1
|
Tang P, Hou L, Yin M, Huang F, Pan Z, Shi T, Li J, Zhu Y, Zhang X, Gao P. Towards robust partial nitrification in low-ammonia wastewater: Electrospinning nanofiber composite-enhanced hydrogel beads immobilized comammox Nitrospira. BIORESOURCE TECHNOLOGY 2025; 429:132541. [PMID: 40233879 DOI: 10.1016/j.biortech.2025.132541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/17/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Stable partial nitrification (PN) in low-ammonia wastewater has been a critical challenge, but comammox Nitrospira shows great potential in PN systems due to unique physiological characteristics. Polyvinyl alcohol/sodium alginate electrospinning nanofiber (PVA/SA-EN) and polyvinylidene fluoride EN (PVDF-EN) were used to construct EN hydrogel beads (ENHB) with sandwich and core-shell structures, respectively. Comammox HB (cHB) and three types of comammox ENHB (cENHB) were assembled by immobilizing comammox sludge and operated for 60 days in low-ammonia wastewater. Results showed a significant correlation between PN performance, HB pore structure, and comammox Nitrospira abundance. With superior pore structure and mechanical strength, PVA/SA-PVDF-cENHB achieved a nitrite accumulation rate of 55.08 %, indicating enhanced PN performance. The contribution of comammox Nitrospira to PN was 73.19 %. Its abundance in PVA/SA-PVDF-cENHB was 5.56 × 10⁶ copies/(g sludge), 1.16-1.95-fold higher than the other three HB. Nanofiber composite-enhanced hydrogel immobilizes comammox Nitrospira provides new ideas for achieving robust PN in low-ammonia wastewater.
Collapse
Affiliation(s)
- Peng Tang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Liangang Hou
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China
| | - Meiling Yin
- Yantai Center of Coastal Zone Geological Survey, China Geological Survey, Yantai 264000, China
| | - Feng Huang
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China
| | - Tianhao Shi
- China Construction First Group Construction & Development Co., LTD, Beijing 100102, China; China Construction First Group Corporation Limited, Beijing 100089, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Yuhan Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Xin Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Peng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Ran X, Zhou M, Wang T, Wang Y, Wang H, Wang Y. Exploring the ecological niche of comammox Nitrospira by in-situ enrichment within mainstream nitrification systems. WATER RESEARCH 2025; 283:123810. [PMID: 40378467 DOI: 10.1016/j.watres.2025.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/19/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Complete-ammonia-oxidization bacteria (Comammox Nitrospira) hold promising potential for reducing carbon footprint in mainstream wastewater treatment. However, the inadequate understanding of comammox Nitrospira within wastewater systems has greatly hindered the utilization of these novel microbial resources. This study explored the ecological niche of comammox Nitrospira within mainstream nitrification systems by enriching them under varied operational conditions. The joint analysis of multiple linear regression and random forest model have identified in-situ ammonium concentration and pH as the two most important parameters influencing the growth of comammox Nitrospira, followed by nitrogen loading rate, nitrogen source type, and dissolved oxygen (DO). Meanwhile, the ecological niche preference of comammox Nitrospira was revealed. The optimal ranges of in-situ ammonium concentration and pH for comammox Nitrospira was found below 0.5 mg NH4+-N/L and 6.5-7.5, respectively, indicating that low free ammonia conditions favor their growth. Furthermore, comammox Nitrospira exhibited a competitive advantage over Nitrosomonas under weakly acidic pH (6.0-6.5), and adapted to DO fluctuations by interspecies shifts, whereas Nitrosomonas preferred relatively high DO (1.5-2 mg O2/L). Comparative genomics further confirmed the above niche differentiation of two groups from reconstructed comammox Nitrospira and Nitrosomonas genomes. Overall, these findings provide guidance for the application of comammox process in wastewater treatment, thereby supporting the transition of mainstream nitrification process toward a more sustainable and energy-efficient pathway.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Mingda Zhou
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Tong Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yanren Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for nvironmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Han Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China
| | - Yayi Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Su R, Shi L, Wei Y, Ma B. Comammox and AOA responses to ammonia loading rate in oligotrophic environments. WATER RESEARCH 2025; 275:123191. [PMID: 39892190 DOI: 10.1016/j.watres.2025.123191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Nitrification is a central process in the global nitrogen cycle, yet the ecological niches and growth strategies of ammonia-oxidizing microorganisms in oligotrophic environments remain poorly understood. To investigate the ecological responses of complete ammonia oxidizers (Comammox) and ammonia-oxidizing archaea (AOA), a membrane bioreactor (MBR) system with two distinct ammonia loading rates (ALRs) was employed in this study. Metagenomic and meta-transcriptomic analyses showed that Comammox species-including Candidatus Nitrospira nitrosa and Candidatus Nitrospira inopinata-underwent a pronounced "bloom" only at high ALR, where their DNA and mRNA relative abundances reached 4.7 % and 5.63 %, respectively. Meanwhile, AOA steadily increased under both high and low ALR in oligotrophic environments. Network analysis further indicated stronger cooperative interactions between Comammox and AOA in higher ALR, highlighting distinct ecological strategies that underpin ammonia oxidation in oligotrophic environments. These findings not only support the development of low-carbon nitrogen removal processes in wastewater treatment but also clarify the impact of nitrogen loading on the distribution of ammonia-oxidizing microorganisms in natural ecosystems and provide insights into the origin and evolutionary pathways of these essential microbes.
Collapse
Affiliation(s)
- Run Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, PR China
| | - Litong Shi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, PR China
| | - Yan Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China
| | - Bin Ma
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecological and Environmental Science, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
4
|
Zhu Y, Hou J, Meng F, Xu M, Lin L, Yang L, Chen X. Comparative enrichment of complete ammonium oxidation bacteria in floccular sludge reactors: Sequencing batch reactor vs. continuous stirred tank reactor. WATER RESEARCH X 2025; 27:100305. [PMID: 39926342 PMCID: PMC11802381 DOI: 10.1016/j.wroa.2025.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
This study attempted to compare the enrichment of complete ammonium oxidation (comammox) bacteria, which are affiliated with Nitrospira and not able to generate nitrous oxide (N2O, a potent greenhouse gas) through biological pathways, in two commonly-utilized configurations of floccular sludge reactors, i.e., sequencing batch reactor (SBR) and continuous stirred tank reactor (CSTR), under the ammonium condition of mainstream wastewater (i.e., 40.0 g-N/m3). The results in terms of nitrification performance and microbial analyses during 216-d operation showed that compared with SBR offering a fluctuating but generally higher in-situ ammonium concentration (i.e., 1.0-6.0 g-N/m3) which was favorable for the growth of ammonium-oxidizing bacteria (AOB, belonging to Nitrosomonas in this study), CSTR managed to lower the in-situ ammonium level to < 2.0 g-N/m3, thus creating a competitive advantage for comammox bacteria with a highly oligotrophic lifestyle. Such an argument was further supported by dedicated batch tests which revealed that Nitrospira-dominant sludge had a lower maximum ammonium oxidation rate and lower apparent ammonium and oxygen affinity constants than Nitrosomonas-dominant sludge (i.e., 33.5 ± 2.1 mg-N/h/g-MLVSS vs. 139.9 ± 26.7 mg-N/h/g-MLVSS, 1.1 ± 0.1 g-N/m3 vs. 17.6 ± 4.6 g-N/m3, and 0.017 ± 0.002 g-O2/m3 vs. 0.037 ± 0.013 g-O2/m3, respectively), proving the nature of comammox bacteria as a K-strategist. Overall, this study not only provided useful insights into the effective enrichment of comammox bacteria in floccular sludge but also further revealed the interactions between comammox bacteria and AOB, thereby contributing to the future development of comammox-inclusive biological nitrogen removal technologies for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Ying Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Jiaying Hou
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Limin Lin
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, PR China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
5
|
Qiu D, Ke M, Xu N, Hu H, Zhu Y, Lu T, Jin M, Zhang Z, Zhang Q, Penuelas J, Gillings M, Qian H. Continuous Rice Cultivation Increases Celery Yield by Enhancing Plant Beneficial Bacteria in Rice-Celery Rotations. Environ Microbiol 2025; 27:e70085. [PMID: 40151905 DOI: 10.1111/1462-2920.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
The sustainable management of crops is a fundamental challenge as the human population and demand for food increase. Crop rotation, a practice that has been used for centuries, offers a sustainable solution with minimal environmental impact. However, our understanding of how microbial diversity changes during rotation and how microbially mediated functions enhance plant production remains limited. In our study, we combined field surveys of rice-celery rotations with greenhouse experiments. We found that crop rotation increased yield by increasing the presence of plant-beneficial bacteria, including a novel strain named Acinetobacter bohemicus HfQ1. Bacteria that promote plant growth are enriched under crop rotation, leading to increased ammonia oxidation, siderophore production and indole-3-acetic acid synthesis. These beneficial ecological consequences of crop rotation were consistent across various crops during our metadata analysis. Our study provides new insights into the development of innovative crop rotation models and effective strategies to safeguard food production and advance sustainable agriculture. Additionally, the Acinetobacter strain may serve as a potential microbial agent to replace chemical fertilisers, further supporting sustainable agricultural practices.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Nuohan Xu
- Institute for Advanced Study, Shaoxing University, Shaoxing, People's Republic of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, People's Republic of China
| | - Hang Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yuke Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - MingKang Jin
- Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qi Zhang
- Institute for Advanced Study, Shaoxing University, Shaoxing, People's Republic of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, People's Republic of China
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Catalonia, Spain
- CREAF, Campus Universitat Autònoma de Barcelona, Barcelona, Catalonia, Spain
| | - Michael Gillings
- ARC Centre of Excellence in Synthetic Biology, Faculty of Science and Engineering, Macquarie University, New South Wales, Australia
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Institute for Advanced Study, Shaoxing University, Shaoxing, People's Republic of China
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, People's Republic of China
| |
Collapse
|
6
|
Tan Q, Zhu Y, Zhao Y, Zheng L, Wang X, Xing Y, Wu H, Tian Q, Zhang Y. Comparative analysis of niche adaptation strategies of AOA, AOB, and comammox along a gate-controlled river-estuary continuum. WATER RESEARCH 2025; 273:122964. [PMID: 39693717 DOI: 10.1016/j.watres.2024.122964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Ammonia oxidizers are key players in the biogeochemical nitrogen cycle. However, in critical ecological zones such as estuaries, especially those affected by widespread anthropogenic dam control, our understanding of their occurrence, ecological performance, and survival strategies remains elusive. Here, we sampled sediments along the Haihe River-Estuary continuum in China, controlled by the Haihe Tidal Gate, and employed a combination of biochemical and metagenomic approaches to investigate the abundance, activity, and composition of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and complete ammonia oxidizers (comammox). We also conducted an extensive comparison of the salinity adaptation mechanisms of different ammonia oxidizers. We found that AOB (57.55 ± 11.46 %) dominated the nitrification process upstream of the tidal gate, while comammox (68.22 ± 14.42 %) played the major role downstream. Redundancy analysis results showed that total nitrogen, ammonium, and salinity were the primary factors influencing the abundance, activity, and contribution of ammonia oxidizers. The abundance and activity of AOB were significantly positively correlated with ammonium. KEGG annotation results showed that AOA Nitrososphaera, AOB Nitrosomonas, and comammox Nitrospira had 7, 31, and 22 genes associated to salinity adaptation, respectively, and were capable of employing both the "salt-in" and "salt-out" strategies. Metagenome assembly results indicated that comammox outperformed AOA primarily in compatible solute accumulation; AOA can synthesize glutamate, whereas comammox Nitrospira can additionally synthesize glycine betaine, choline, and trehalose. The tidal gate caused sharp shifts in ammonium (from 4.10 ± 3.28 mg·kg-1 to 0.45 ± 0.10 mg·kg-1) and salinity (from 1.64 ± 0.48 ppt to 3.26 ± 0.89 ppt), playing a dominant role in driving niche differentiation of ammonia oxidizers along the Haihe River-Estuary continuum. These findings provide profound insights into the nitrogen cycle in freshwater-saltwater transition zones, especially in today's world where estuaries are widely controlled by tidal gates.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yi Zhu
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yinjun Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, PR China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, PR China.
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yaoxin Zhang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
7
|
Zhao Y, Hu J, Wang J, Yao X, Zhang T, Hu B. Comammox Nitrospira act as key bacteria in weakly acidic soil via potential cobalamin sharing. IMETA 2025; 4:e271. [PMID: 40027486 PMCID: PMC11865330 DOI: 10.1002/imt2.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025]
Abstract
The discovery of comammox Nitrospira in low pH environments has reshaped the ammonia oxidation process in acidic settings, providing a plausible explanation for the higher nitrification rates observed in weakly acidic soils. However, the response of comammox Nitrospira to varying pH levels and its ecological role in these environments remains unclear. Here, a survey across soils with varying pH values (ranging from 4.4 to 9.7) was conducted to assess how comammox Nitrospira perform under different pH conditions. Results showed that comammox Nitrospira dominate ammonia oxidation in weakly acidic soils, functioning as a K-strategy species characterized by slow growth and stress tolerance. As a key species in this environment, comammox Nitrospira may promote bacterial cooperation under low pH conditions. Genomic evidence suggested that cobalamin sharing is a potential mechanism, as comammox Nitrospira uniquely encode a metabolic pathway that compensates for cobalamin imbalance in weakly acidic soils, where 86.8% of metagenome-assembled genomes (MAGs) encode cobalamin-dependent genes. Additionally, we used DNA stable-isotope probing (DNA-SIP) to demonstrate its response to pH fluctuations to reflect how it responds to the decrease in pH. Results confirmed that comammox Nitrospira became dominant ammonia oxidizers in the soil after the decrease in pH. We suggested that comammox Nitrospira will become increasingly important in global soils, under the trend of soil acidification. Overall, our work provides insights that how comammox Nitrospira perform in weakly acidic soil and its response to pH changes.
Collapse
Affiliation(s)
- Yuxiang Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Jiajie Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Jiaqi Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiangwu Yao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil EngineeringThe University of Hong KongHong Kong SARChina
- School of Public HealthThe University of Hong KongHong Kong SARChina
- Center for Environmental Engineering ResearchThe University of Hong KongHong Kong SARChina
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource SciencesZhejiang UniversityHangzhouChina
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental SafetyHangzhouChina
| |
Collapse
|
8
|
Li X, Zhang Z, Zhu Y, He Y, Deng S, Luo L. Distribution and key influential factors of comammox in drained and waterlogged soils of zoige plateau peatland. ENVIRONMENTAL RESEARCH 2025; 265:120456. [PMID: 39613009 DOI: 10.1016/j.envres.2024.120456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Peatlands are important carbon and nitrogen reservoirs, playing crucial roles in nitrogen cycling. During microbially-driven nitrogen cycling, nitrous oxide (N2O, 298 times global warming potential of CO2) can be emitted, exacerbating global warming. Complete ammonia-oxidizing bacteria (comammox), a newly discovered group of prokaryotes, can independently oxidize ammonia directly to nitrate, bypassing the nitrite stage, and thereby reducing N2O production associated with the traditional two-step nitrification process. However, information on comammox distribution and its key influential factors in plateau peatlands remains scarce. Thus, this study chose Zoige plateau peatland in China to collect soil samples from different soil types (drained and waterlogged), across different seasons (non-growing and growing), and at various depth (0-100 cm) to assess comammox abundance and community composition. Additionally, soil properties were analyzed and correlated with comammox abundance and community composition to identify the key factors affecting comammox distribution. Comammox abundance varied significantly across soil types, depth, and sampling seasons. Waterlogged soils demonstrated higher comammox abundance than drained soils. In waterlogged soils, comammox abundance showed higher during growing season than non-growing season, while the opposite trend was observed in drained soils. Regardless of soil types, comammox abundance decreased with increasing soil depth. In soils of Zoige plateau peatland, comammox clades A.1, A.2, A.3 and B.1 were identified, with clade B.1 dominating the comammox community. Both Nitrospira sp. CG24A (clade B.1) and Candidatus Nitrospira nitrificans (clade A.1) showed great seasonal variations. Soil properties, including moisture, pH, carbon, and nutrients, collectively influenced comammox abundance and diversity. Among these factors, NH4+-N was the main factor affecting comammox abundance, while moisture primarily drove community distribution. These findings provide valuable insights into comammox distribution, enhancing our understanding of its potential role in mitigating N2O emissions and thus nitrogen cycling in plateau peatland soils.
Collapse
Affiliation(s)
- Xin Li
- College of Environmental Sciences, Sichuan Agricultural University, 611130, Chengdu, People's Republic of China
| | - Zhifang Zhang
- College of Environmental Sciences, Sichuan Agricultural University, 611130, Chengdu, People's Republic of China
| | - Ying Zhu
- College of Environmental Sciences, Sichuan Agricultural University, 611130, Chengdu, People's Republic of China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, 611130, Chengdu, People's Republic of China
| | - Shihuai Deng
- College of Environmental Sciences, Sichuan Agricultural University, 611130, Chengdu, People's Republic of China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, 611130, Chengdu, People's Republic of China.
| |
Collapse
|
9
|
Xiang Y, Song X, Yang Y, Deng S, Fu L, Yang C, Chen M, Pu J, Zhang H, Chai H. Comammox rather than AOB dominated the efficient autotrophic nitrification-denitrification process in an extremely oxygen-limited environment. WATER RESEARCH 2024; 268:122572. [PMID: 39383803 DOI: 10.1016/j.watres.2024.122572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
The discovery of complete ammonia oxidizer (comammox) has challenged the traditional understanding of the two-step nitrification process. However, their functions in the oxygen-limited autotrophic nitrification-denitrification (OLAND) process remain unclear. In this study, OLAND was achieved using comammox-dominated nitrifying bacteria in an extremely oxygen-limited environment with a dissolved oxygen concentrations of 0.05 mg/L. The ammonia removal efficiency exceeded 97 %, and the total nitrogen removal efficiency reached 71 % when sodium bicarbonate was used as the carbon source. The pseudo-first- and second-order models were found to best fit the ammonia removal processes under low and high loads, respectively, suggesting distinct ammonia removal pathways. Full-length 16S rRNA gene sequencing and metagenomic results revealed that comammox-dominated under different oxygen levels, in conjunction with anammox and heterotrophic denitrifiers. The abundance of enzymes involved in energy metabolism indicates the coexistence of anammox and autotrophic nitrification-heterotrophic denitrification pathways. The binning results showed that comammox bacteria engaged in horizontal gene transfer with nitrifiers, anammox bacteria, and denitrifiers to adapt to an obligate environments. Therefore, this study demonstrated that comammox, anammox, and heterotrophic denitrifiers play important roles in the OLAND process and provide a reference for further reducing aeration energy in the autotrophic nitrogen removal process.
Collapse
Affiliation(s)
- Yu Xiang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China; School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Xiaoming Song
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Yilin Yang
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Shuai Deng
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Liwei Fu
- School of Architecture and Civil Engineering, Xihua University, Chengdu 610039, PR China
| | - Cheng Yang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Mengli Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Jia Pu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China
| | - Han Zhang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, PR China.
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
10
|
Chen Z, Wu Y, Dolfing J, Zhuang S, Wang B, Li D, Huang S, Rittmann BE. Complex ammonium oxidation demands visualized resolution. Sci Bull (Beijing) 2024; 69:2478-2482. [PMID: 38604937 DOI: 10.1016/j.scib.2024.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Yichang 443605, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle-upon-Tyne NE1 8QH, UK
| | - Shunyao Zhuang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton NJ 08540, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe AZ 85287-5701, USA
| |
Collapse
|
11
|
Saha P, Kniggendorf AK, Pommerening-Röser A, Nogueira R. Assessment of oxygen kinetic parameters for closely related ammonia-oxidizing bacteria. Lett Appl Microbiol 2024; 77:ovae076. [PMID: 39108081 DOI: 10.1093/lambio/ovae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The reaction kinetics of lithotrophic ammonia-oxidizing bacteria (AOB) are strongly dependent on dissolved oxygen (DO) as their metabolism is an aerobic process. In this study, we estimate the kinetic parameters, including the oxygen affinity constant (Km[O2]) and the maximum oxygen consumption rate (Vmax[O2]), of different AOB species, by fitting the data to the Michaelis-Menten equation using nonlinear regression analysis. An example for three different species of Nitrosomonas bacteria (N. europaea, N. eutropha, and N. mobilis) in monoculture is given, finding a Km[O2] of 0.25 ± 0.05 mg l-1, 0.47 ± 0.09 mg l-1, and 0.28 ± 0.08 mg l-1, and a Vmax[O2] of 0.07 ± 0.04 pg h-1cell-1, 0.25 ± 0.06 pg h-1cell-1, and 0.02 ± 0.001 pg h-1cell-1 for N. europaea, N. eutropha, and N. mobilis, respectively. This study shows that of the analyzed AOB, N. europaea has the highest affinity towards oxygen and N. eutropha the lowest affinity towards oxygen, indicating that the former can convert ammonia even under low DO conditions. These results improve the understanding of the ecophysiology of AOB in the environment. The accuracy of mathematically modelled ammonia oxidation can be improved, allowing the implementation of better management practices to restore the nitrogen cycle in natural and engineered water systems.
Collapse
Affiliation(s)
- Pallabita Saha
- Institut für Siedlungswasserwirtschaft und Abfalltechnik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Ann-Kathrin Kniggendorf
- Hannover Centre for Optical Technologies (HOT), Leibniz Universität Hannover, 30167 Hannover, Germany
- Department 4.3 Quantum Optics and Unit of Length, Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany
| | | | - Regina Nogueira
- Institut für Siedlungswasserwirtschaft und Abfalltechnik, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
12
|
Zhu Y, Hou J, Meng F, Lu H, Zhang Y, Ni BJ, Chen X. Role of comammox bacteria in granular bioreactor for nitrogen removal via partial nitritation/anammox. BIORESOURCE TECHNOLOGY 2024; 406:131070. [PMID: 38971392 DOI: 10.1016/j.biortech.2024.131070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
In this study, two bioprocess models were first constructed with the newly-discovered comammox process described as one-step and two-step nitrification and evaluated against relevant experimental data. The validated models were then applied to reveal the potential effect of comammox bacteria on the granular bioreactor particularly suitable for undertaking partial nitritation/anammox (PN/A) under different operating conditions of bulk dissolved oxygen (DO) and influent NH4+. The results showed although comammox bacteria-based PN/A could achieve > 80.0 % total nitrogen (TN) removal over a relatively wider range of bulk DO and influent NH4+ (i.e., 0.25-0.40 g-O2/m3 and 470-870 g-N/m3, respectively) without significant nitrous oxide (N2O) production (< 0.1 %), the bulk DO should be finely controlled based on the influent NH4+ to avoid the undesired full nitrification by comammox bacteria. Comparatively, conventional ammonium-oxidizing bacteria (AOB)-based PN/A not only required higher bulk DO to achieve > 80.0 % TN removal but also suffered from 1.7 %∼2.8 % N2O production.
Collapse
Affiliation(s)
- Ying Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiaying Hou
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Fangang Meng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China.
| |
Collapse
|
13
|
Jin D, Zhang X, Zhang X, Zhou L, Zhu Z, Deogratias UK, Wu Z, Zhang K, Ji X, Ju T, Zhu X, Gao B, Ji L, Zhao R, Ruth G, Wu P. A critical review of comammox and synergistic nitrogen removal coupling anammox: Mechanisms and regulatory strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174855. [PMID: 39034010 DOI: 10.1016/j.scitotenv.2024.174855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Nitrification is highly crucial for both anammox systems and the global nitrogen cycle. The discovery of complete ammonia oxidation (comammox) challenges the inherent concept of nitrification as a two-step process. Its wide distribution, adaptability to low substrate environments, low sludge production, and low greenhouse gas emissions may make it a promising new nitrogen removal treatment process. Meanwhile, anammox technology is considered the most suitable process for future wastewater treatment. The diverse metabolic capabilities and similar ecological niches of comammox bacteria and anammox bacteria are expected to achieve synergistic nitrogen removal within a single system. However, previous studies have overlooked the existence of comammox, and it is necessary to re-evaluate the conclusions drawn. This paper outlined the ecophysiological characteristics of comammox bacteria and summarized the environmental factors affecting their growth. Furthermore, it focused on the enrichment, regulatory strategies, and nitrogen removal mechanisms of comammox and anammox, with a comparative analysis of hydroxylamine, a particular intermediate product. Overall, this is the first critical overview of the conclusions drawn from the last few years of research on comammox-anammox, highlighting possible next steps for research.
Collapse
Affiliation(s)
- Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xingxing Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ufoymungu Kisa Deogratias
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xurui Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Bo Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Luomiao Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Rui Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Guerra Ruth
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| |
Collapse
|
14
|
Su X, Huang X, Zhang Y, Yang L, Wen T, Yang X, Zhu G, Zhang J, Tang Y, Li Z, Ding J, Li R, Pan J, Chen X, Huang F, Rillig MC, Zhu YG. Nitrifying niche in estuaries is expanded by the plastisphere. Nat Commun 2024; 15:5866. [PMID: 38997249 PMCID: PMC11245476 DOI: 10.1038/s41467-024-50200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The estuarine plastisphere, a novel ecological habitat in the Anthropocene, has garnered global concerns. Recent geochemical evidence has pointed out its potential role in influencing nitrogen biogeochemistry. However, the biogeochemical significance of the plastisphere and its mechanisms regulating nitrogen cycling remain elusive. Using 15N- and 13C-labelling coupled with metagenomics and metatranscriptomics, here we unveil that the plastisphere likely acts as an underappreciated nitrifying niche in estuarine ecosystems, exhibiting a 0.9 ~ 12-fold higher activity of bacteria-mediated nitrification compared to surrounding seawater and other biofilms (stone, wood and glass biofilms). The shift of active nitrifiers from O2-sensitive nitrifiers in the seawater to nitrifiers with versatile metabolisms in the plastisphere, combined with the potential interspecific cooperation of nitrifying substrate exchange observed among the plastisphere nitrifiers, collectively results in the unique nitrifying niche. Our findings highlight the plastisphere as an emerging nitrifying niche in estuarine environment, and deepen the mechanistic understanding of its contribution to marine biogeochemistry.
Collapse
Affiliation(s)
- Xiaoxuan Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Xinrong Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Yiyue Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Leyang Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Teng Wen
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Guibing Zhu
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210023, China
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, Gießen, Germany
| | - Yijia Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2015, Australia
| | - Zhaolei Li
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, China
| | - Ruilong Li
- School of Marine Science, Guangxi University, Nanning, 530004, China
| | - Junliang Pan
- School of Electrical Engineering, Chongqing University, Chongqing, 400044, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Fuyi Huang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China.
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
15
|
Wang S, Xiao M, Jiang L, Jin Y, Zhou Y, Yu L, Armanbek G, Wang M, Ma J, Zhu G. Diverse metabolism drives comammox in continental-scale agricultural streams: Important ammonia oxidation but low N 2O production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174411. [PMID: 38960159 DOI: 10.1016/j.scitotenv.2024.174411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Agriculture receives approximately 25 % of the annual global nitrogen input, 37 % of which subsequently runs off into adjacent low-order streams and surface water, where it may contribute to high nitrification and nitrous oxide (N2O). However, the mechanisms of nitrification and the pathways controlling N2O production in agricultural streams remain unknown. Here, we report that the third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is widespread and contributes to important ammonia oxidation with low ammonia-N2O conversion in both basin- and continental-scale agricultural streams. The contribution of comammox to ammonia oxidation (21.5 ± 2.3 %) was between that of bacterial (68.6 ± 2.7 %) and archaeal (9.9 ± 1.8 %) ammonia oxidation. Interestingly, N2O production by comammox (18.5 ± 2.1 %) was higher than archaeal (10.5 ± 1.9 %) but significantly lower than bacterial (70.2 ± 2.6 %) ammonia oxidation. The first metagenome-assembled genome (MAG) of comammox bacteria from agricultural streams further revealed their potential extensive diverse and specific metabolism. Their wide habitats might be attributed to the diverse metabolism, i.e. harboring the functional gene of nitrate reduction to ammonia, while the lower N2O would be attributed to their lacking biological function to produce N2O. Our results highlight the importance of widespread comammox in agricultural streams, both for the fate of ammonia fertilizer and for climate change. However, it has not yet been routinely included in Earth system models and IPCC global assessments. Synopsis Widespread but overlooked comammox contributes to important ammonia oxidation but low N2O production, which were proved by the first comammox MAG found in agricultural streams.
Collapse
Affiliation(s)
- Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manyi Xiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liping Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucheng Jin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuting Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Longbin Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gawhar Armanbek
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manting Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingchen Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Qiu L, Wang E, Li R, Wu X, Huang Y, Lin G, Li B. The urgent need to reduce phosphorus discharges for sustainable mangrove wetland management. WATER RESEARCH 2024; 258:121821. [PMID: 38796913 DOI: 10.1016/j.watres.2024.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Phosphorus affects microbial metabolic activity, nitrogen and carbon cycling in mangrove sediment, but its influence on carbon stability and greenhouse gases emission remains unclear. This study compared greenhouse gases (CO2, N2O, and CH4) emissions from mangrove sediment receiving wastewater containing various phosphorus concentrations, and evaluated its long term effect on sediment carbon flux when phosphorus pollution is eliminated. Significant increases in greenhouse gases flux and decrease of total organic carbon and readily oxidizable organic carbon in the sediment were observed after phosphorus discharge. Specifically, the N2O flux was reduced significantly at high phosphorus levels while the CO2 flux and the microbial biomass organic carbon was increased. The copy numbers of ammonia oxidation (AOA-amoA, AOB-amoA) gene, denitrification (narG, nirK) gene and methanogenesis (mcrA) gene increased with the increasing phosphorus concentration. During the wastewater discharge period for 70 days, the global warming potential of sediment flux at high phosphorus discharge condition was more than 4 times that of the control group, and the loss of total organic carbon and readily oxidizable organic carbon was 4.66 % and 7.1 %, respectively. During the remediation period (71-101 days), the greenhouse gases flux decreased rapidly, ends up with a similar level of the control group. Our results indicate that using mangrove wetland for pollution minimization in the coastal aquaculture industry could increase greenhouse gases emisison significantly, it is therefore essential to reduce phosphorus discharges from various anthropogenic activities, and local authorities must set up more stringent discharge standards in the future.
Collapse
Affiliation(s)
- Lixia Qiu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Enhao Wang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaofeng Wu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Yuefei Huang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China; School of Water Resources and Electric Power, Qinghai University, Xining, Qinghai, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Guanghui Lin
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China.
| |
Collapse
|
17
|
Liu X, Sun D, Huang H, Zhang J, Zheng H, Jia Q, Zhao M. Rice-fish coculture without phosphorus addition improves paddy soil nitrogen availability by shaping ammonia-oxidizing archaea and bacteria in subtropical regions of South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171642. [PMID: 38479518 DOI: 10.1016/j.scitotenv.2024.171642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Rice-fish coculture (RFC), as a traditional agricultural strategy in China, can optimally utilize the scarce resource, especially in subtropical regions where phosphorus (P) deficiency limits agricultural production. However, ammonia-oxidizing archaea (AOA) and bacteria (AOB) are involved in the ammonia oxidation, but it remains uncertain whether their community compositions are related to the RFC combined with and without P addition that improves soil nitrogen (N) use efficiency. Here, a microcosm experiment was conducted to assess the impacts of RFC combined with and without inorganic P (0 and 50 mg P kg-1 as KH2PO4) addition on AOA and AOB community diversities, enzyme activities and N availability. The results showed that RFC significantly increased available N content without P addition compared with P addition. Moreover, RFC significantly increased urease activity and AOA shannon diversity, and reduced NAG activity and AOB shannon diversity without P addition, respectively. Higher diversity of AOA compared with that of AOB causes greater competition for resources and energy within their habitats, thereby resulting in lower network complexity. Our findings indicated that the abundances of AOA and AOB are influenced through the introduction of fish and/or P availability, of which AOB is linked to N availability. Overall, RFC could improve paddy soil N availability without P addition in subtropical region, which provides a scientific reference for promoting the practices that reduce N fertilizer application in RFC.
Collapse
Affiliation(s)
- Xing Liu
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Daolin Sun
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huaqiao Huang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiaen Zhang
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hongjun Zheng
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qi Jia
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Min Zhao
- Guangdong Engineering Technology Research Center of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Loi JX, Syutsubo K, Rabuni MF, Takemura Y, Aoki M, Chua ASM. Downflow sponge biofilm reactors for polluted raw water treatment: Performance optimisation, kinetics, and microbial community. CHEMOSPHERE 2024; 358:142156. [PMID: 38679172 DOI: 10.1016/j.chemosphere.2024.142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Water outages caused by elevated ammonium (NH4+-N) levels are a prevalent problem faced by conventional raw water treatment plants in developing countries. A treatment solution requires a short hydraulic retention time (HRT) to overcome nitrification rate limitation in oligotrophic conditions. In this study, the performance of polluted raw water treatment using a green downflow sponge biofilm (DSB) technology was evaluated. We operated two DSB reactors, DSB-1 and DSB-2 under different NH4+-N concentration ranges (DSB-1: 3.2-5.0 mg L-1; DSB-2: 1.7-2.6 mg L-1) over 360 days and monitored their performance under short HRT (60 min, 30 min, 20 min, and 15 min). The experimental results revealed vertical segregation of organic removal in the upper reactor depths and nitrification in the lower depths. Under the shortest HRT of 15 min, both DSB reactors achieved stable NH4+-N and chemical oxygen demand removal (≥95%) and produced minimal effluent nitrite (NO2--N). DSB system could facilitate complete NH4+-N oxidation to nitrate (NO3--N) without external aeration energy requirement. The 16S rRNA sequencing data revealed that nitrifying bacteria Nitrosomonas and Nitrospira in the reactor were stratified. Putative comammox bacteria with high ammonia affinity was successfully enriched in DSB-2 operating at a lower NH4+-N loading rate, which is advantageous in oligotrophic treatment. This study suggests that a high hydraulic rate DSB system with efficient ammonia removal could incorporate ammonia treatment capability into polluted raw water treatment process and ensure safe water supply in many developing countries.
Collapse
Affiliation(s)
- Jia Xing Loi
- Sustainable Process Engineering Centre, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Kazuaki Syutsubo
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan; Research Centre of Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| | - Mohamad Fairus Rabuni
- Sustainable Process Engineering Centre, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yasuyuki Takemura
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, 644-0023, Japan.
| | - Masataka Aoki
- Regional Environment Conservation Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Adeline Seak May Chua
- Sustainable Process Engineering Centre, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
19
|
Tan Q, Wu H, Zheng L, Wang X, Xing Y, Tian Q, Zhang Y. Urban and agricultural land use led to niche differentiation of AOA, AOB and comammox along the Beiyun River continuum. WATER RESEARCH 2024; 255:121480. [PMID: 38518415 DOI: 10.1016/j.watres.2024.121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
River ecological health has been severely threatened by anthropogenic land-use pressures. Here, by combining remote sensing and molecular biology methods, we evaluated the impact of land-use activities on nitrification, a fundamental ecological process in rivers, which is conducted by ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB), or the newly discovered complete ammonia oxidisers (comammox). We explored the relationships of the abundance, activity, and diversity of AOA, AOB, and comammox in river sediments with land-use pressure by proposing a quantitative land use pattern index (LPI) over a 184 km continuum along the Beiyun River in North China. We found that comammox dominated nitrification in the forestry upstream (67.07 % in summer, 56.40 % in winter), while AOB became the major player in the urban middle (56.51 % in summer, 53.08 % in winter) and agricultural downstream reaches (62.98 % in summer, 50.74 % in winter). In addition, urban and agricultural land use lowered the α diversity of AOA and comammox, as well as simplified their co-occurrence networks, but promoted AOB diversity and complicated their networks. The structural equation model illustrated that the key drivers affecting the key taxa and activities were ammonia, and C/N for AOB, and total organic matter, and pH for comammox. We thus conclude that watershed urban and agricultural land use drive the niche differentiation of AOA, AOB, and comammox, specifically leading to a robust AOB community but weakened AOA and comammox communities. Our study connects the macro and micro worlds and provides a new paradigm for studying the variation in microbial communities as well as the potential ecological consequences under the increased anthropogenic land-use pressures in the Anthropocene.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing 100875, PR China.
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| | - Yaoxin Zhang
- College of Water Science, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
20
|
Pedroza-Camacho LD, Ospina-Sánchez PA, Romero-Perdomo FA, Infante-González NG, Paredes-Céspedes DM, Quevedo-Hidalgo B, Gutiérrez-Romero V, Rivera-Hoyos CM, Pedroza-Rodríguez AM. Wastewater treatment from a science faculty during the COVID-19 pandemic by using ammonium-oxidising and heterotrophic bacteria. 3 Biotech 2024; 14:129. [PMID: 38601881 PMCID: PMC11003938 DOI: 10.1007/s13205-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/22/2024] [Indexed: 04/12/2024] Open
Abstract
During and after the pandemic caused by the SARS-CoV-2 virus, the use of personal care products and disinfectants increased in universities worldwide. Among these, quaternary ammonium-based products stand out; these compounds and their intermediates caused substantial changes in the chemical composition of the wastewater produced by these institutions. For this reason, improvements and environmentally sustainable biological alternatives were introduced in the existing treatment systems so that these institutions could continue their research and teaching activities. For this reason, the objective of this study was to develop an improved culture medium to cultivate ammonium oxidising bacteria (AOB) to increase the biomass and use them in the treatment of wastewater produced in a faculty of sciences in Bogotá, D.C., Colombia. A Plackett Burman Experimental Design (PBED) and growth curves served for oligotrophic culture medium, and production conditions improved for the AOB. Finally, these bacteria were used with total heterotrophic bacteria (THB) for wastewater treatment in a pilot plant. Modification of base ammonium broth and culture conditions (6607 mg L-1 of (NH4)2SO4, 84 mg L-1 CaCO3, 40 mg L-1 MgSO4·7H2O, 40 mg L-1 CaCl2·2H2O and 200 mg L-1 KH2PO4, 10% (w/v) inoculum, no copper addition, pH 7.0 ± 0.2, 200 r.p.m., 30 days) favoured the growth of Nitrosomonas europea, Nitrosococcus oceani, and Nitrosospira multiformis with values of 8.23 ± 1.9, 7.56 ± 0.7 and 4.2 ± 0.4 Log10 CFU mL-1, respectively. NO2- production was 0.396 ± 0.0264, 0.247 ± 0.013 and 0.185 ± 0.003 mg L-1 for Nitrosomonas europea, Nitrosococcus oceani and Nitrosospira multiformis. After the 5-day wastewater treatment (WW) by co-inoculating the three studied bacteria in the wastewater (with their self-microorganisms), the concentrations of AOB and THB were 5.92 and 9.3 Log10 CFU mL-1, respectively. These values were related to the oxidative decrease of Chemical Oxygen Demand (COD), (39.5 mg L-1), Ammonium ion (NH4+), (6.5 mg L-1) Nitrite (NO2-), (2.0 mg L-1) and Nitrate (NO3-), (1.5 mg L-1), respectively in the five days of treatment. It was concluded, with the improvement of a culture medium and production conditions for three AOB through biotechnological strategies at the laboratory scale, being a promising alternative to bio-augment of the biomass of the studied bacteria under controlled conditions that allow the aerobic removal of COD and nitrogen cycle intermediates present in the studied wastewater. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03961-4.
Collapse
Affiliation(s)
- Lucas D. Pedroza-Camacho
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Paula A. Ospina-Sánchez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Felipe A. Romero-Perdomo
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Nury G. Infante-González
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Diana M. Paredes-Céspedes
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| | - Balkys Quevedo-Hidalgo
- Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | | | - Claudia M. Rivera-Hoyos
- Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110-23, Bogotá, DC Colombia
| | - Aura M. Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7ma No 43-82, Edifício 50 Lab. 106, P.O. Box 110-23, Bogotá, DC Colombia
| |
Collapse
|
21
|
Zhang Q, Yu X, Yang Y, Ruan J, Zou Y, Wu S, Chen F, Zhu R. Enhanced ammonia removal in tidal flow constructed wetland by incorporating steel slag: Performance, microbial community, and heavy metal release. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171333. [PMID: 38423325 DOI: 10.1016/j.scitotenv.2024.171333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.
Collapse
Affiliation(s)
- Quan Zhang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xingyu Yu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Jingjun Ruan
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Yuhuan Zou
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
22
|
Feng M, Lin Y, He ZY, Hu HW, Jin S, Liu J, Wan S, Cheng Y, He JZ. Higher stochasticity in comammox Nitrospira community assembly in upland soils than the adjacent paddy soils at a regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171227. [PMID: 38402820 DOI: 10.1016/j.scitotenv.2024.171227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Understanding the assembly mechanisms of microbial communities, particularly comammox Nitrospira, in agroecosystems is crucial for sustainable agriculture. However, the large-scale distribution and assembly processes of comammox Nitrospira in agricultural soils remain largely elusive. We investigated comammox Nitrospira abundance, community structure, and assembly processes in 16 paired upland peanuts and water-logged paddy soils in south China. Higher abundance, richness, and network complexity of comammox Nitrospira were observed in upland soils than in paddy soils, indicating a preference for upland soils over paddy soils among comammox Nitrospira taxa in agricultural environments. Clade A.2.1 and clade A.1 were the predominant comammox Nitrospira taxa in upland and paddy soils, respectively. Soil pH was the most crucial factor shaping comammox Nitrospira community structure. Stochastic processes were found to predominantly drive comammox Nitrospira community assembly in both upland and paddy soils, with deterministic processes playing a more important role in paddy soils than in upland soils. Overall, our findings demonstrate the higher stochasticity of comammox Nitrospira in upland soils than in the adjacent paddy soils, which may have implications for autotrophic nitrification in acidic agricultural soils.
Collapse
Affiliation(s)
- Mengmeng Feng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Yongxin Lin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China.
| | - Zi-Yang He
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia
| | - Shengsheng Jin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Song Wan
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Yuheng Cheng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China
| | - Ji-Zheng He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350117, China; School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
23
|
Yang T, Qu J, Yang X, Cai Y, Hu J. Recent advances in ambient-stable black phosphorus materials for artificial catalytic nitrogen cycle in environment and energy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123522. [PMID: 38331240 DOI: 10.1016/j.envpol.2024.123522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nitrogen cycle is crucial for the Earth's ecosystem and human-nature coexistence. However, excessive fertilizer use and industrial contamination disrupt this balance. Semiconductor-based artificial nitrogen cycle strategies are being actively researched to address this issue. Black phosphorus (BP) exhibits remarkable performance and significant potential in this area due to its unique physical and chemical properties. Nevertheless, its practical application is hindered by ambient instability. This review covers the synthesis methods of BP materials, analyzes their instability factors under environmental conditions, discusses stability improvement strategies, and provides an overview of the applications of ambient-stable BP materials in nitrogen cycle, including N2 fixation, NO3- reduction, NOx removal and nitrides sensing. The review concludes by summarizing the challenges and prospects of BP materials in the nitrogen cycle, offering valuable guidance to researchers.
Collapse
Affiliation(s)
- Tingyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
24
|
Zhang S, Wang Z, Yi L, Ye X, Suo F, Chen X, Lu X. Bacterial response to the combined pollution of benzo[a]pyrene and decabromodiphenyl ether in soil under flooding anaerobic condition. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133137. [PMID: 38056265 DOI: 10.1016/j.jhazmat.2023.133137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
This study investigated the interaction between the co-pollutants of Benzo[a]pyrene (BaP) and decabromodiphenyl ether (BDE-209) and the bacterial community in soil under flooding anaerobic condition. Three levels of combined pollution (at nominal concentrations of 1, 5, and 25 mg/kg, respectively, for each pollutant), their corresponding sterilized controls, and a blank control (CK) were set up. During the incubation time of 270 days, BaP attenuated more easily than BDE-209. The second-order rate constant of BaP attenuation was negatively correlated with the Ln value of initial BaP concentration. Maximal difference in bacterial community occurred between the CK soil and the highly polluted soil. Desulfomonilaceae, Parcubacteria and Rhodanobacter were probably involved in BaP and BDE-209 degradation, while Nitrosomonadaceae, Phenylobacterium and Mitochondria were significantly suppressed by BaP and BDE-209 or their degrading products. Genes narI, bcrC, fadJ, had, dmpC, narG and CfrA were involved in the degradation of BaP and BDE-209. Impacts of BaP and BDE-209 on metabolisms of carbon, nitrogen and sulfur were not significant. The results provide guidance for the management and remediation of the contaminated soil.
Collapse
Affiliation(s)
- Shuai Zhang
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Zhaoyang Wang
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Lijin Yi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiangyu Ye
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Fanyu Suo
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xuexia Chen
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiaoxia Lu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
25
|
Jiang L, Liu S, Wang S, Sun L, Zhu G. Effect of tillage state of paddy soils with heavy metal pollution on the nosZ gene of N 2O reductase. J Environ Sci (China) 2024; 137:469-477. [PMID: 37980031 DOI: 10.1016/j.jes.2023.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 11/20/2023]
Abstract
Paddy soils are an important source of atmospheric nitrous oxide (N2O). However, numerous studies have focused on N2O production during the soil tillage period, neglecting the N2O production during the dry fallow period. In this study, we conducted an incubation experiment using the acetylene inhibition technique to investigate N2O emission and reduction rates of paddy soil profiles (0-1 m) from Guangdong Province and Jinlin Province in China, with different heavy-metal pollution levels. The abundance and community structures of denitrifying bacteria were determined via quantitative-PCR and Illumina MiSeq sequencing of nosZ, nirK, and nirS genes. Our results showed that the potential N2O emission rate, N2O production rate, and denitrification rate have decreased with increasing soil vertical depth and heavy-metal pollution. More importantly, we found that the functional gene type of N2O reductase switched with the tillage state of paddy soils, which clade Ⅱ nosZ genes were the dominant gene during the tillage period, while clade Ⅰ nosZ genes were the dominant gene during the dry fallow period. The heavy-metal pollution has less effect on the niche differentiation of the nosZ gene. The N2O emission rate was significantly regulated by the genus Bradyhizobium, which contains both N2O reductase and nitrite reductase genes. Our findings suggests that the nosZ gene of N2O reductase can significantly impact the N2O emission from paddy soils.
Collapse
Affiliation(s)
- Liping Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiguang Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Libo Sun
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Xia Z, Ng HY, Xu D, Bae S. Lumen air pressure regulated multifunctional microbiotas in membrane-aerated biofilm reactors for simultaneous nitrogen removal and antibiotic elimination from aquaculture wastewater. WATER RESEARCH 2024; 251:121102. [PMID: 38198973 DOI: 10.1016/j.watres.2024.121102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
In this study, two membrane-aerated biofilm reactors (MABRs) were constructed: one solely utilizing biofilm and another hybrid MABR (HMABR) incorporating both suspended-sludge and biofilm to treat low C/N aquaculture wastewater under varying lumen air pressure (LAP). Both HMABR and MABR demonstrated superior nitrogen removal than conventional aeration reactors. Reducing LAP from 10 kPa to 2 kPa could enhance denitrification processes without severely compromising nitrification, resulting in an increase in total inorganic nitrogen (TIN) removal from 50.2±3.1 % to 71.6±1.0 %. The HMABR exhibited better denitrification efficacy than MABR, underscoring its potential for advanced nitrogen removal applications. A decline in LAP led to decreased extracellular polymeric substance (EPS) production, which could potentially augment reactor performance by minimizing mass transfer resistance while maintaining microbial matrix stability and function. Gene-centric metagenomics analysis revealed decreasing LAP impacted nitrogen metabolic potentials and electron flow pathways. The enrichment of napAB at higher LAP and the presence of complete ammonia oxidation (Comammox) Nitrospira at lower LAP indicated aerobic denitrification and Comammox processes in nitrogen removal. Multifunctional microbial communities developed under LAP regulation, diversifying the mechanisms for simultaneous nitrification-denitrification. Increased denitrifying gene pool (narGHI, nirK, norB) and enzymatic activity at a low LAP can amplify denitrification by promoting denitrifying genes and electron flow towards denitrifying enzymes. Sulfamethoxazole (SMX) was simultaneously removed with efficiency up to 80.2 ± 3.7 %, mainly via biodegradation, while antibiotic resistome and mobilome were propagated. Collectively, these findings could improve our understanding of nitrogen and antibiotic removal mechanisms under LAP regulation, offering valuable insights for the effective design and operation of MABR systems in aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Zhengang Xia
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - How Yong Ng
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.
| | - Dong Xu
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
27
|
Zhang Z, Bo L, Wang S, Li C, Zhang X, Xue B, Yang X, He X, Shen Z, Qiu Z, Zhao C, Wang J. Multidrug-resistant plasmid RP4 inhibits the nitrogen removal capacity of ammonia-oxidizing archaea, ammonia-oxidizing bacteria, and comammox in activated sludge. ENVIRONMENTAL RESEARCH 2024; 242:117739. [PMID: 38007076 DOI: 10.1016/j.envres.2023.117739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
In wastewater treatment plants (WWTPs), ammonia oxidation is primarily carried out by three types of ammonia oxidation microorganisms (AOMs): ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and comammox (CMX). Antibiotic resistance genes (ARGs), which pose an important public health concern, have been identified at every stage of wastewater treatment. However, few studies have focused on the impact of ARGs on ammonia removal performance. Therefore, our study sought to investigate the effect of the representative multidrug-resistant plasmid RP4 on the functional microorganisms involved in ammonia oxidation. Using an inhibitor-based method, we first evaluated the contributions of AOA, AOB, and CMX to ammonia oxidation in activated sludge, which were determined to be 13.7%, 41.1%, and 39.1%, respectively. The inhibitory effects of C2H2, C8H14, and 3,4-dimethylpyrazole phosphate (DMPP) were then validated by qPCR. After adding donor strains to the sludge, fluorescence in situ hybridization (FISH) imaging analysis demonstrated the co-localization of RP4 plasmids and all three AOMs, thus confirming the horizontal gene transfer (HGT) of the RP4 plasmid among these microorganisms. Significant inhibitory effects of the RP4 plasmid on the ammonia nitrogen consumption of AOA, AOB, and CMX were also observed, with inhibition rates of 39.7%, 36.2%, and 49.7%, respectively. Moreover, amoA expression in AOB and CMX was variably inhibited by the RP4 plasmid, whereas AOA amoA expression was not inhibited. These results demonstrate the adverse environmental effects of the RP4 plasmid and provide indirect evidence supporting plasmid-mediated conjugation transfer from bacteria to archaea.
Collapse
Affiliation(s)
- Zhaohui Zhang
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China.
| | - Lin Bo
- School of Environmental Science and Engineering, Tiangong University, State Key Laboratory of Separation Membranes and Membrane Processes, Binshui West Road 399, Xiqing District, Tianjin, 300387, China; Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shang Wang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Chenyu Li
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xi Zhang
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Bin Xue
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaobo Yang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Xinxin He
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhiqiang Shen
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhigang Qiu
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China
| | - Chen Zhao
- Department of Hygienic Toxicology and Environmental Hygiene, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jingfeng Wang
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, 300050, China.
| |
Collapse
|
28
|
Fan Y, Shi K, Wang C. Mathematical modeling and experimental validation of a novel Circulating Oxygenation Biofilm Equipment (COBE) for the management of decentralized wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119792. [PMID: 38081087 DOI: 10.1016/j.jenvman.2023.119792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
The difficulties of management were the key barriers to the promotion of decentralized wastewater treatment in remote areas. In this study, a novel decentralized Circulating Oxygenation Biofilm Equipment (COBE) and its remote management potential based on mathematical modeling were investigated. The COBE is an integrated biofilm reactor that employs drippage aeration and enables oxygenation, filtration, and effluent processes to be controlled, thus providing convenience for controlling. The model for the COBE describing drippage aeration, comprehensive ammonia-related microbes, and corncob carbon source release process was studied to uncover the impacts of operational conditions on decentralized wastewater treatment in the COBE system. The equipment regulation parameter (circulating oxygenation ratio) was found to be linearly correlated with the oxygen mass transfer coefficient. This discovery enabled highly accurate prediction of COD, NH4-N, and TN concentrations in the equipment effluent at various scenarios. The comprehensive ammonia oxidation biological model indicated that the model could duplicate the actual situation of the succession of ammonia metabolizing related microorganisms. Comammox and ammonia-oxidizing archaea (AOA) dominated ammonia metabolism in this equipment rather than conventional ammonium-oxidizing bacteria (AOB). This study could contribute to the Internet of Things system construction of decentralized wastewater treatment equipment, and provide a solution for timely decentralized equipment management in remote areas.
Collapse
Affiliation(s)
- Yu Fan
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kuangwei Shi
- School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
29
|
Yang Q, Zhong Y, Feng SW, Wen P, Wang H, Wu J, Yang S, Liang JL, Li D, Yang Q, Tam NFY, Peng P. Temporal enrichment of comammox Nitrospira and Ca. Nitrosocosmicus in a coastal plastisphere. THE ISME JOURNAL 2024; 18:wrae186. [PMID: 39375018 PMCID: PMC11471898 DOI: 10.1093/ismejo/wrae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/07/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Plastic marine debris is known to harbor a unique microbiome (termed the "plastisphere") that can be important in marine biogeochemical cycles. However, the temporal dynamics in the plastisphere and their implications for marine biogeochemistry remain poorly understood. Here, we characterized the temporal dynamics of nitrifying communities in the plastisphere of plastic ropes exposed to a mangrove intertidal zone. The 39-month colonization experiment revealed that the relative abundances of Nitrospira and Candidatus Nitrosocosmicus representatives increased over time according to 16S rRNA gene amplicon sequencing analysis. The relative abundances of amoA genes in metagenomes implied that comammox Nitrospira were the dominant ammonia oxidizers in the plastisphere, and their dominance increased over time. The relative abundances of two metagenome-assembled genomes of comammox Nitrospira also increased with time and positively correlated with extracellular polymeric substances content of the plastisphere but negatively correlated with NH4+ concentration in seawater, indicating the long-term succession of these two parameters significantly influenced the ammonia-oxidizing community in the coastal plastisphere. At the end of the colonization experiment, the plastisphere exhibited high nitrification activity, leading to the release of N2O (2.52 ng N2O N g-1) in a 3-day nitrification experiment. The predicted relative contribution of comammox Nitrospira to N2O production (17.9%) was higher than that of ammonia-oxidizing bacteria (4.8%) but lower than that of ammonia-oxidizing archaea (21.4%). These results provide evidence that from a long-term perspective, some coastal plastispheres will become dominated by comammox Nitrospira and thereby act as hotspots of ammonia oxidation and N2O production.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
| | - Shi-wei Feng
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Ping Wen
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 1, Yanqihu East Road, Huairou District, Beijing 100049, P. R. China
| | - Jie-Liang Liang
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, No. 55, Zhongshan Dadao Xi Road, Tianhe District, Guangzhou 510631, P. R. China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, No. 1, Daxue Road, Songshanhu District, Dongguan 523808, P. R. China
| | - Qiong Yang
- Guangdong Neilingding Futian National Nature Reserve, No. 1, Mangrove Road, Futian District, Shenzhen 518040, P. R. China
| | - Nora F Y Tam
- School of Science and Technology, Hong Kong Metropolitan University, 30 Good Shepherd Street, Ho Man Tin, Kowloon, Hong Kong 999077, P. R. China
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Ping’an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
- Guangdong Key Laboratory of Environmental Protection and Resources and Utilization, No. 511, Kehua Street, Tianhe District, Guangzhou 510640, P. R. China
| |
Collapse
|
30
|
An Z, Zhang Q, Gao X, Ding J, Shao B, Peng Y. Nitrous oxide emissions in novel wastewater treatment processes: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 391:129950. [PMID: 37926354 DOI: 10.1016/j.biortech.2023.129950] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The proliferation of novel wastewater treatment processes has marked recent years, becoming particularly pertinent in light of the strive for carbon neutrality. One area of growing attention within this context is nitrous oxide (N2O) production and emission. This review provides a comprehensive overview of recent research progress on N2O emissions associated with novel wastewater treatment processes, including Anammox, Partial Nitrification, Partial Denitrification, Comammox, Denitrifying Phosphorus Removal, Sulfur-driven Autotrophic Denitrification and n-DAMO. The advantages and challenges of these processes are thoroughly examined, and various mitigation strategies are proposed. An interesting angle that delve into is the potential of endogenous denitrification to act as an N2O sink. Furthermore, the review discusses the potential applications and rationale for novel Anammox-based processes to reduce N2O emissions. The aim is to inform future technology research in this area. Overall, this review aims to shed light on these emerging technologies while encouraging further research and development.
Collapse
Affiliation(s)
- Zeming An
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xinjie Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ding
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Baishuo Shao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
31
|
Ding F, He T, Qi X, Zhang H, An L, Xu S, Zhang X. Comammox Nitrospira dominates the nitrification in artificial coniferous forest soils of the Qilian Mountains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167653. [PMID: 37806577 DOI: 10.1016/j.scitotenv.2023.167653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Complete ammonia oxidizers (Comammox, CMX) are a newly discovered and important component of the nitrogen cycle. While CMX Nitrospira has been detected in various ecosystems, few studies so far have focused on the relative contribution and co-occurrence network of ammonia oxidizing archaea (AOA), bacteria (AOB), and CMX Nitrospira in artificial forest ecosystems (tree plantations). We evaluated the dynamics of composition, co-occurrence patterns and contribution of soil microbial nitrifiers to nitrification in soil of various tree species with different ages in the Qilian Mountains employing the space for time substitution approach, quantitative PCR and high-throughput sequencing technology. Generally, plantation development significantly reduced soil potential nitrification rates. Inhibition experiments and modular analysis showed that AOA played leading roles in nitrification of abandoned farmland and 17-year-old Hippophae rhamnoides, whereas CMX Nitrospira dominated in 36-year-old Picea crassifolia, 36-year-old Picea crassifolia and Larix gmelinii mixed plantation, and 50-year-old Picea crassifolia. The dominant AOA and CMX Nitrospira lineages in all samples were Group I.1b and Clade B, respectively. The assembly of nitrifier community was governed by stochastic processes, in which dispersal limitation made a significant contribution. The nitrifiers coexist in a mutualistic manner, albeit with possible functional redundancy, while the modular analysis revealed the aggregation pattern of the four modules in different artificial forests' soil. The Mantel test showed that modular formation is mainly affected by NH4+ and SOM. These results broaden our current understanding of the relation between CMX Nitrospira and canonical ammonia oxidizers in terrestrial ecosystems, and provide empirical evidence for not only niche differentiation, but also the relative contribution and co-occurrence patterns of nitrifying communities in an artificial forest ecosystem.
Collapse
Affiliation(s)
- Fan Ding
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tianjiao He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xing'e Qi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hui Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; The College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Shijian Xu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xinfang Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
32
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
33
|
Yu B, Zeng Q, Li J, Li J, Tan X, Gao X, Mao Z, Huang P, Wu S. Sediment depth-related variations of comammox Nitrospira: Evidence in the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167055. [PMID: 37709074 DOI: 10.1016/j.scitotenv.2023.167055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The recent discovery of comammox Nitrospira as complete ammonia-oxidizing microorganism has fundamentally revolutionized our understanding of nitrogen cycling in sediment environments. However, knowledge regarding their abundance, biodiversity, community structure, and interactions is predominantly limited to the upper layers (0-20 cm). To address this gap, we collected sediment samples along profiles ranging from 0 to 300 cm in depth at three locations within the middle segment of the Three Gorges Reservoir (TGR), China. Quantitative real-time PCR (qPCR) analyses suggested that comammox bacteria were not only ubiquitous in deep sediments but also more abundant than ammonia-oxidizing bacteria (AOB). Ammonia monooxygenases subunit A (amoA) gene amplicon sequencing illuminated that comammox bacteria were more sensitive to sedimental depth compared to AOB and ammonia-oxidizing archaea (AOA), as evidenced by a more significant decline in community diversity and similarity over distance along sediment vertical profiles. Notably, we discovered that the amoA gene abundance, alpha- and beta-diversity of comammox bacteria exerted an essential contribution to potential nitrification rates according to random forest model. Phylogenetic analysis indicted that most comammox bacteria within sediment samples belonged to clade A.2. Intriguingly, the average relative abundance of comammox clade A.2 displayed a noteworthy rise with sediment depth, whereas clade A.1 demonstrated a converse pattern, unveiling distinct ecological niche adaptations of these two clades along the sediment profile. Ecological network analysis further revealed closer interactions between comammox bacteria and canonical ammonia oxidizers in the superficial layer (0-40 cm), with the network structure gradually simplifying from superficial to deep sediment (200-300 cm). Overall, these findings broaden the current recognition of the geographic distribution and niche segregation of comammox bacteria at the fine scale of the sediments ecosystems and provide insights into sediment depth-related variations of their coexistence network patterns in large freshwater reservoirs.
Collapse
Affiliation(s)
- Baohong Yu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Quanchao Zeng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| | - Jinlin Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Jun Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Xun Tan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Xin Gao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Ziqiang Mao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Ping Huang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China.
| |
Collapse
|
34
|
Zhou L, Chen J, Zhang X, Zhu Z, Wu Z, Zhang K, Wang Y, Wu P, Zhang X. Efficient nitrogen removal from municipal wastewater by an autotrophic-heterotrophic coupled anammox system: The up-regulation of key functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166359. [PMID: 37595900 DOI: 10.1016/j.scitotenv.2023.166359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The metabolic pathways based on key functional genes were innovatively revealed in the autotrophic-heterotrophic coupled anammox system for real municipal wastewater treatment. The nitrogen removal performance of the system was stabilized at 88.40 ± 3.39 % during the treatment of real municipal wastewater. The relative abundances of the nitrification functional genes ammonia oxidase (amoA/B/C), hydroxylamine oxidoreductase (hao), and nitrite oxidoreductases (nxrA/B) were increased by 1.2-2.4 times, and these three nitrification functional genes were mostly contributed by Nitrospira that dominated the efficient nitrification of the system. The relative abundance of anammox bacteria Candidatus Brocadia augmented from 0.35 % to 0.75 %, accompanied with the increased expression of hydrazine synthase (hzs) and hydrazine dehydrogenase (hdh), resulting in the major role of anammox (81.24 %) for nitrogen removal. The expression enhancement of the functional genes nitrite reductase (narG/H, napA/B) that promoted partial denitrification (PD) of the system weakened the adverse effects of the sharp decline in the population of PD microbe Thauera (from 5.7 % to 2.2 %). The metabolic module analysis indicated that the carbon metabolism pathways of the system mainly included CO2 fixation and organic carbon metabolism, and the stable enrichment of autotrophic bacteria ensured stable CO2 fixation. Furthermore, the enhanced expression of the glucokinases (glk, GCK, HK, ppgk) and the abundant pyruvate kinase (PK) achieved stable hydrolysis ability of organic carbon metabolism function of the system. This study offers research basics to practical application of the mainstream anammox process.
Collapse
Affiliation(s)
- Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
35
|
Aqeel H, Asefa B, Liss SN. Nitrospira dominant pin-point flocs with granule-like settleability in stirred tank reactors with oxic/hypoxic/oxic zones. Front Microbiol 2023; 14:1307727. [PMID: 38111639 PMCID: PMC10726125 DOI: 10.3389/fmicb.2023.1307727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The characteristics of biomass and microbial community dynamics, in relation to autotrophic nitrification, were studied in two 20 L stirred tank reactors (STR) with oxic/hypoxic/oxic zones. The bioreactors were fed with synthetic wastewater with stepwise increasing ammonia concentrations (50-200 N mg/L) without organic substrate in the first phase (autotrophic phase) for 35 days (R1) and 15 days (R2), followed by a heterotrophic phase (with supplementation of organic substrate). The settling properties of the biomass, represented by pin-point flocs, gradually improved in both reactors during the autotrophic phase. The pin-point flocs of R1 exhibited granule-like settling properties. The SVI30 in RI gradually improved to 29 mL/g MLSS, and the corresponding SVI30/ SVI10 gradually improved to 0.88 during the autotrophic phase. The settling properties of the biomass deteriorated in both bioreactors during the heterotrophic phase. The protein to polysaccharide ratio (PN:PS ratio) gradually increased in the extracted EPS (in both, loosely bound (LB) and tightly bound (TB) EPS) during the autotrophic phase, in both bioreactors. The TB:LB EPS ratio was higher when the pin-point flocs of R1 showed granule-like settling properties, followed by a decline in TB:LB EPS ratio during the heterotrophic phase. A combination of molecular approaches (droplet digital-PCR (dd-PCR) and 16S rRNA gene sequencing) revealed that Nitrospira were the predominant nitrifying bacteria in the pin-point flocs that show granular sludge-like settling properties during autotrophic phase in R1. Comammox Nitrospira was the dominant ammonia oxidizer in seed biomass and at low ammonia concentrations in both bioreactors. The relative abundance of canonical ammonia-oxidizing bacteria increased with an increase in influent-ammonia concentrations.
Collapse
Affiliation(s)
- Hussain Aqeel
- Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Bruke Asefa
- Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Steven N. Liss
- Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
- School of Environmental Studies, Queen’s University, Kingston, ON, Canada
- Department of Microbiology, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| |
Collapse
|
36
|
Zhao H, Guo Y, Zhang Z, Sun H, Wang X, Li S, Liao J, Li YY, Wang Q. The stable operation of nitritation process with the continuous granular sludge-type reactor and microbial community analysis. CHEMOSPHERE 2023; 345:140527. [PMID: 37884092 DOI: 10.1016/j.chemosphere.2023.140527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
The nitritation step is the fundament for the biological nitrogen removal regardless of the traditional nitrification and denitrification process, the nitrite shunt process or the anammox process. Thus, exploring the effective nitritation performance is an important aspect of biological nitrogen removal. This study explored the upper limit of nitritation rate by increasing hydraulic residence time with the well-mixed and continuous granular sludge-type reactor characterized with low complexity and easy operation. The results showed that with the nitrogen loading rate of 1.0 kg/m3/d, the nitrite production rate could reach up to 0.65 kg/m3/d with the nitrite production efficiency of 63.49%, which is remarkable compared to that in the previously similar research. The microbial analysis indicated that ammonia-oxidizing bacteria was successfully enriched (13.27%) and genus Nitrosomonas was the dominant bacteria type. Besides, the activity of ammonium oxidizing bacteria in the continuous flow reactor was higher than that of other reactor types. The growth of vorticella on the sludge was also found in the reactor. The test of specific sludge activity and the microbe analysis both indicated that the nitrite-oxidizing bacteria was well inhibited during the whole experiment, which indicated the strategy of simply adjusting the dissolved oxygen is effective for running of nitritation process. The phosphorus removal performance was also achieved with a removal efficiency of 23.53%. The functional composition of the microbial community in the samples was predicted and finally transformation mechanism of nitrogen in sludge was drawn. In sum, this study indicated the superior performance of the granule sludge-type nitritation process and give a reference for the application of biological nitrogen removal technology.
Collapse
Affiliation(s)
- Hongjun Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China.
| | - Ze Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jianbo Liao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| |
Collapse
|
37
|
He Q, Yan X, Wang H, Ji Y, Li J, Liu L, Bi P, Xu P, Xu B, Ma J. Towards a better understanding of the anaerobic/oxic/anoxic-aerobic granular sludge process (AOA-AGS) for simultaneous low-strength wastewater treatment and in situ sludge reduction from ambient to winter temperatures. ENVIRONMENTAL RESEARCH 2023; 236:116822. [PMID: 37541415 DOI: 10.1016/j.envres.2023.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The new anaerobic/oxic/anoxic-aerobic granular sludge (AOA-AGS) merits the advantages of effective carbon utilization and low-carbon treatment. However, low temperature poses stressing concerns and the resisting mechanism remains much unknown. Herein, an AOA-AGS process was configured for simultaneous nitrification, denitrification and phosphorus removal (SNDPR) with low-strength wastewater from ambient (>15 °C) to winter temperatures (<15 °C). Results showed that simultaneously advanced nutrients removal, and dramatic in situ sludge reduction (Yobs of 0.093 g MLSS/g COD) were gained regardless of seasonally decreasing temperatures. Winter temperatures even amplified Candidatus Competibacter predominating from 20.11% to 34.74%, which laid the core basis for endogenous denitrification, sludge minimization and temperature resistance. A removal model was thus proposed given the observed functional groups, and doubts were also raised for future investigations. This study would aid a better understanding on the microbial ecology and engineering aspects of the new AOA-AGS process treating low-strength wastewater at low temperatures.
Collapse
Affiliation(s)
- Qiulai He
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Xiaohui Yan
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430082, China
| | - Yaning Ji
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jinfeng Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Liang Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Bi
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Baokun Xu
- Agricultural Water Conservancy Department, Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
38
|
Li X, Fan S, Zhang Y, Li D, Su C, Qi Z, Liang H, Gao S, Chen M. Performance and microbial metabolic mechanism of imidacloprid removal in a microbial electrolysis cell-integrated adsorption biological coupling system. BIORESOURCE TECHNOLOGY 2023; 386:129513. [PMID: 37468017 DOI: 10.1016/j.biortech.2023.129513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Coke used as a filler to treat imidacloprid (IMI) wastewater by both adsorption biological coupling and microbial electrolysis cells (MEC)-adsorption biological coupling technologies, the removal efficiencies on pollutions in wastewater containing IMI were investigated, and the key functional genes related to IMI degradation pathways were also revealed. Results showed that the removal rates of COD, ammonia nitrogen, TP, and IMI under the adsorption biological coupling treatment and MEC-adsorption biological coupling treatment were 94.61-95.54%, 93.37-95.79%, 73.69-83.80%, and 100%, respectively. MEC increased the relative abundance of Proteobacteria by 9.01% and transformed the dominant bacteria from Lysobacter and Reyranella to Brevundimonas and Aquincola. Moreover, MEC up-regulated the abundance of the coding genes PK (9.30%), narG (2.26%), pstS (3.63%), and phnD (1.32%), and converted the IMI degradation products to smaller molecular weight C6H8N2 and C6H6ClNO. This study provided an important reference information for efficient treatment of IMI wastewater using the MEC-adsorption biological coupling technology.
Collapse
Affiliation(s)
- Xinjuan Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shuo Fan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Yunnan Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Daoning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Zhifei Qi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Huayu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Shu Gao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
39
|
Krüger M, Chaudhari N, Thamdrup B, Overholt WA, Bristow LA, Taubert M, Küsel K, Jehmlich N, von Bergen M, Herrmann M. Differential contribution of nitrifying prokaryotes to groundwater nitrification. THE ISME JOURNAL 2023; 17:1601-1611. [PMID: 37422599 PMCID: PMC10504367 DOI: 10.1038/s41396-023-01471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
The ecophysiology of complete ammonia-oxidizing bacteria (CMX) of the genus Nitrospira and their widespread occurrence in groundwater suggests that CMX bacteria have a competitive advantage over ammonia-oxidizing bacteria (AOB) and archaea (AOA) in these environments. However, the specific contribution of their activity to nitrification processes has remained unclear. We aimed to disentangle the contribution of CMX, AOA and AOB to nitrification and to identify the environmental drivers of their niche differentiation at different levels of ammonium and oxygen in oligotrophic carbonate rock aquifers. CMX ammonia monooxygenase sub-unit A (amoA) genes accounted on average for 16 to 75% of the total groundwater amoA genes detected. Nitrification rates were positively correlated to CMX clade A associated phylotypes and AOB affiliated with Nitrosomonas ureae. Short-term incubations amended with the nitrification inhibitors allylthiourea and chlorate suggested that AOB contributed a large fraction to overall ammonia oxidation, while metaproteomics analysis confirmed an active role of CMX in both ammonia and nitrite oxidation. Ecophysiological niche differentiation of CMX clades A and B, AOB and AOA was linked to their requirements for ammonium, oxygen tolerance, and metabolic versatility. Our results demonstrate that despite numerical predominance of CMX, the first step of nitrification in oligotrophic groundwater appears to be primarily governed by AOB. Higher growth yields at lower ammonia turnover rates and energy derived from nitrite oxidation most likely enable CMX to maintain consistently high populations.
Collapse
Affiliation(s)
- Markus Krüger
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Narendrakumar Chaudhari
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Bo Thamdrup
- Department of Biology, Nordcee-University of Southern Denmark, Odense, Denmark
| | - Will A Overholt
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Laura A Bristow
- Department of Biology, Nordcee-University of Southern Denmark, Odense, Denmark
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Martin Taubert
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Kirsten Küsel
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Martina Herrmann
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, Germany.
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
40
|
Lin Y, Tang KW, Ye G, Yang P, Hu HW, Tong C, Zheng Y, Feng M, Deng M, He ZY, He JZ. Community assembly of comammox Nitrospira in coastal wetlands across southeastern China. Appl Environ Microbiol 2023; 89:e0080723. [PMID: 37671870 PMCID: PMC10537594 DOI: 10.1128/aem.00807-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
Complete ammonia oxidizers (comammox Nitrospira) are ubiquitous in coastal wetland sediments and play an important role in nitrification. Our study examined the impact of habitat modifications on comammox Nitrospira communities in coastal wetland sediments across tropical and subtropical regions of southeastern China. Samples were collected from 21 coastal wetlands in five provinces where native mudflats were invaded by Spartina alterniflora and subsequently converted to aquaculture ponds. The results showed that comammox Nitrospira abundances were mainly influenced by sediment grain size rather than by habitat modifications. Compared to S. alterniflora marshes and native mudflats, aquaculture pond sediments had lower comammox Nitrospira diversity, lower clade A.1 abundance, and higher clade A.2 abundance. Sulfate concentration was the most important factor controlling the diversity of comammox Nitrospira. The response of comammox Nitrospira community to habitat change varied significantly by location, and environmental variables accounted for only 11.2% of the variations in community structure across all sites. In all three habitat types, dispersal limitation largely controlled the comammox Nitrospira community assembly process, indicating the stochastic nature of these sediment communities in coastal wetlands. IMPORTANCE Comammox Nitrospira have recently gained attention for their potential role in nitrification and nitrous oxide (N2O) emissions in soil and sediment. However, their distribution and assembly in impacted coastal wetland are poorly understood, particularly on a large spatial scale. Our study provides novel evidence that the effects of habitat modification on comammox Nitrospira communities are dependent on the location of the wetland. We also found that the assembly of comammox Nitrospira communities in coastal wetlands was mainly governed by stochastic processes. Nevertheless, sediment grain size and sulfate concentration were identified as key variables affecting comammox Nitrospira abundance and diversity in coastal sediments. These findings are significant as they advance our understanding of the environmental adaptation of comammox Nitrospira and how future landscape modifications may impact their abundance and diversity in coastal wetlands.
Collapse
Affiliation(s)
- Yongxin Lin
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Kam W. Tang
- Department of Biosciences, Swansea University, Swansea, United Kingdom
| | - Guiping Ye
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, Fujian, China
| | - Ping Yang
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, Fujian, China
| | - Hang-Wei Hu
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| | - Chuan Tong
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, Fujian, China
| | - Yong Zheng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Mengmeng Feng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Milin Deng
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Zi-Yang He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
| | - Ji-Zheng He
- Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, Fujian, China
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Zhang S, Wang F, Wang Y, Chen X, Xu P, Miao H. Shifts of soil archaeal nitrification and methanogenesis with elevation in water level fluctuation zone of the three Gorges Reservoir, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117871. [PMID: 37030237 DOI: 10.1016/j.jenvman.2023.117871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The water level fluctuation zone is a unique ecological zone exposed to long-term drying and flooding and plays a critical role in the transport and transformation of carbon and nitrogen materials in reservoir-river systems. Archaea are a vital component of soil ecosystems in the water level fluctuation zones, however, the distribution and function of archaeal communities in responde to long-term wet and dry alternations are still unclear. The community structure of archaea in the drawdown areas at various elevations of the Three Gorges Reservoir was investigated by selecting surface soils (0-5 cm) of different inundation durations at three sites from upstream to downstream according to the flooding pattern. The results revealed that prolonged flooding and drying increased the community diversity of soil archaea, with ammonia-oxidizing archaea being the dominant species in non-flooded regions, while methanogenic archaea were abundant in soils that had been flooded for an extended period of time. Long-term alternation of wetting and drying increases methanogenesis but decreases nitrification. It was determined that soil pH, NO3--N, TOC and TN are significant environmental factors affecting the composition of soil archaeal communities (P = 0.02). Long-term flooding and drying changed the community composition of soil archaea by altering environmental factors, which in turn influenced nitrification and methanogenesis in soils at different elevations. These findings contribute to our understanding of soil carbon and nitrogen transport transformation processes in the water level fluctuation zone as well as the effects of long-term wet and dry alternation on soil carbon and nitrogen cycles. The results of this study can provide a basis for ecological management, environmental management, and long-term operation of reservoirs in water level fluctuation zones.
Collapse
Affiliation(s)
- Shengman Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Peifan Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Haocheng Miao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
42
|
Tan Q, Zhang G, Ding A, Bian Z, Wang X, Xing Y, Zheng L. Anthropogenic land-use activities within watersheds reduce comammox activity and diversity in rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117841. [PMID: 37003226 DOI: 10.1016/j.jenvman.2023.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/12/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen cycling plays a key role in maintaining river ecological functions which are threatened by anthropogenic activities. The newly discovered complete ammonia oxidation, comammox, provides novel insights into the ecological effects of nitrogen on that it oxidizes ammonia directly to nitrate without releasing nitrite as canonical ammonia oxidization conducted by AOA or AOB which is believed to play an important role in greenhouse gas generation. Theoretically, contribution of commamox, AOA and AOB to ammonia oxidization in rivers might be impacted by anthropogenic land-use activities through alterations in flow regime and nutrient input. While how land use pattern affects comammox and other canonical ammonia oxidizers remains elusive. In this study, we examined the ecological effects of land use practices on the activity and contribution of three distinctive groups of ammonia oxidizers (AOA, AOB, comammox) as well as the composition of comammox bacterial communities from 15 subbasins covering an area of 6166 km2 in North China. The results showed that comammox dominated nitrification (55.71%-81.21%) in less disturbed basins characterized by extensive forests and grassland, while AOB became the major player (53.83%-76.43%) in highly developed basins with drastic urban and agricultural development. In addition, increasing anthropogenic land use activities within the watershed lowered the alpha diversity of comammox communities and simplified the comammox network. Additionally, the alterations of NH4+-N, pH and C/N induced by land use change were found to be crucial drivers in determining the distribution and activity of AOB and comammox. Together, our findings cast a new light on aquatic-terrestrial linkages from the view of microorganism-mediated nitrogen cycling and can further be applied to target watershed land use management.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Guoyu Zhang
- Department of Environmental Engineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai, 264209, China
| | - Aizhong Ding
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Zhaoyong Bian
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
43
|
Meng S, Liang X, Peng T, Liu Y, Wang H, Huang T, Gu JD, Hu Z. Ecological distribution and function of comammox Nitrospira in the environment. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12557-6. [PMID: 37195422 DOI: 10.1007/s00253-023-12557-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Complete ammonia oxidizers (Comammox) are of great significance for studying nitrification and expanding the understanding of the nitrogen cycle. Moreover, Comammox bacteria are also crucial in natural and engineered environments due to their role in wastewater treatment and maintaining the flux of greenhouse gases to the atmosphere. However, only few studies are there regarding the Comammox bacteria and their role in ammonia and nitrite oxidation in the environment. This review mainly focuses on summarizing the genomes of Nitrospira in the NCBI database. Ecological distribution of Nitrospira was also reviewed and the influence of environmental parameters on genus Nitrospira in different environments has been summarized. Furthermore, the role of Nitrospira in carbon cycle, nitrogen cycle, and sulfur cycle were discussed, especially the comammox Nitrospira. In addition, the overviews of current research and development regarding comammox Nitrospira, were summarized along with the scope of future research. KEY POINTS: • Most of Comammox Nitrospira are widely distributed in both aquatic and terrestrial ecosystems, but it has been studied less frequently in the extreme environments. • Comammox Nitrospira can be involved in different nitrogen transformation process, but rarely involved in nitrogen fixation. • The stable isotope and transcriptome techniques are important methods to study the metabolic function of comammox Nitrospira.
Collapse
Affiliation(s)
- Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Xueji Liang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Yongjin Liu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, Guangdong, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
44
|
Ding H, Zhang J, Wang Y, Hu M, Wen J, Li S, Bao Y, Zhao J. Community composition and abundance of complete ammonia oxidation (comammox) bacteria in the Lancang River cascade reservoir. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114907. [PMID: 37059014 DOI: 10.1016/j.ecoenv.2023.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The construction of the reservoir has changed the nitrogen migration and transformation processes in the river, and a large amount of sediment deposition in the reservoir may also lead to the spatial differentiation of complete ammonia oxidation (comammox) bacteria. The study investigated the abundance and diversity of comammox bacteria in the sediments of three cascade reservoirs, namely, Xiaowan, Manwan, and Nuozhadu on the Lancang River in China. In these reservoirs, the average amoA gene abundance of clade A and clade B of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) was 4.16 ± 0.85 × 105, 1.15 ± 0.33 × 105, 7.39 ± 2.31 × 104, and 3.28 ± 0.99 × 105 copies g-1, respectively. The abundance of clade A was higher than that of other ammonia oxidizing microorganisms. The spatial variation of comammox bacteria abundance differed among different reservoirs, but the spatial variation trends of the two clades of comammox bacteria in the same reservoir were similar. At each sampling point, clade A1, clade A2, and clade B coexisted, and clade A2 was usually the dominant species. The connection between comammox bacteria in the pre-dam sediments was looser than that in non-pre-dam sediments, and comammox bacteria in pre-dam sediments exhibited a simpler network structure. The main factor affecting comammox bacteria abundance was NH4+-N, while altitude, temperature, and conductivity of overlying water were the main factors affecting comammox bacteria diversity. Environmental changes caused by differences in the spatial distribution of these cascade reservoirs may be the main driver of the changes of community composition and abundance of comammox bacteria. This study confirms that the construction of cascade reservoirs results in niche spatial differentiation of comammox bacteria.
Collapse
Affiliation(s)
- Hang Ding
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiahui Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Mingming Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Jie Wen
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Shanze Li
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yufei Bao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing 10038, China; Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
45
|
Meng C, Xing Y, Ding Y, Zhang Q, Di H, Tang C, Xu J, Li Y. Soil acidification induced variation of nitrifiers and denitrifiers modulates N 2O emissions in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163623. [PMID: 37086999 DOI: 10.1016/j.scitotenv.2023.163623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Soil acidification is a major land degradation process globally, and impacts soil nitrogen (N) transformation. However, it is still not well known how soil acidification affects net N mineralization and nitrification, especially N-cycling microbes and nitrous oxide (N2O) emissions. Hence, three soils characterized by different soil pH values (5.5, 6.3, and 7.7) were collected from the paddy fields, and experiments were conducted to evaluate the effect of soil acidification on net N mineralization and nitrification, and N2O emissions. Compared to those in the soils with pH 7.7 and 6.3, net N mineralization, net nitrification, and N2O emissions were decreased by 75-76 %, 89-91 %, and 19-48 %, respectively, in the soil with pH 5.5, while net N nitrification and N2O emissions decreased by 18 % in the soil with pH 6.3 when compared to those in the soil with pH 7.7. The significantly decreased net nitrification in the soils with pH 6.3 and 5.5 was mainly attributed to the limited N availability and abundance of nitrification-related microbes including ammonia-oxidizing bacteria and complete ammonia-oxidizers. The decrease in N2O emissions of soils with pH 6.3 and 5.5 had mainly resulted from decreasing nitrification and denitrification via suppressing microbes including nirS and fungal nirK and limiting N availability. Hence, this study provides new insights and improves our understanding of how soil acidification regulates N mineralization, nitrification, and N2O emissions in paddy soils, which gives guidance on developing N management strategies for sustainable production and N2O mitigation in acid soils.
Collapse
Affiliation(s)
- Chaobiao Meng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yating Xing
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences/La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
46
|
Jiang L, Yu J, Wang S, Wang X, Schwark L, Zhu G. Complete ammonia oxidization in agricultural soils: High ammonia fertilizer loss but low N 2 O production. GLOBAL CHANGE BIOLOGY 2023; 29:1984-1997. [PMID: 36607170 DOI: 10.1111/gcb.16586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/22/2022] [Indexed: 05/28/2023]
Abstract
The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg-1 day-1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0-0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2 O (0.98 ± 0.44 μg N kg-1 day-1 , 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2 O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.
Collapse
Affiliation(s)
- Liping Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lorenz Schwark
- Organic Geochemistry Unit, Kiel University, Kiel, Germany
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Bi R, Xu X, Zhan L, Chen A, Zhang Q, Xiong Z. Proper organic substitution attenuated both N 2O and NO emissions derived from AOB in vegetable soils by enhancing the proportion of Nitrosomonas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161231. [PMID: 36586678 DOI: 10.1016/j.scitotenv.2022.161231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The ammonia oxidation process driven by microorganisms is an essential source of nitrous oxide (N2O) and nitric oxide (NO) emissions. However, few evaluations have been performed on the changes in the community structure and abundance of soil ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) under substituting portion of chemical fertilizers with organic manure (organic substitution) and their relative contribution to the ammonia oxidation process. Here, five long-term fertilization strategies were applied in field (SN: synthetic fertilizer application; OM: organic manure; M1N1: substituting 50 % of chemical N fertilizer with organic manure; M1N4: substituting 20 % of chemical N fertilizer with organic manure; and CK: no fertilizer). We investigated the response characteristics of AOB and AOA community structures by selective inhibitor shaking assays and high-throughput sequencing and further explained their relative contribution to the ammonia oxidation process during three consecutive years of vegetable production. Compared to SN and M1N4, the potential of ammonia oxidation (PAO) was significantly reduced by 26.4 % and 22.3 % in OM and 9.5 % and 4.4 % in M1N1, resulting in N2O reductions of 38.9 % and 30.8 % (OM) and 31.2 % and 21.1 % (M1N1), respectively, and NO reductions of 45.0 % and 34.1 % (OM) and 40.1 % and 28.3 % (M1N1). RDA and correlation analyses showed that the soil organic carbon and ammonium nitrogen content increased while AOB gene abundance and diversity significantly decreased with increasing organic replacement ratio; however, the relative abundance of Nitrosomonas in AOB increased in OM and M1N1, which further demonstrates that AOB are the main driver in vegetable soils. Therefore, the appropriate proportion of organic substitution (OM and M1N1) could decrease the N2O and NO emissions contributed by AOB by affecting the soil physicochemical properties and AOB community structure.
Collapse
Affiliation(s)
- Ruiyu Bi
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xintong Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Liping Zhan
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anfeng Chen
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
48
|
Wang Y, Zhang S, Jin H, Chen J, Zhou K, Chen J, Chen J, Zhu G. Effects of dam building on the occurrence and activity of comammox bacteria in river sediments and their contribution to nitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161167. [PMID: 36572300 DOI: 10.1016/j.scitotenv.2022.161167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The recent discovery of complete ammonia oxidizers (comammox) has fundamentally changed our understanding of nitrification. However, studies on the occurrence and activity of comammox bacteria and their contribution to nitrification remain unclear. Here, we investigated the abundance, activity, and diversity of comammox bacteria and their contribution to nitrification in sediments from dammed rivers in winter and summer. Our results indicated that comammox clade A was ubiquitous in all sediment samples and the community structure in comammox varied between the upper and lower reaches, but not on the time scale (winter and summer). Comammox activity in the dammed river sediments in summer was prominently higher than in winter (summer: 1.08 ± 0.52; winter: 0.197 ± 0.148 mg N kg-1 day-1). Furthermore, the activity of comammox bacteria in summer appeared higher in the vicinity of the dammed river and in the Sanjiang estuary, which is located downstream of the dammed river. The activity of ammonia-oxidizing bacteria (AOB) (0.77 ± 0.478 mg N kg-1 day-1) was higher compared to comammox (0.639 ± 0.588 mg N kg-1 day-1) and ammonia-oxidizing archaea (AOA) (0.026 ± 0.022 mg N kg-1 day-1) in both winter and summer. In terms of contribution to the nitrification process, AOB (winter: 67.13 ± 12.21 %; summer: 50.57 ± 16.14 %) outperformed comammox (winter: 28.59 ± 12.51 %; summer: 48.38 ± 16.62 %) and AOA (winter: <7.39 %; summer: <2.09 %). These findings indicated that the nitrification process in dammed river sediments was mainly dominated by AOB. Additionally, comammox activity was significantly affected by temperature and NH4+, suggesting that these variables were key determinants of the niche partitioning of comammox. Collectively, our findings provide novel perspectives into the widespread distribution and contribution of comammox to nitrification in dammed river ecosystems, thus broadening our understanding of the nitrification processes.
Collapse
Affiliation(s)
- Yuantao Wang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China; CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315100, China
| | - Shenghua Zhang
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China.
| | - Huixia Jin
- NingboTech University, Ningbo 315100, China
| | - Jiwei Chen
- Ningbo River Management Center, Ningbo 315100, China
| | - Ketao Zhou
- Ningbo River Management Center, Ningbo 315100, China
| | - Jinxi Chen
- NingboTech University, Ningbo 315100, China
| | - Jinfang Chen
- College of Harbour and Coastal Engineering, Jimei University, Xiamen 361021, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
49
|
Liao Z, Wu S, Xie H, Chen F, Yang Y, Zhu R. Effect of phosphate on cadmium immobilized by microbial-induced carbonate precipitation: Mobilization or immobilization? JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130242. [PMID: 36327838 DOI: 10.1016/j.jhazmat.2022.130242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Microbial-induced carbonate precipitation (MICP) is a promising technology to immobilize/remediate heavy metals (HMs) like cadmium (Cd). However, the long-term stability of MICP-immobilized HMs is unclear, especially in farmland where chemical fertilization is necessary. Therefore, we performed MICP treatment on soils contaminated with various Cd compounds (CdCO3, CdS, and CdCl2) and added diammonium phosphate (DAP) to explore the impact of phosphate on the MICP-immobilized Cd. The results showed that MICP treatment was practical to immobilize the exchangeable Cd but to mobilize the carbonate and Fe/Mn oxide-bound Cd. After applying DAP, soil pH declined due to ammonium nitrification. At high P/Ca molar ratios (1/2 and 1), partial previously immobilized Cd was released due to the carbonate dissolution. Contrarily, exchangeable Cd transformed to less mobilizable Fe/Mn oxide-bound at low P/Ca molar ratios (1/4 and 1/8). Meanwhile, other treatments were also helpful in avoiding the release of immobilized Cd, such as applying non-ammonium phosphate and adding lime material after soil acidification. Our investigation suggested that the long-term stability of HMs in remediated sites should be carefully evaluated, especially in agricultural areas with phosphate and nitrogen fertilizer input.
Collapse
Affiliation(s)
- Zisheng Liao
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049 Beijing, China
| | - Shijun Wu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China.
| | - Hong Xie
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China; University of Chinese Academy of Science, 19 Yuquan Road, 100049 Beijing, China
| | - Fanrong Chen
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Yongqiang Yang
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny & Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, 510640 Guangzhou, China; CAS Center for Excellence in Deep Earth Science, 511 Kehua Street, 510640 Guangzhou, China
| |
Collapse
|
50
|
Wang Y, Zeng X, Ma Q, Zhang Y, Yu W, Zheng Z, Zhang N, Xu L. Differential responses of canonical nitrifiers and comammox Nitrospira to long-term fertilization in an Alfisol of Northeast China. Front Microbiol 2023; 14:1095937. [PMID: 36819044 PMCID: PMC9929954 DOI: 10.3389/fmicb.2023.1095937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
The newly identified complete ammonia oxidizer (comammox) that converts ammonia directly into nitrate has redefined the long-held paradigm of two-step nitrification mediated by two distinct groups of nitrifiers. However, exploration of the niche differentiation of canonical nitrifiers and comammox Nitrospira and their ecological importance in agroecosystems is still limited. Here, we adopted quantitative PCR (qPCR) and Illumina MiSeq sequencing to investigate the effects of five long-term fertilization regimes in the variations of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA), nitrite-oxidizing bacteria (NOB), and comammox Nitrospira abundances and comammox community composition in two soil layers (0-20 cm, topsoil; 20-40 cm, subsoil) in an Alfisol in Northeast China. The fertilization treatments included no fertilizer (CK); chemical nitrogen (N) fertilizer; chemical N; phosphorus (P) and potassium (K) fertilizers (NPK); recycled organic manure (M) and chemical N, P, K plus recycled manure (MNPK). Compared with CK, manure and/or chemical fertilizer significantly increased the AOB amoA gene abundance. Long-term recycled manure increased soil organic matter (SOM) contents and maintained the soil pH, but decreased the NH4 +-N concentrations, which markedly promoted the nxrA and nxrB gene abundances of NOB and the amoA gene abundances of comammox Nitrospira clade A and AOA. Although the comammox Nitrospira clade B abundance tended to decrease after fertilization, the structural equation modeling analysis showed that comammox clade B had direct positive impacts on soil potential ammonia oxidation (PAO; λ = 0.59, p < 0.001). The long-term fertilization regime altered the community composition of comammox Nitrospira. Additionally, comammox Nitrospira clades A and B had individual response patterns to the soil layer. The relative abundance of clade A was predominant in the topsoil in the N (86.5%) and MNPK (76.4%) treatments, while clade B appeared to be dominant in the subsoil (from 78.7 to 88.1%) with lower ammonium contents, implying niche separation between these clades. Soil pH, NH4 +-N and SOM content were crucial factors shaping the soil nitrifying microbial abundances and the comammox Nitrospira community. Together, these findings expand the current understanding of the niche specialization and the important role of comammox Nitrospira in terrestrial ecosystems.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Xibai Zeng, ✉
| | - Qiang Ma
- Insitute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wantai Yu
- Insitute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Zhong Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Xu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|