments. Airborne MPs have raised concerns due to their transport and potential health risks of inhalation exposure. However, the factors influencing airborne MPs, particularly their concentrations and shapes suspended in urban air, remain unclear. We investigated MPs in total suspension particles with one-year measurements in Taipei City and identified their features using Nile Red staining combined with fluorescence microscopy and micro-Fourier transform infrared (μFTIR) spectroscopy. This study quantified the mean number concentration of total MPs as approximately 6.0 #/m³. We observed that MP abundance varied seasonally, with higher levels in the warm season than in the cold. A similar trend was noted for polymer types. Fragment-like MPs were the predominant shape, mainly found in polystyrene (PS), polyethylene (PE), and polypropylene (PP), while fibrous MPs, detected mostly as polyethylene terephthalate (PET) and polyamide (PA), were primarily observed at sizes greater than 300 μm. Both fiber and fragment-like MPs were positively associated with particle mass concentration, temperature, ultraviolet (UV) index, and wind speed, but negatively correlated with relative humidity and rainfall. Fibrous MPs were more affected by environmental factors than fragment-like MPs. Meteorological changes significantly influenced suspended MPs more than human activity within the city.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan; Department of Occupational Safety and Health, China Medical University, Taichung, 40402, Taiwan; Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 360302, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chun-Hsuan Wei
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Wei-Ting Hsu
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Wahyu Diah Proborini
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jhy-Charm Soo
- Environmental Health Sciences Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, GA, USA
| | - Guo-Chung Dong
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
15
|
Yang J, Peng Z, Sun J, Chen Z, Niu X, Xu H, Ho KF, Cao J, Shen Z. A review on advancements in atmospheric microplastics research: The pivotal role of machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173966. [PMID: 38897457 DOI: 10.1016/j.scitotenv.2024.173966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.
Collapse
Affiliation(s)
- Jiaer Yang
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zezhi Peng
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Sun
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhiwen Chen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Sciences and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
16
|
Yang S, Lu X, Wang X. A Perspective on the Controversy over Global Emission Fluxes of Microplastics from Ocean into the Atmosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12304-12312. [PMID: 38935526 DOI: 10.1021/acs.est.4c03182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Since the transfer of microplastic across the sea-air interface was first reported in 2020, numerous studies have been conducted on its emission flux estimation. However, these studies have shown significant discrepancies in the estimated contribution of oceanic sources to global atmospheric microplastics, with evaluations ranging from predominant to negligible, varying by 4 orders of magnitude from 7.7 × 10-4 to 8.6 megatons per year, thereby creating considerable confusion in the research on the microplastic cycle. Here, we provide a perspective by applying the well-established theory of particulate transfer through the sea-air interface. The upper limit of global sea-air emission flux microplastics was calculated, aiming to constrain the controversy in the previously reported fluxes. Specifically, the flux of sub-100 μm microplastic cannot exceed 0.01 megatons per year, and for sub-0.1 μm nanoplastics, it would not exceed 3 × 10-7 megatons per year. Bridging this knowledge gap is crucial for a comprehensive understanding of the sea-air limb in the "plastic cycle", and facilitates the management of future microplastic pollution.
Collapse
Affiliation(s)
- Shanye Yang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaohui Lu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Great Bay Area, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaofei Wang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- Fudan Zhangjiang Institute, Shanghai 201203, China
| |
Collapse
|
17
|
Peries SD, Sewwandi M, Sandanayake S, Kwon HH, Vithanage M. Airborne transboundary microplastics-A Swirl around the globe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 353:124080. [PMID: 38692389 DOI: 10.1016/j.envpol.2024.124080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Microplastics are persistent pollutants discovered and extensively researched in marine, freshwater, and terrestrial ecosystems but have yet to receive attention in an atmospheric context. Although recent reports stated the presence of microplastics in the air, their global existence and distribution are not critically discussed to date. This review aimed to investigate the current status of research on atmospheric microplastics through bibliometric analysis and by comparing and summarising published research on global distribution. The review also provides a summary of methods that have been used to collect samples, identify microplastics, quantify their occurrence, and determine their transport mechanisms. The bibliometric analysis revealed that atmospheric microplastic studies predominantly originated in China. Clothing, vehicle, and tire materials were the major primary sources while house furniture, construction materials, landfills, urban dust, plastic recycling processes, and agricultural sludge were precursor secondary sources. Polyethylene, polypropylene, and polyethylene terephthalate microfibres have most frequently found in indoor and outdoor atmospheres. Level of urbanization and temporal or spatial distributions governs the fate of airborne microplastics, however, the knowledge gap in the retention and circulation of microplastics through the atmosphere is still large. Many challenges and limitations were identified in the methods used, presentation of data, aerodynamic processes facilitating atmospheric transport, and scarcity of research in spatially and temporally diverse contexts. The review concluded that there was a greater need for globalization of research, methods and data standardization, and emphasizes the potential for future research with atmospheric transportation modelling and thermochemical analysis.
Collapse
Affiliation(s)
- Sayuri Dimanthi Peries
- The UWA Institute of Agriculture, University of Western Australia, Perth, 6009, Australia
| | - Madushika Sewwandi
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Sandun Sandanayake
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Hyun-Han Kwon
- Department of Civil and Environmental Engineering, Sejong University, Seoul, Republic of Korea
| | - Meththika Vithanage
- The UWA Institute of Agriculture, University of Western Australia, Perth, 6009, Australia; Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
18
|
Soliz DL, Paniagua González G, Muñoz-Arnanz J, Bravo-Yagüe JC, Fernández Hernando P, Garcinuño Martínez RM. Identification and morphological characterization of different types of plastic microparticles. Heliyon 2024; 10:e30749. [PMID: 38867989 PMCID: PMC11167249 DOI: 10.1016/j.heliyon.2024.e30749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 06/14/2024] Open
Abstract
The knowledge of the polymeric composition of microplastics (MPs) is interesting because offers useful information on the resistance, durability, and degradability of these materials, also allowing progress in the control of this contamination. However, there is currently a lack of reliable standardized methods for the identification, and characterization of the plastic microparticles. This work uses different techniques in a complementary manner for the identification, and characterization of MPs that more frequently are found in the environment. A total of 10 types of plastics were collected (polystyrene (PS), polyethylene terephthalate (PETE), polyethylene (PE), high- and low-density polyethylene (HDPE and LDPE, respectively), polyvinyl chloride (PVC), polypropylene (PP), polytetrafluoroethylene (PTFE), Polyamide (PA, Nylon 6,6) and poly-carbonate (PC)) and their chemical identification were analyzed by reflectance-attenuated infrared (FTIR-ATR). Furthermore, the samples were observed using light microscopy, and scan-ning electron microscopy (SEM). Also, staining with 12 different dyes was performed to improve the identification of microplastics. The results of this study revealed that PETE, PE, HDPE and LDPE, whose SEM images exhibited smoothness and flat uniformity of their surface, were not (or less) susceptible to adsorb staining solutions while PP, PA, PVC, and PTFE, were capable of adsorbing the dye solutions.
Collapse
Affiliation(s)
- Dulce L. Soliz
- Researcher in Training at the International Doctoral School of UNED, in the Doctoral Program in Sciences, Spain
| | - Gema Paniagua González
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG, CSIC), Juan de la Cierva 3, Madrid, 28006, Spain
| | - Juan Carlos Bravo-Yagüe
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Pilar Fernández Hernando
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| | - Rosa María Garcinuño Martínez
- Department of Analytical Sciences, Faculty of Sciences, National University of Distance Education, UNED, Las Rozas, 28232, Madrid, Spain
| |
Collapse
|
19
|
Gratzl J, Seifried TM, Stolzenburg D, Grothe H. A fluorescence approach for an online measurement technique of atmospheric microplastics. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:601-610. [PMID: 38883229 PMCID: PMC11170559 DOI: 10.1039/d4ea00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Microplastic particles in the atmosphere are regularly detected in urban areas as well as in very remote locations. Yet the sources, chemical transformation, transport, and abundance of airborne microplastics still remain largely unexplained. Therefore, their impact on health, weather and climate related processes lacks comprehensive understanding. Single particle detection presents a substantial challenge due to its time-consuming process and is conducted solely offline. To get more information about the distribution, fluxes and sources of microplastics in the atmosphere, a reliable and fast online measurement technique is of utmost importance. Here we demonstrate the use of the autofluorescence of microplastic particles for their online detection with a high sensitivity towards different widely used polymers. We deploy online, single particle fluorescence spectroscopy with a Wideband Integrated Bioaerosol Sensor WIBS 5/NEO (Droplet Measurement Technologies, USA), which enables single particle fluorescence measurements at two excitation wavelengths (280 nm and 370 nm) and in two emission windows (310-400 nm and 420-650 nm). We investigated shredded (<100 μm) everyday plastic products (drinking bottles and yogurt cups) and pure powders of polyethylene terephthalate (PET), polyethylene and polypropylene. For the broad range of typical plastic products analyzed, we detected fluorescence on a single particle level using the WIBS. The online detection can identify particles smaller than 2 μm. In the case of microplastic particles from a PET bottle, 1.2 μm sized particles can be detected with 95% efficiency. Comparison with biological aerosols reveals that microplastics can be distinguished from two abundant pollen species and investigation of the complete fluorescence excitation emission maps of all samples shows that online identification of microplastics might be possible with fluorescence techniques if multiple channels are available.
Collapse
Affiliation(s)
- Jürgen Gratzl
- Institute of Materials Chemistry TU Wien Vienna Austria
| | - Teresa M Seifried
- Department of Chemistry, University of British Columbia Vancouver British Columbia Canada
| | | | | |
Collapse
|
20
|
Gani A, Pathak S, Hussain A, Shukla AK, Chand S. Emerging pollutant in surface water bodies: a review on monitoring, analysis, mitigation measures and removal technologies of micro-plastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:214. [PMID: 38842590 DOI: 10.1007/s10653-024-01992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Water bodies play a crucial role in supporting life, maintaining the environment, and preserving the ecology for the people of India. However, in recent decades, human activities have led to various alterations in aquatic environments, resulting in environmental degradation through pollution. The safety of utilizing surface water sources for drinking and other purposes has come under intense scrutiny due to rapid population growth and industrial expansion. Surface water pollution due to micro-plastics (MPs) (plastics < 5 mm in size) is one of the emerging pollutants in metropolitan cities of developing countries because of its utmost resilience and synthetic nature. Recent studies on the surface water bodies (river, pond, Lake etc.) portrait the correlation between the MPs level with different parameters of pollution such as specific conductivity, total phosphate, and biological oxygen demand. Fibers represent the predominant form of MPs discovered in surface water bodies, exhibiting fluctuations across seasons. Consequently, present study prioritizes understanding the adaptation, prevalence, attributes, fluctuations, and spatial dispersion of MPs in both sediment and surface water environments. Furthermore, the study aims to identify existing gaps in the current understanding and underscore opportunities for future investigation. From the present study, it has been reported that, the concentration of MPs in the range of 0.2-45.2 items/L at the Xisha Islands in the south China sea, whereas in India it was found in the range of 96 items/L in water samples and 259 items/kg in sediment samples. This would certainly assist the urban planners in achieving sustainable development goals to mitigate the increasing amount of emergent pollutant load.
Collapse
Affiliation(s)
- Abdul Gani
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Shray Pathak
- Department of Civil Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
| | - Athar Hussain
- Civil Engineering Department, Netaji Subhas University of Technology, New Delhi, 110073, India
| | - Anoop Kumar Shukla
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sasmita Chand
- Manipal School of Architecture and Planning, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
21
|
Falakdin P, Lopez-Rosales A, Andrade J, Terzaghi E, Di Guardo A, Muniategui-Lorenzo S. Comparison of microplastic type, size, and composition in atmospheric and foliage samples in an urban scenario. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123911. [PMID: 38604308 DOI: 10.1016/j.envpol.2024.123911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
The rising trend of plastic production in last years and the inadequate disposal of related waste has raised concerns regarding microplastic-related environmental issues. Microplastic particles disperse by means of transport and deposition processes to different ecosystems and enter food chains. In this paper, atmospheric deposition and foliage samples of two species (i.e., Hedera helix and Photinia glabra) were collected and analysed for the quantity and identity of microplastics (MPs). A preliminary methodology to treat foliage samples and subsequently identify MPs using a quantum cascade laser IR spectrophotometer is presented. The treatment of airborne samples involved filtration, mild digestion, concentration, and transfer onto reflective slides whereas that for foliage involved washing, concentration, and transference of putative MPs onto reflective slides. Fibers and fragments were differentiated according to their physical features (size, width, height, etc.) and calculating derived characteristics (namely, circularity and solidity). The preliminary results obtained suggest a good agreement between atmospheric-deposited and foliage-retained MPs, showing the capability of leaves to act as passive samplers for environmental monitoring.
Collapse
Affiliation(s)
- Parisa Falakdin
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Adrian Lopez-Rosales
- Group of Applied Analytical Chemistry. Instituto Universitario de Medio Ambiente, Universidade da Coruña, Campus da Zapateira s/n, E-15071, A Coruña, Spain
| | - Jose Andrade
- Group of Applied Analytical Chemistry. Instituto Universitario de Medio Ambiente, Universidade da Coruña, Campus da Zapateira s/n, E-15071, A Coruña, Spain
| | - Elisa Terzaghi
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Antonio Di Guardo
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100, Como, Italy
| | - Soledad Muniategui-Lorenzo
- Group of Applied Analytical Chemistry. Instituto Universitario de Medio Ambiente, Universidade da Coruña, Campus da Zapateira s/n, E-15071, A Coruña, Spain.
| |
Collapse
|
22
|
Wang Y, Zhao J, Fu Z, Guan D, Zhang D, Zhang H, Zhang Q, Xie J, Sun Y, Wang D. Innovative overview of the occurrence, aging characteristics, and ecological toxicity of microplastics in environmental media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123623. [PMID: 38387545 DOI: 10.1016/j.envpol.2024.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.
Collapse
Affiliation(s)
- Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China.
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dalei Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Hongying Zhang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd., Qingdao, 266000, PR China
| | - Jingliang Xie
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
23
|
Beaurepaire M, Gasperi J, Tassin B, Dris R. COVID lockdown significantly impacted microplastic bulk atmospheric deposition rates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123354. [PMID: 38237852 DOI: 10.1016/j.envpol.2024.123354] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Here, microplastic atmospheric deposition data collected at an urban site during the French national lockdown of spring 2020 is compared to deposition data from the same site in a period of normal activity. Bulk atmospheric deposition was collected on the vegetated roof of a suburban campus from the Greater Paris and analysed for microplastics using a micro-FTIR imaging methodology. Significantly lower deposition rates were measured overall during the lockdown period (median 5.4 MP m-2.d-1) than in a period of normal activity in spring 2021 (median of 29.2 MP m-2.d-1). This difference is however not observed for the smallest microplastic size class. The dominant polymers identified were PP, followed by PE and PS. Precipitation alone could not explain the differences between the two campaigns, and it is suggested that the temporary drop in human activity during lockdown is the primary cause of the reduced deposition rates. This study provides novel insight on the immediate impact of human activities on atmospheric microplastics, thus enhancing the global understanding on this topic.
Collapse
Affiliation(s)
- Max Beaurepaire
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France.
| | | | - Bruno Tassin
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France
| | - Rachid Dris
- LEESU, Ecole des Ponts, Universite Paris Est Creteil, Champs sur Marne, France
| |
Collapse
|
24
|
Xu L, Bai X, Li K, Zhang G, Zhang M, Hu M, Huang Y. Human Exposure to Ambient Atmospheric Microplastics in a Megacity: Spatiotemporal Variation and Associated Microorganism-Related Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3702-3713. [PMID: 38356452 DOI: 10.1021/acs.est.3c09271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Microplastics are found in various human tissues and are considered harmful, raising concerns about human exposure to microplastics in the environment. Existing research has analyzed indoor and occupational scenarios, but long-term monitoring of ambient atmospheric microplastics (AMPs), especially in highly polluted urban regions, needs to be further investigated. This study estimated human environmental exposure to AMPs by considering inhalation, dust ingestion, and dermal exposure in three urban functional zones within a megacity. The annual exposure quantity was 7.37 × 104 items for children and 1.06 × 105 items for adults, comparable with the human microplastic consumption from food and water. Significant spatiotemporal differences were observed in the characteristics of AMPs that humans were exposed to, with wind speed and rainfall frequency mainly driving these changes. The annual human AMP exposure quantity in urban green land spaces, which were recognized as relatively low polluted zones, was comparable with that in public service zones and residential zones. Notably, significant positive correlations between the AMP characteristics and the pathogenicity of the airborne bacterial community were discovered. AMP size and immune-mediated disease risks brought by atmospheric microbes showed the most significant relationship, where Sphingomonas might act as the potential key mediator.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
25
|
Soo JC, Wei CH, Chen JK, Dong GC, Liu ZS, Chou HC, Perez RL, Adhikari A, Chen YC. Assessment of inhalation exposure to microplastic particles when disposable masks are repeatedly used. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169428. [PMID: 38104815 DOI: 10.1016/j.scitotenv.2023.169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Wearing masks to prevent infectious diseases, especially during the COVID-19 pandemic, is common. However, concerns arise about inhalation exposure to microplastics (MPs) when disposable masks are improperly reused. In this study, we assessed whether disposable masks release inhalable MPs when reused in simulated wearing conditions. All experiments were conducted using a controlled test chamber setup with a constant inspiratory flow. Commercially available medical masks with a three-layer material, composition comprising polypropylene (PP in the outer and middle layers) and polyethylene (PE in the inner layer), were used as the test material. Brand-new masks with and without hand rubbing, as well as reused medical masks, were tested. Physical properties (number, size, and shape) and chemical composition (polymers) were identified using various analytical techniques such as fluorescence staining, fluorescence microscopy, and micro-Fourier Transform Infrared Spectroscopy (μFTIR). Scanning Electron Microscopy (SEM) was used to scrutinize the surface structure of reused masks across different layers, elucidating the mechanism behind the MP generation. The findings revealed that brand-new masks subjected to hand rubbing exhibited a higher cumulative count of MPs, averaging approximately 1.5 times more than those without hand rubbing. Fragments remained the predominant shape across all selected size classes among the released MPs from reused masks, primarily through a physical abrasion mechanism, accounting for >90 % of the total MPs. The numbers of PE particles were higher than PP particles, indicating that the inner layer of the mask contributed more inhalable MPs than the middle and outer layers combined. The released MPs from reused masks reached their peak after 8 h of wearing. This implies that regularly replacing masks serves as a preventive measure and mitigates associated health risks of inhalation exposure to MPs.
Collapse
Affiliation(s)
- Jhy-Charm Soo
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Chun-Hsuan Wei
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Guo-Chung Dong
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Rocio L Perez
- Department of Chemistry, Biochemistry and Physics, College of Science and Mathematics, Georgia Southern University, Statesboro, GA 30460, USA
| | - Atin Adhikari
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan; Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
26
|
Khatoon N, Mallah MA, Yu Z, Qu Z, Ali M, Liu N. Recognition and detection technology for microplastic, its source and health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11428-11452. [PMID: 38183545 DOI: 10.1007/s11356-023-31655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Microplastic (MP) is ubiquitous in the environment which appeared as an immense intimidation to human and animal health. The plastic fragments significantly polluted the ocean, fresh water, food chain, and other food items. Inadequate maintenance, less knowledge of adverse influence along with inappropriate usage in addition throwing away of plastics items revolves present planet in to plastics planet. The present study aims to focus on the recognition and advance detection technologies for MPs and the adverse effects of micro- and nanoplastics on human health. MPs have rigorous adverse effect on human health that leads to condensed growth rates, lessened reproductive capability, ulcer, scrape, and oxidative nervous anxiety, in addition, also disturb circulatory and respiratory mechanism. The detection of MP particles has also placed emphasis on identification technologies such as scanning electron microscopy, Raman spectroscopy, optical detection, Fourier transform infrared spectroscopy, thermo-analytical techniques, flow cytometry, holography, and hyperspectral imaging. It suggests that further research should be explored to understand the source, distribution, and health impacts and evaluate numerous detection methodologies for the MPs along with purification techniques.
Collapse
Affiliation(s)
- Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Manthar Ali Mallah
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, 67480, Sindh, Pakistan
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
- Health Science Center, South China Hospital, Shenzhen University, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
27
|
Fox S, Stefánsson H, Peternell M, Zlotskiy E, Ásbjörnsson EJ, Sturkell E, Wanner P, Konrad-Schmolke M. Physical characteristics of microplastic particles and potential for global atmospheric transport: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:122938. [PMID: 37981185 DOI: 10.1016/j.envpol.2023.122938] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Recent interest in microplastic pollution of natural environments has brought forth samples which confirm the pollutant's omnipresence in a variety of ecosystems. This includes locations furthest removed from human activity. Atmospheric transport and deposition are suspected as the primary transport pathway to these remote locations. The factors most influential on participation in atmospheric transport are yet to be determined. This meta-analysis aims to identify patterns that exist between physical characteristics of microplastic particles and their potential for atmospheric transport. Our review addresses the following questions: Which characteristics of microplastic particles promote atmospheric transport and deposition into remote regions, and how significant are these factors in determining distance transported from their sources? This article analyzes commonly reported physical attributes-- shape, polymer composition and color-- from studies in urban and remote areas. The analysis of 68 studies, composed of data from 2078 samples, shows higher occurrence of microplastic particles in remote samples with fiber shapes, polyester compositions, and red, blue, and transparent colors. This meta-analysis is the first to identify patterns between physical properties of microplastic particles and extent of their participation in atmospheric transport to global remote locations.
Collapse
Affiliation(s)
- Sydney Fox
- Department of Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Mark Peternell
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Edward Zlotskiy
- Albert Nenken School of Engineering, The Cooper Union for the Advancement of Science and Art, Brooklyn, NY, USA
| | | | - Erik Sturkell
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Philipp Wanner
- Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
| | | |
Collapse
|
28
|
Zambrano-Pinto MV, Tinizaray-Castillo R, Riera MA, Maddela NR, Luque R, Díaz JMR. Microplastics as vectors of other contaminants: Analytical determination techniques and remediation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168244. [PMID: 37923271 DOI: 10.1016/j.scitotenv.2023.168244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The ubiquitous and persistent presence of microplastics (MPs) in aquatic and terrestrial ecosystems has raised global concerns due to their detrimental effects on human health and the natural environment. These minuscule plastic fragments not only threaten biodiversity but also serve as vectors for contaminants, absorbing organic and inorganic pollutants, thereby causing a range of health and environmental issues. This review provides an overview of microplastics and their effects. This work highlights available analytical techniques for detecting and characterizing microplastics in different environmental matrices, assessing their advantages and limitations. Additionally, this review explores innovative remediation approaches, such as microbial degradation and other advanced methods, offering promising prospects for combatting microplastic accumulation in contaminated environments. The focus on environmentally-friendly technologies, such as the use of microorganisms and enzymes for microplastic degradation, underscores the importance of sustainable solutions in plastic pollution management. In conclusion, this article not only deepens our understanding of the microplastic issue and its impact but also advocates for the urgent need to develop and implement effective strategies to mitigate this critical environmental challenge. In this context, the crucial role of advanced technologies, like quantitative Nuclear Magnetic Resonance spectroscopy (qNMR), as promising tools for rapid and efficient microplastic detection, is emphasized. Furthermore, the potential of the enzyme PETase (polyethylene terephthalate esterase) in microplastic degradation is examined, aiming to address the growing plastic pollution, particularly in saline environments like oceanic ecosystems. These innovations offer hope for effectively addressing microplastic accumulation in contaminated environments and minimizing its adverse impacts.
Collapse
Affiliation(s)
- Maria Veronica Zambrano-Pinto
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Rolando Tinizaray-Castillo
- Departamento de Construcciones Civiles, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - María A Riera
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón EC092302, Ecuador.
| | - Joan Manuel Rodríguez Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Ecuador; Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, S/N, Avenida Urbina y Che Guevara, Portoviejo 130104, Ecuador.
| |
Collapse
|
29
|
Xu L, Li K, Bai X, Zhang G, Tian X, Tang Q, Zhang M, Hu M, Huang Y. Microplastics in the atmosphere: Adsorb on leaves and their effects on the phyllosphere bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132789. [PMID: 37862903 DOI: 10.1016/j.jhazmat.2023.132789] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Phyllosphere is the largest interface between the atmosphere and terrestrial ecosystems and serves as a major sink for atmospheric microplastics (MPs). It is also a unique habitat for microbiota with diverse ecological functions. This field study investigated the characteristics of atmospheric MPs adsorbed on leaves with automatic technology, and found their abundance was 3.62 ± 1.29 items cm-2. MPs on leaves were mainly below 80 µm, and dominated by polyamide, polyethene, and rubber. MPs on leaves correlated significantly with the structure and functions of the phyllosphere bacterial community (PBC). Both the MPs abundance and size distribution (MSD) were positively correlated with the α diversity and negatively correlated with the β diversity and network complexity of PBC. PBC functions of environmental and genetic information process were negatively correlated with MPs abundance, and functions related to human diseases and cellular process were positively correlated with MSD significantly. The relative abundance of Sphingomonas was significantly correlated with the MSD, suggesting that Sphingomonas might emerge as the key genus involved in the pathogenicity of PBC mediated by MPs. These results highlighted the ecological health risks of atmospheric MPs as they can be transferred anywhere and potentially increase the pathogenicity of local phyllosphere microflora.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xudong Tian
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Qian Tang
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China.
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
30
|
Kannankai MP, Devipriya SP. Atmospheric microplastic deposition in a coastal city of India: The influence of a landfill source on monsoon winds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168235. [PMID: 37923255 DOI: 10.1016/j.scitotenv.2023.168235] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
Coastal zones experience various wind events that may influence the characteristics, distribution, and dynamics of atmospheric microplastic pollutants. In the present study, we investigated the characteristics of the bulk atmospheric microplastic deposition in Kochi, Kerala, India, during three distinct seasons: Northeast Monsoon (NEM), Summer (SMR), and Southwest monsoon (SWM). Seasonally, the highest microplastic fallout rate was recorded for the NEM (37.29 particles m-2d-1), followed by SMR (15.17 particles m-2 d-1) and the SWM (11.57 particles m-2d-1). The microplastic abundance was not correlated to the amount of rainfall. Further, the wind rose and HYSPLIT trajectory analysis illustrated the arrival of northeast monsoon winds to the city via the region in and around the municipal landfill, which could be a major source of airborne microplastic to the sampling stations, and the forward trajectories from the landfill site extended into the Arabia Sea, providing evidence on the potential atmospheric transport and subsequent deposition of microplastics into the ocean. With respect to the qualitative characteristics, blue-coloured and fibrous microplastics dominated the samples with a considerable number of particles belonging to the size range of 200-500 μm. The practice of drying synthetic clothes under natural sunlight may have substantially contributed to the increased prevalence of airborne microfibers. The higher numbers of polyethylene (PE) and polypropylene (PP) in the bulk microplastic deposition reinforce the concept of low-density polymers being more susceptible to deflation by the wind. Overall, the work signifies the role of monsoon winds in transporting microplastics from an unscientifically managed municipal landfill site and also highlights the importance of reducing the quantity of plastic waste ending up at the landfill to reduce the emission of microplastics proportionately.
Collapse
|
31
|
Limsiriwong K, Winijkul E. Exploring Personal Exposure to Airborne Microplastics across Various Work Environments in Pathum Thani Province, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7162. [PMID: 38131714 PMCID: PMC10743124 DOI: 10.3390/ijerph20247162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
This study used personal air samplers to assess the concentration of airborne microplastics exposed by different occupational groups during their working hours. The personal air sampler was placed in the "breathing zone" of the worker during working hours to collect microplastic exposure data. Occupations examined included housekeepers, laundromat staff, office workers, van drivers, street vendors, maintenance technicians in wastewater treatment plants, and waste segregation officers in the university and market. The level of airborne microplastic exposure was found to be influenced by the daily activities and environmental conditions of the workplace. Waste segregation officers in the university and market exhibited the highest levels of exposure to airborne microplastics, at 3964 ± 2575 microplastics per cubic meter (n/m3) and 3474 ± 678 n/m3, respectively. Further analysis focused on airborne microplastics less than 10 µm in size which can be taken in through inhalation. During the 8 h working period, the waste segregation officer in the university recorded the highest 10 µm airborne microplastic intake, at 5460 pieces, followed by the waste segregation officer in the market at 3301 pieces, housekeepers at 899 pieces, van drivers at 721 pieces, maintenance technicians in WWTPs at 668 pieces, laundromat staff at 454 pieces, street vendors at 249 pieces, and office workers at 131 pieces.
Collapse
Affiliation(s)
| | - Ekbordin Winijkul
- Environmental Engineering and Management, Asian Institute of Technology, Pathum Thani 12120, Thailand;
| |
Collapse
|
32
|
Bhat MA. Indoor microplastics: a comprehensive review and bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121269-121291. [PMID: 37980322 DOI: 10.1007/s11356-023-30902-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Indoor microplastic (MP) pollution is becoming a worldwide issue because people spend more time inside. Through dust and air, indoor MP pollution may harm human health. This review summarizes recent advancements in indoor MP research, covering pretreatments, quality control, filter membranes, and identification methods. Additionally, it conducts bibliometric analysis to examine the usage of keywords, publication records, and authors' contributions to the field. Comparatively, dust and deposition samples exhibit higher MP concentrations than indoor air samples. Fiber-shaped MPs are commonly detected indoors. The color and types of MPs display variability, with polypropylene, polyethylene, polyethylene terephthalate, and polystyrene identified as the dominant MPs. Indoor environments generally demonstrate higher concentrations of MPs than outdoor environments, and MPs in the lower size range (1-100 µm) are typically more abundant. Among the reviewed articles, 45.24% conducted pretreatment on their samples, while 16.67% did not undergo any pretreatment. The predominant filter utilized in most studies was the Whatman Glass microfiber filter (41.67%), and MPs were predominantly characterized using µ-FTIR (19.23%). In the literature, 17 papers used blank samples, and eight did not. Blank findings were not included in most research (23 articles). A significant increase in published articles has been observed since 2020, with an annual growth rate exceeding 10%. The keyword microplastics had the highest frequency, followed by fibers. This indoor MP study emphasizes the need for collaborative research, policymaking, and stakeholder involvement to reduce indoor MP pollution. As indoor MP research grows, so are opportunities to identify and minimize environmental and health impacts.
Collapse
Affiliation(s)
- Mansoor Ahmad Bhat
- Faculty of Engineering, Department of Environmental Engineering 26555, Eskişehir Technical University, Eskişehir, Türkiye.
| |
Collapse
|
33
|
Liu S, Liu Z, Zhao H, Guo Y, Ma Y, Zhou L, Qi Y, Zhao Q, Xiao C, Yang X, Wang F. Molecular Structure Characterization of Micro/Nanoplastics by 193 nm Ultraviolet Photodissociation Mass Spectrometry. Anal Chem 2023. [PMID: 38032544 DOI: 10.1021/acs.analchem.3c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The degradation of macroplastics results in micro/nanoplastics (MNPs) in the natural environment, inducing high health risks worldwide. It remains challenging to characterize the accurate molecular structures of MNPs. Herein, we integrate 193 nm ultraviolet photodissociation (UVPD) with mass spectrometry to interrogate the molecular structures of poly(ethylene glycol) terephthalate and polyamide (PA) MNPs. The backbones of the MNP polymer can be efficiently dissociated by UVPD, producing rich types of fragment ions. Compared to high-energy collision dissociation (HCD), the structural informative fragment ions and corresponding sequence coverages obtained by UVPD were all improved 2.3 times on average, resulting in almost complete sequence coverage and precise structural interrogation of MNPs. We successfully determine the backbone connectivity differences of MNP analogues PA6, PA66, and PA610 by improving the average sequence coverage from 26.8% by HCD to 89.4% by UVPD. Our results highlight the potential of UVPD in characterizing and discriminating backbone connectivity and chain end structures of different types of MNPs.
Collapse
Affiliation(s)
- Shiwen Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjie Guo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yaolu Ma
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqiang Zhou
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanxia Qi
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Qiancheng Zhao
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Liu S, Bai F, Men Z, Gu X, Wang F, Li Y, Liu Q. Spatial distribution, source apportionment and potential ecological risk assessment of suspended atmosphere microplastics in different underlying surfaces in Harbin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166040. [PMID: 37543333 DOI: 10.1016/j.scitotenv.2023.166040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Although suspended atmospheric microplastics (SAMPs) have been found to be ubiquitous and have potential impacts on human health, whereas studies related to source apportionment and potential ecological risk assessment in the atmospheric environment are still limited. This study investigated spatial distribution, source apportionment and potential ecological risk of SAMPs in six underlying surfaces of Harbin, China. The results show that all six underlying surfaces existed SAMPs, including polypropylene (PP), polyethylene terephthalate (PET) polyethylene (PE), polystyrene (PS) and polyvinyl chloride (PVC), with approximate 26.13 %, 24.10 %, 23.87 %, 13.51 %, and 12.39 %, respectively. SAMPs abundances from filtered air were relatively high and averaged 1.76 n/m3. The SAMPs mainly contained fibrous (59.01 %), fragmented (30.18 %), and granular (10.81 %) with transparent (62.39 %), black 13.74 %), red (7.43 %), white (6.53 %), blue, and yellow (3.60 %), and particle size ranged from 1.3 to 518 μm. In addition, source apportionment of SAMPs shows that SAMPs were originated from five emission sources including living source (19.53 %), construction source (12.08 %), transportation source (47.25 %), industrial source (5.11 %), and agricultural source (16.13 %) in Harbin. A significant correction was observed between SAMPs abundances and human activity (R = 0.68, P = 0.66), atmospheric humidity (R = -0.40, P = 0.02), and wind direction (R = 0.22, P = 0.04) in different underlying surface. Furthermore, potential ecological hazardous single index (EI) of PVC and PS were higher than PP, PET, and PS in the construction land, cultivated land, forest land, grassland, water area, and unused land. An estimation of the potential ecological risk index (RI) from SAMPs using Positive Matrix Factorization (PMF) model indicated that Harbin presented a minor ecological risk with average 16.59 of RI index of microplastics in environments. In conclusion, data in this study indicate that SAMPs are existed in atmospheric environments, which have possible risks for human health via inhalation.
Collapse
Affiliation(s)
- Shuo Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Fuliang Bai
- School of Geographical Science, Harbin Normal University, Harbin 150025, China.
| | - Zhiyuan Men
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Xueqian Gu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Feiyu Wang
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Yuxiang Li
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| | - Qi Liu
- School of Geographical Science, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
35
|
Rani M, Ducoli S, Depero LE, Prica M, Tubić A, Ademovic Z, Morrison L, Federici S. A Complete Guide to Extraction Methods of Microplastics from Complex Environmental Matrices. Molecules 2023; 28:5710. [PMID: 37570680 PMCID: PMC10420958 DOI: 10.3390/molecules28155710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Sustainable development is a big global challenge for the 21st century. In recent years, a class of emerging contaminants known as microplastics (MPs) has been identified as a significant pollutant with the potential to harm ecosystems. These small plastic particles have been found in every compartment of the planet, with aquatic habitats serving as the ultimate sink. The challenge to extract MPs from different environmental matrices is a tangible and imperative issue. One of the primary specialties of research in environmental chemistry is the development of simple, rapid, low-cost, sensitive, and selective analytical methods for the extraction and identification of MPs in the environment. The present review describes the developments in MP extraction methods from complex environmental matrices. All existing methodologies (new, old, and proof-of-concept) are discussed and evaluated for their potential usefulness to extract MPs from various biotic and abiotic matrices for the sake of progress and innovation. This study concludes by addressing the current challenges and outlining future research objectives aimed at combating MP pollution. Additionally, a set of recommendations is provided to assist researchers in selecting appropriate analytical techniques for obtaining accurate results. To facilitate this process, a proposed roadmap for MP extraction is presented, considering the specific environmental compartments under investigation. By following this roadmap, researchers can enhance their understanding of MP pollution and contribute to effective mitigation strategies.
Collapse
Affiliation(s)
- Monika Rani
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| | - Serena Ducoli
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| | - Laura Eleonora Depero
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| | - Miljana Prica
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Aleksandra Tubić
- Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Zahida Ademovic
- Faculty of Forestry, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Liam Morrison
- Earth and Ocean Sciences, School of Natural Sciences and Ryan Institute, University of Galway, H91TK33 Galway, Ireland
| | - Stefania Federici
- Department of Mechanical and Industrial Engineering, University of Brescia and INSTM Research Unit of Brescia, 25123 Brescia, Italy (S.D.); (L.E.D.)
| |
Collapse
|
36
|
Hao Y, Zhou R, Wang S, Ding X, Zhu J, Yang L, Li Y, Ding X. Quantitative determination of bromochloroacetamide in mice urine by gas chromatography combined with salting-out assisted dispersive liquid-liquid microextraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37401339 DOI: 10.1039/d3ay00504f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Bromochloroacetamide (BCAcAm) is the main haloacetamide (HAcAm) detected in drinking water in different regions and exhibits strong cytotoxicity and genotoxicity. However, there is no appropriate method for detecting BCAcAm in urine or other biological samples, and thus, the internal exposure level in the population cannot be accurately assessed. In this study, a gas chromatography-electron capture detector (GC-ECD) was combined with salting-out assisted dispersive liquid-liquid microextraction (SA-DLLME) to develop a rapid and robust method for BCAcAm detection in urine of mice continuously exposed to BCAcAm. The factors influencing the pre-treatment procedure, including the type and volume of extraction and disperser solvents, extraction and standing time, and the amount of salt, were evaluated systematically. Under the optimised conditions, the analyte achieved good linearity in the spiked concentration range of 1.00-400.00 μg L-1, and the correlation coefficient was higher than 0.999. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.17 μg L-1 and 0.50 μg L-1, respectively. The recoveries ranged from 84.20% to 92.17%. The detection of BCAcAm at three different calibration levels using this method afforded an intra-day precision of 1.95-4.29%, while the inter-day precision range was 5.54-9.82% (n = 6). This method has been successfully applied to monitor the concentration of BCAcAm in mouse urine in toxicity experiments and can provide technical support for assessing human internal exposure levels and health risks in later studies.
Collapse
Affiliation(s)
- Yamei Hao
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Run Zhou
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Shunan Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xingwang Ding
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingying Zhu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Li Yang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Yao Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| |
Collapse
|
37
|
Chang DY, Jeong S, Shin J, Park J, Park CR, Choi S, Chun CH, Chae MY, Lim BC. First quantification and chemical characterization of atmospheric microplastics observed in Seoul, South Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121481. [PMID: 37003584 DOI: 10.1016/j.envpol.2023.121481] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
This study is the first report on atmospheric microplastics (MPs) observed in five outdoor environments, including an urban forest, a business center, commercial areas, and a public transportation hub in Seoul, South Korea. Air samples were collected using an active air pump sampler for 24 h in each area only on days without rainfall. All observed microplastics are secondary microplastics, in the form of irregularly-shaped fragments or fibers produced through various degradation processes, rather than being primarily produced like microbeads. The abundance of atmospheric MPs varied depending on the environment (i.e., region, height, and time) from 0.33 to 1.21 MP m-3, with the average number of MPs being 0.72 MP m-3 (standard deviation ± 0.39). MPs in the urban forest was observed to be 27% lower in abundance than that in the urban center which is ∼3 km away. The central business district was observed to have a 25% higher abundance during weekdays than on weekends. Our results show the ubiquity of MPs in various areas from high-rise buildings to forests tens of kilometers away from their direct sources, and a positive correlation between the abundance of MP and human activity. Morphologically, the fragment type (87.4%) predominated over the fiber type (12.6%), and chemically, polypropylene (PP) and polyethylene terephthalate (PET) components accounted for 65% of the total MP. PP polymers were found in all observation sites and contributed to 59% of the total MP fragments. The observed fibrous MPs were mainly composed of PET (72.7%) and PP (18.2%) polymers. Compared to other large cities (Shanghai, Beijing, Paris), Seoul is exposed to low levels of atmospheric MPs and high proportions of PP polymers. This study is limited to atmospheric MPs observed in summer and further investigation of MPs is needed to comprehensively understand the distribution and cycle of MPs based on long-term monitoring of atmospheric MPs.
Collapse
Affiliation(s)
- Dong Yeong Chang
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Sujong Jeong
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea.
| | - Jaewon Shin
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Jungmin Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Chan Ryul Park
- Urban Forests Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Sumin Choi
- Urban Forests Division, National Institute of Forest Science, Seoul, Republic of Korea
| | - Chi-Hwan Chun
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| | - Min-Young Chae
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| | - Byung Chul Lim
- Institute of Technology, CESCO Co., Seoul, Republic of Korea
| |
Collapse
|
38
|
Yu F, Pei Y, Zhang X, Ma J. Weathering and degradation of polylactic acid masks in a simulated environment in the context of the COVID-19 pandemic and their effects on the growth of winter grazing ryegrass. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130889. [PMID: 36731322 PMCID: PMC9882953 DOI: 10.1016/j.jhazmat.2023.130889] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The COVID-19 pandemic has led to explosive growth in the production and consumption of disposable medical masks, which has caused new global environmental problems due to the improper disposal of these masks and lack of effective mask recycling methods. To reduce the environmental load caused by the inability of synthetic plastics to degrade, polylactic acid (PLA) masks, as a biodegradable environmentally friendly plastic, may become a solution. This study simulated the actual degradation process of new PLA masks in different environments by soaking them in various solutions for 4 weeks and explored the influence of the treated PLA fabric fibers on the growth of winter ryegrass. The results show that the weathering degradation of PLA fibers in water mainly occurs through the hydrolysis of ester bonds, and weathering leads to cheese-like and gully-like erosion on the surface of the PLA fiber fabric layer and finally to fiber fracture and the release of microplastics (MPs). The average number of MPs released within 4 weeks is 149.5 items/piece, the particle size is 20-500 µm (44%), and 63.57% of the MPs are transparent fibers. The outer, middle, and inner layers of weathered PLA masks tend to be hydrophilic and have lower mechanical strength. PLA fibers after different treatment methods affect the growth of winter ryegrass. PLA masks are undoubtedly a greener choice than ordinary commercial masks, but in order to confirm this, the entire degradation process, the final products, and the impact on the environment need to be further studied. In the future, masks may be developed to be made from more environmentally friendly biodegradable materials that can have good protecting effects and also solve the problem of end-of-life recycling. A SYNOPSIS: Simulation of the actual degradation process of PLA masks and exploration of the influence of mask degradation on the growth of winter ryegrass.
Collapse
Affiliation(s)
- Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Yizhi Pei
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Xiaochen Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, No 999, Huchenghuan Road, Shanghai 201306, PR China
| | - Jie Ma
- Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
39
|
Gumbiowski N, Loza K, Heggen M, Epple M. Automated analysis of transmission electron micrographs of metallic nanoparticles by machine learning. NANOSCALE ADVANCES 2023; 5:2318-2326. [PMID: 37056630 PMCID: PMC10089082 DOI: 10.1039/d2na00781a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Metallic nanoparticles were analysed with respect to size and shape by a machine learning approach. This involved a separation of particles from the background (segmentation), a separation of overlapping particles, and the identification of individual particles. An algorithm to separate overlapping particles, based on ultimate erosion of convex shapes (UECS), was implemented. Finally, particle properties like size, circularity, equivalent diameter, and Feret diameter were computed for each particle of the whole particle population. Thus, particle size distributions can be easily created based on the various parameters. However, strongly overlapping particles are difficult and sometimes impossible to separate because of an a priori unknown shape of a particle that is partially lying in the shadow of another particle. The program is able to extract information from a sequence of images of the same sample, thereby increasing the number of analysed nanoparticles to several thousands. The machine learning approach is well-suited to identify particles at only limited particle-to-background contrast as is demonstrated for ultrasmall gold nanoparticles (2 nm).
Collapse
Affiliation(s)
- Nina Gumbiowski
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Kateryna Loza
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH 52428 Jülich Germany
| | - Matthias Epple
- Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
40
|
Costa-Gómez I, Suarez-Suarez M, Moreno JM, Moreno-Grau S, Negral L, Arroyo-Manzanares N, López-García I, Peñalver R. A novel application of thermogravimetry-mass spectrometry for polystyrene quantification in the PM 10 and PM 2.5 fractions of airborne microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159041. [PMID: 36174703 DOI: 10.1016/j.scitotenv.2022.159041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Microplastics have appeared as emerging pollutants due to the diverse applications of plastics in today's world. Growing evidence points to the negative impacts that airborne microplastics have on human health, as they can enter the human body through respiration. Our aim was to quantify polystyrene airborne microplastics in smaller fractions, thoracic (PM10) and alveolar (PM2.5), as they have scarcely been studied. In this work, we proposed a methodology based on thermogravimetric analysis coupled with mass spectrometry that requires minimal sample preparation and does not limit particle size. We applied this methodology to quantify the airborne polystyrene in PM10 and PM2.5 fractions in mass units of microplastics per m3 of air in an urban and agricultural region during the summer of 2021. The mean concentrations of polystyrene found in the PM10 and PM2.5 fractions were 2.09 and 1.81 ng m-3, respectively. Therefore, the majority of airborne polystyrene microplastics are found in the alveolar fraction which, is associated with severe cardiopulmonary and respiratory diseases. According to air mass backward trajectories, it was noted that the main sources of these emerging pollutants could be related to local agricultural practices.
Collapse
Affiliation(s)
- Isabel Costa-Gómez
- Department of Chemical and Environmental Engineering, Regional Campus of International Excellence "Campus Mare Nostrum", Technical University of Cartagena, Dr. Fleming sn, 30202 Cartagena, Spain
| | - Mariel Suarez-Suarez
- Department of Chemical and Environmental Engineering, Regional Campus of International Excellence "Campus Mare Nostrum", Technical University of Cartagena, Dr. Fleming sn, 30202 Cartagena, Spain
| | - José María Moreno
- Department of Chemical and Environmental Engineering, Regional Campus of International Excellence "Campus Mare Nostrum", Technical University of Cartagena, Dr. Fleming sn, 30202 Cartagena, Spain
| | - Stella Moreno-Grau
- Department of Chemical and Environmental Engineering, Regional Campus of International Excellence "Campus Mare Nostrum", Technical University of Cartagena, Dr. Fleming sn, 30202 Cartagena, Spain
| | - L Negral
- Department of Chemical and Environmental Engineering, Regional Campus of International Excellence "Campus Mare Nostrum", Technical University of Cartagena, Dr. Fleming sn, 30202 Cartagena, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Ignacio López-García
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain.
| |
Collapse
|
41
|
Microplastics and nanoplastics in food, water, and beverages, part II. Methods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Ishii H, Shibuya M, Kusano K, Sone Y, Kamiya T, Wakuno A, Ito H, Miyata K, Sato F, Kuroda T, Yamada M, Leung GNW. Generic approach for the discovery of drug metabolites in horses based on data-dependent acquisition by liquid chromatography high-resolution mass spectrometry and its applications to pharmacokinetic study of daprodustat. Anal Bioanal Chem 2022; 414:8125-8142. [PMID: 36181513 DOI: 10.1007/s00216-022-04347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022]
Abstract
In drug metabolism studies in horses, non-targeted analysis by means of liquid chromatography coupled with high-resolution mass spectrometry with data-dependent acquisition (DDA) has recently become increasingly popular for rapid identification of potential biomarkers in post-administration biological samples. However, the most commonly encountered problem is the presence of highly abundant interfering components that co-elute with the target substances, especially if the concentrations of these substances are relatively low. In this study, we evaluated the possibility of expanding DDA coverage for the identification of drug metabolites by applying intelligently generated exclusion lists (ELs) consisting of a set of chemical backgrounds and endogenous substances. Daprodustat was used as a model compound because of its relatively lower administration dose (100 mg) compared to other hypoxia-inducible factor stabilizers and the high demand in the detection sensitivity of its metabolites at the anticipated lower concentrations. It was found that the entire DDA process could efficiently identify both major and minor metabolites (flagged beyond the pre-set DDA threshold) in a single run after applying the ELs to exclude 67.7-99.0% of the interfering peaks, resulting in a much higher chance of triggering DDA to cover the analytes of interest. This approach successfully identified 21 metabolites of daprodustat and then established the metabolic pathway. It was concluded that the use of this generic intelligent "DDA + EL" approach for non-targeted analysis is a powerful tool for the discovery of unknown metabolites, even in complex plasma and urine matrices in the context of doping control.
Collapse
Affiliation(s)
- Hideaki Ishii
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan.
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Mariko Shibuya
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Kanichi Kusano
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, 105-0003, Japan
| | - Yu Sone
- Veterinarian Section, Equine Department, Japan Racing Association, 6-11-1 Roppongi, Minato-ku, Tokyo, 105-0003, Japan
| | - Takahiro Kamiya
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, 270-1431, Japan
| | - Ai Wakuno
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, 270-1431, Japan
| | - Hideki Ito
- Equine Veterinary Clinic, Horse Racing School, Japan Racing Association, 835-1 Ne, Shiroi, Chiba, 270-1431, Japan
| | - Kenji Miyata
- JRA Equestrian Park Utsunomiya Office, 321-4 Tokamicho, Utsunomiya, Tochigi, 320-0856, Japan
| | - Fumio Sato
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Taisuke Kuroda
- Clinical Veterinary Medicine Division, Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke, Tochigi, 329-0412, Japan
| | - Masayuki Yamada
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| | - Gary Ngai-Wa Leung
- Drug Analysis Department, Laboratory of Racing Chemistry, 1731-2 Tsuruta-machi, Utsunomiya, Tochigi, 320-0851, Japan
| |
Collapse
|
43
|
Jarosz K, Janus R, Wądrzyk M, Wilczyńska-Michalik W, Natkański P, Michalik M. Airborne Microplastic in the Atmospheric Deposition and How to Identify and Quantify the Threat: Semi-Quantitative Approach Based on Kraków Case Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12252. [PMID: 36231552 PMCID: PMC9564561 DOI: 10.3390/ijerph191912252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Airborne microplastic is an emerging and widespread pollutant yet is still under-characterised and insufficiently understood. Detailed description of microplastic air pollution is crucial as it has been identified in human lungs and remote locations, highlighting the atmosphere as a medium of MP dispersion and transportation. The lack of standardization of methods for measuring and further monitoring of microplastic pollution is an obstacle towards assessment of health risks. Since the first recognition of MP presence in the atmosphere of Krakow in 2019, this research was conducted to further characterise and develop the methods for qualitative and quantitative analysis of airborne microplastic (attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR); pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS); scanning electron microscopy-energy dispersive spectroscopy SEM-EDS) and pre-treatment of samples. The data were gathered in seven cycles from June 2019 to February 2020. The methods used in the study allowed the identification and analysis of the changing ratio of the different types of synthetic polymers identified in the atmospheric fallout (low-density polyethylene, nylon-66, polyethylene, polyethylene terephthalate, polypropylene and polyurethane). Observations of interactions between microplastic particles and the environment were conducted with analyses of surface changes due to degradation. Different phases attached to the microplastics surfaces, with some of the inorganic contaminants transported on these surfaces determined also to be of anthropogenic origin. The methodology proposed in this study allows further characterisation of microplastic from multiple locations to provide highly comparable data, leading to identification of the sources of this phenomenon, as well as seasonal changes.
Collapse
Affiliation(s)
- Kinga Jarosz
- Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
| | - Rafał Janus
- Faculty of Energy and Fuels, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mariusz Wądrzyk
- Faculty of Energy and Fuels, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Krakow, Poland
| | | | - Piotr Natkański
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland
| | - Marek Michalik
- Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
| |
Collapse
|
44
|
Câmara JS, Martins C, Pereira JAM, Perestrelo R, Rocha SM. Chromatographic-Based Platforms as New Avenues for Scientific Progress and Sustainability. Molecules 2022; 27:5267. [PMID: 36014506 PMCID: PMC9412595 DOI: 10.3390/molecules27165267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Chromatography was born approximately one century ago and has undergone outstanding technological improvements in innovation, research, and development since then that has made it fundamental to advances in knowledge at different levels, with a relevant impact on the well-being and health of individuals. Chromatography boosted a comprehensive and deeper understanding of the complexity and diversity of human-environment interactions and systems, how these interactions affect our life, and the several societal challenges we are currently facing, namely those related to the sustainability of our planet and the future generations. From the life sciences, which allowed us to identify endogenous metabolites relevant to disease mechanisms, to the OMICS field, nanotechnology, clinical and forensic analysis, drug discovery, environment, and "foodprint", among others, the wide range of applications of today's chromatographic techniques is impressive. This is fueled by a great variability of powerful chromatographic instruments currently available, with very high sensitivity, resolution, and identification capacity, that provide a strong basis for an analytical platform able to support the challenging demands of the postgenomic and post COVID-19 eras. Within this context, this review aims to address the great utility of chromatography in helping to cope with several societal-based challenges, such as the characterization of disease and/or physiological status, and the response to current agri-food industry challenges of food safety and sustainability, or the monitoring of environmental contamination. These are increasingly important challenges considering the climate changes, the tons of food waste produced every day, and the exponential growth of the human population. In this context, the principles governing the separation mechanisms in chromatography as well the different types and chromatographic techniques will be described. In addition, the major achievements and the most important technological advances will be also highlighted. Finally, a set of studies was selected in order to evince the importance of different chromatographic analyses to understand processes or create fundamental information in the response to current societal challenges.
Collapse
Affiliation(s)
- José S. Câmara
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Cátia Martins
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| | - Jorge A. M. Pereira
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
45
|
Wang Z, Zhang Y, Kang S, Yang L, Luo X, Chen P, Guo J, Hu Z, Yang C, Yang Z, Gao T. Long-range transport of atmospheric microplastics deposited onto glacier in southeast Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119415. [PMID: 35526641 DOI: 10.1016/j.envpol.2022.119415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/10/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Micoroplastics (MPs) can be transported through atmospheric circulations, and have caused global attentions due to their potential risk to the environment. In this study, MPs in snowpit samples collected from Demula (DML) glacier in southeast Tibetan Plateau were investigated. The results showed that the average abundance of MPs in snow was 9.55 ± 0.9 items L-1, with dominant shapes of plastic fibers and films. MPs size was dominated by MPs <200 μm, with detected minimum size of 48 μm from the DML glacier. MPs in snowpit indicated seasonal variations, showing relatively higher abundance during the monsoon season than that during the non-monsoon season. The chemical composition of MPs and backward air mass trajectory modeling revealed that MPs in DML snowpit mostly originated from the atmospheric long-range transport, suggesting the glacier in southeast Tibetan Plateau can be a temporal sink of atmospheric MPs. The surface structure of the MPs was rough and adhered to a large amount of mineral dust and metallic particles, revealed that these MPs have undergone severe weathering during transportation and after deposition. Based on the MPs data, multi-year average precipitation, and glacier mass balance of DML glacier, the deposition flux of MPs on DML glacier was estimated to be about 7640 ± 720 to 9550 ± 900 items m-2 yr-1 and the export from melting water was about 5.9 ± 1.3 × 109 to 6.6 ± 1.4 × 109 items yr-1, indicating the glacier may be also an important source of MPs to the downstream ecosystems. These results provided the current status of MPs pollution on the Tibetan Plateau glaciers and new data to the study of MPs in typical cryospheric regions.
Collapse
Affiliation(s)
- Zhaoqing Wang
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yulan Zhang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Yang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Luo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhaofu Hu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chengde Yang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengzheng Yang
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Tanguang Gao
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|