1
|
Tang J, Peng W. Spatiotemporal dynamics and influencing factors of land carbon stock in Chengdu Plain using an integrated model. Sci Rep 2025; 15:11248. [PMID: 40175528 PMCID: PMC11965421 DOI: 10.1038/s41598-025-95756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025] Open
Abstract
Understanding land carbon stock dynamics is essential for sustainable land use and ecological conservation amid rapid urbanisation. This study investigates how land use changes contribute to carbon sequestration, offering insights to support China's carbon peaking (2030) and carbon neutrality (2060) goals. Using high-resolution land use data (30 m) from 2000 to 2020 for the Chengdu Plain region, derived via Google Earth Engine and Random Forest classification, the Patch-generating Land Use Simulation (PLUS) model was applied to predict land use changes under four scenarios: natural development scenario (NDS), ecological protection scenario (EPS), cultivated land preservation scenario (CLDS), and economic development scenario (EDS) for 2030 and 2060. Carbon stock dynamics were quantified using the InVEST model, while the Optimised Parameter Geographical Detector (OPQD) model identified key drivers and their interactions. Between 2000 and 2020, cropland decreased by 4.14% while construction land increased by 4.15%, reflecting rapid urban expansion. Scenario simulations predict further cropland loss (2.80%-7.44%) and substantial construction land growth (26.89%-39.95%) by 2060, with forest and grassland recovery only under conservation scenarios. Carbon stock declined by 5.1%-5.5%, with the EPS and CLDS scenarios mitigating losses, while the NDS and EDS scenarios caused significant declines. Anthropogenic factors, such as urbanisation and economic growth, had a greater impact (> 15%) on carbon stock than natural factors (< 4%), with their interactions exhibiting nonlinear enhancement effects.This study underscores the benefits of conservation strategies and provides actionable insights for climate change mitigation, carbon trading, and sustainable urban planning. Further exploration of additional factors and predictive refinements will enhance regional ecological conservation efforts.
Collapse
Affiliation(s)
- Jie Tang
- The Institute of Geography and Resources Science, Sichuan Normal University, Chengdu, 610068, China
- Key Lab of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Chengdu, 610068, China
| | - Wenfu Peng
- The Institute of Geography and Resources Science, Sichuan Normal University, Chengdu, 610068, China.
- Key Lab of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Chengdu, 610068, China.
| |
Collapse
|
2
|
Zou C, Wang R, Yang S, Yin D. Importance of salinity on regulating the environmental fate and bioaccumulation of lithium in the Yangtze River Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176648. [PMID: 39362559 DOI: 10.1016/j.scitotenv.2024.176648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The demand of lithium (Li) has increased rapidly in recent decades under carbon neutrality strategies, but the environmental fate and potential risks of Li in aquatic ecosystem are barely known. This study conducted a comprehensive field survey in the Yangtze River Estuary (YRE) and the adjacent East China Sea (ECS), to investigate the spatial distribution of dissolved Li and bioaccumulation of Li in the coastal food web. The dissolved Li increased with salinity (from 7.39 to 189 μg L-1), controlled by the conservative mixing of Li-enriched seawater and Li-poor riverine water. Negative correlation was observed between Li content and stable nitrogen isotope in the coastal biota, indicating bio-diminish of Li in the food web. Furthermore, the Li contents in muscle tissues were significantly higher in bivalves (as filter-feeders; mean: 0.75 ± 0.41 μg g-1) than in fish (as predator; mean: 0.10 ± 0.05 μg g-1) and other biota species, indicating that dissolved uptake might be the major exposure pathway for Li. Importantly, it was noticed that the bioaccumulation factors (BAFs) in fish muscle varied greatly (from 0.17 to 5.82), showing lower BAFs for fish inhabiting in marine and benthic regions (with higher salinity and higher dissolved Li concentration). Such inhibition effects of salinity on Li bioaccumulation could not be explained by the modulation of salinity on Li speciation, but highly attributed to the inhibition of high salinity on the dissolved uptake of Li, which was associated with the co-transportation of Li and Na. Our results illuminate the importance of salinity on regulation the spatial variations of dissolved Li and Li bioaccumulation in the YRE and the adjacent ECS, which could help the understanding of Li biogeochemical cycling and potential risks in estuarine and coastal regions.
Collapse
Affiliation(s)
- Chenxi Zou
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shouye Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, PR China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
3
|
Hu C, Ma Y, Liu Y, Wang J, Li B, Sun Y, Shui B. Trophodynamics and potential health risk assessment of heavy metals in the mangrove food web in Yanpu Bay, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171028. [PMID: 38378067 DOI: 10.1016/j.scitotenv.2024.171028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Mangroves are the cradle of coastal water biodiversity and are susceptible to heavy metal pollution. However, the trophic transfer mechanism of heavy metals in the mangrove food web and the resulting human health risks are not fully understood. Heavy metal concentration (Cr, Ni, Cu, Zn, As, Cd, Pb, V, Co) and stable isotope ratios of carbon and nitrogen (δ13C and δ15N) were evaluated in sediments and particulate organic matter, litter, and aquatic organisms (plankton, arthropods, mollusks, omnivorous fish, and carnivorous fish) from the Yanpu Bay mangroves. The results revealed that heavy metals exhibited different trophic transfer patterns. As and Hg were efficiently biomagnified, with trophic magnification factors of 1.17 and 1.42, respectively; while Cr, Ni, Cu, Cd, Pb, V, and Co were efficiently biodiluted. Zn exhibited a trophic magnification factor > 1 and was not significantly correlated with δ15N (p > 0.05), suggesting no biomagnification or biodilution. The heavy metals in the important fishery species (omnivorous fish and carnivorous fish) were below the permissible limits, except for Zn in Ophichthus apicalis. The assessment of probabilistic health risks revealed that fish consumption in adults and children posed an acceptable risk (total target hazard quotient <1).
Collapse
Affiliation(s)
- Chengye Hu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yadong Ma
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yongtian Liu
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Li
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiyi Sun
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bonian Shui
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
4
|
Zeng HX, Man YB, Wong MH, Cheng Z. Hair Heavy Metals and Food Consumption in Residents of Chengdu: Factors, Food Contribution, and Health Risk Assessment. Biol Trace Elem Res 2024; 202:1503-1516. [PMID: 37491614 DOI: 10.1007/s12011-023-03785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Heavy metal pollution is one of the most pressing issues threatening food security and human health. This study assesses heavy metal (chromium, cadmium, copper, zinc, nickel, and lead) exposure via hair metal concentrations in Chengdu residents, reflecting metal intake from food consumption. From June 2020 to February 2021, a sampling survey was conducted on residents' hair (n=182) and food (n=301) in six main urban areas of Chengdu. The concentrations of heavy metals in hair and food were analyzed by inductively coupled plasma mass spectrometry, and the results showed that the residents of Chengdu City had high hair concentrations of Cd (0.17±0.03 mg kg-1) and Zn (293±21.3 mg kg-1). Gender significantly affected the hair Cr, Zn, and Ni concentrations. Based on the survey results obtained from Chengdu City residents, the habits and diet structure are assessed for the influence of six heavy metals in the hair of the residents. Adolescents' (13-18 years old) hair had significantly higher Pb concentrations than adults (19-59 years old). The concentration of Ni in hair was affected by perming and dyeing habits. For dietary exposure, cereals and meat were the main contributors to the residents' daily intake of heavy metals. The bioaccessibility of Cr, Cd, Cu, Zn, Ni, and Pb in food was 2.45-74.67%, 10.6-78.7%, 13.4-82.5%, 8.89-89.2%, 7.70-85.1%, and 15.4-86.2%, respectively. In health risk evaluation based on the bioaccessible fraction of six heavy metals, the hazard quotient of each heavy metal in food was less than 1, indicating no potential non-carcinogenic risk.
Collapse
Affiliation(s)
- Hong-Xin Zeng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yu Bon Man
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Zhang Cheng
- College of Environment, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
5
|
Doménech E, Martorell S. Review of the Terminology, Approaches, and Formulations Used in the Guidelines on Quantitative Risk Assessment of Chemical Hazards in Food. Foods 2024; 13:714. [PMID: 38472827 PMCID: PMC10931373 DOI: 10.3390/foods13050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
This paper reviews the published terminology, mathematical models, and the possible approaches used to characterise the risk of foodborne chemical hazards, particularly pesticides, metals, mycotoxins, acrylamide, and polycyclic aromatic hydrocarbons (PAHs). The results confirmed the wide variability of the nomenclature used, e.g., 28 different ways of referencing exposure, 13 of cancer risk, or 9 of slope factor. On the other hand, a total of 16 equations were identified to formulate all the risk characterisation parameters of interest. Therefore, the present study proposes a terminology and formulation for some risk characterisation parameters based on the guidelines of international organisations and the literature review. The mathematical model used for non-genotoxic hazards is a ratio in all cases. However, the authors used the probability of cancer or different ratios, such as the margin of exposure (MOE) for genotoxic hazards. For each effect studied per hazard, the non-genotoxic effect was mostly studied in pesticides (79.73%), the genotoxic effect was mostly studied in PAHs (71.15%), and both effects were mainly studied in metals (59.4%). The authors of the works reviewed generally opted for a deterministic approach, although most of those who assessed the risk for mycotoxins or the ratio and risk for acrylamide used the probabilistic approach.
Collapse
Affiliation(s)
- Eva Doménech
- Instituto Universitario de Ingeniería de Alimentos Food-UPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sebastián Martorell
- MEDASEGI Research Group, Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| |
Collapse
|
6
|
Zhang C, Luo Y, Sun S, Tian T, Zhu M, Ahmad Z, Yang J, Jin J, Zhang H, Chen J, Geng N. Accumulation characteristics of metals in human breast milk and association with dietary intake in northeastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168515. [PMID: 37977390 DOI: 10.1016/j.scitotenv.2023.168515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The trace elements present in breast milk play a vital role in the growth and development of infants. Nevertheless, numerous studies have reported the presence of toxic metal contamination in breast milk from various countries and regions, which poses potential risks to breastfed infants. This article aimed to investigate the characteristics of trace elements in breast milk and explore the relationship between breast milk and diet in Dalian, a coastal city in northeastern China. Breast milk samples and representative local food samples were collected from Dalian for research. The results revealed that 57 % of breast milk samples significantly exceeded the WHO safety limit (0.6 μg/L) for arsenic, with a measured mean value of 0.96 μg/L. Moreover, the levels of chromium (mean value: 2.63 μg/L) in 34 % of breast milk samples exceed the WHO recommended safety level (chromium: 1.5 μg/L). Aquatic foods accounted for 60 % to 90 % of the total intake of arsenic, cadmium, vanadium, mercury, and lead. The Spearman correlation analysis demonstrated strong positive correlations among breast milk metal elements, including copper-zinc (r = 0.68) and nickel‑chromium (r = 0.89). Furthermore, the food-to-milk accumulation factors (FMAF) of strontium, nickel, arsenic, vanadium, cadmium, and mercury were relatively low (median values <0.005). While the FMAF values for chromium and lead were higher, with median values of 0.038 and 0.07, respectively. The results indicated potential risks of the toxic metal arsenic in breast milk from Dalian, China for breastfed infants. Therefore, continuous monitoring of breast milk for toxic metals and foodborne contamination is necessary.
Collapse
Affiliation(s)
- Chengbin Zhang
- College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Yun Luo
- College of Medicine, Linyi University, Linyi 276005, China
| | - Shuai Sun
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Tian Tian
- College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Meiwen Zhu
- Chongqing Academy of Metrology and Quality Inspection, Chongqing 401123, China
| | - Zia Ahmad
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiajia Yang
- College of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China.
| | - Jing Jin
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
7
|
Dai Y, Sun S, Cao R, Zhang H, Chen J, Geng N. Residual levels and health risk assessment of trace metals in Chinese resident diet. J Environ Sci (China) 2024; 136:451-459. [PMID: 37923455 DOI: 10.1016/j.jes.2022.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2023]
Abstract
Large-scale metal contamination across the food web is an intractable problem due to increasing pollutant emissions, atmospheric transport, and dry and wet deposition of elements. The present study focus on several trace metals that are rarely studied but have special toxicity, including tin (Sn), antimony (Sb), gold (Au), hafnium (Hf), palladium (Pd), platinum (Pt), ruthenium (Ru), tellurium (Te) and iridium (Ir). We investigated trace metals residues and distribution characteristics, and further evaluated the potential health risks from major daily food intakes in 33 cities in China. Sn, Sb, Ir, Hf, and Au were frequently detected in food samples with the concentrations ranged from ND (not detected) to 24.78 µg/kg ww (wet weight). Eggs exhibited the highest residual level of all detected metals (13.70 ± 14.70 µg/kg ww in sum), while the lowest concentrations were observed in vegetables (0.53 ± 0.17 µg/kg ww in sum). Sn accounting for more than 50% of the total trace metals concentration in both terrestrial and aquatic animal origin foods. In terrestrial plant origin foods, Sn and Ir were the most abundant elements. Hf and Au were the most abundant elements in egg samples. In addition, Sb and Ir showed a clear trophic dilution effect in terrestrial environments, while in aquatic ecosystems, Sn, Hf, and Au exhibited obvious trophic amplification effects. The calculated average estimated daily intake (EDI) via food consumption in five regions of China was 0.09 µg/(kg·day), implying the health risk of aforementioned elements was acceptable.
Collapse
Affiliation(s)
- Yubing Dai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
8
|
Liu H, Wang H, Zhou J, Zhang Y, Wang H, Li M, Wang X. Environmental cadmium pollution and health risk assessment in rice-wheat rotation area around a smelter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:433-444. [PMID: 38012484 DOI: 10.1007/s11356-023-31215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Cadmium (Cd) pollution induced by smelting process is of great concern worldwide. However, the comprehensive risk assessment of Cd exposures in smelting areas with farming coexist is lacking. In this study, atmospheric deposition, soil, surface and drinking water, rice, wheat, vegetable, fish, pork, and human hair samples were collected in rice-wheat rotation area near nonferrous smelter to investigate smelting effect on environmental Cd pollution and human health. Results showed high Cd deposition (0.88-2.61 mg m-2 year-1) combined with high bioavailability (37-42% totality) in study area. Moreover, 90%, 83%, 57%, and 3% of sampled soil, wheat, rice, and vegetable of Cd were higher than national allowable limits of China, respectively, indicating smelting induced serious environmental Cd pollution. Especially, higher Cd accumulation occurred in wheat compared to rice by factors of 1.5-2.0. However, as for Cd exposure to local residents, due to rice as staple food, rice intake ranked as main route and accounted for 49-53% of total intake, followed by wheat and vegetable. Cd exposure showed high potential noncarcinogenic risks with hazard quotient (HQ) of 0.63-4.99 using Monte Carlo probabilistic simulation, mainly from crop food consumption (mean 94% totality). Further, residents' hair Cd was significant correlated with HQ of wheat and rice ingestion, highlighting negative impact of cereal pollution to resident health. Therefore, smelting process should not coexist with cereal cultivating.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Hu Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225000, People's Republic of China
| |
Collapse
|
9
|
Chen H, Cheng J, Li Y, Li Y, Wang J, Tang Z. Occurrence and potential release of heavy metals in female underwear manufactured in China: Implication for women's health. CHEMOSPHERE 2023; 342:140165. [PMID: 37709063 DOI: 10.1016/j.chemosphere.2023.140165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Underwear is a potential source of women's exposure to heavy metals owing to its direct contact with the skin, especially the skin of the vagina and vulva, which has a strong absorptive capacity. However, information regarding the prevalence of metals in female underwear, and its potential hazards, remains scarce. In the present study, we examined the concentrations and potential release of Cr, Co, Ni, Cu, As, Cd, Sb, and Pb in brassieres and briefs manufactured in China. We detected higher levels of Pb and moderate levels of other metals, relative to the metal levels reported for other textiles in the literature. Cu, As, Ni and Cd, had higher migration rates (MRs) from the underwear, with medians of 100%, 100%, 30.1%, and 20.7%, respectively. The median MRs of the other metals were in the range 1.07%-15.7%. On the whole, the total and extractable concentrations of these metals differed by item and fabric type. The pollution of raw materials and the use of chemical additives containing metals commonly contributed to the metals in the underwear. On the basis of the exposure estimation, the non-carcinogenic risks posed by the underwear metals were acceptable, but the carcinogenic risks from the metals in 5.18% of brassiere samples exceeded the acceptable level.
Collapse
Affiliation(s)
- Hanzhi Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 N73K, Cork, Ireland.
| | - Jiali Cheng
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Yuan Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Jiayu Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
10
|
Chu Z, Zhu N, Shao L, Xu H, Li J, Wang X, Jiao Y, Jiang D, Yang P. Occurrence of 8 trace elements in Rhizoma Cibotii from China and exposure assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115907-115914. [PMID: 37897570 DOI: 10.1007/s11356-023-30576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
The contamination of trace elements in Chinese edible herbs has attracted worldwide concern over the world. The objective of the present study was to investigate the occurrence and exposure assessment of eight trace elements in Rhizoma Cibotii from China. For this purpose, the method of inductively coupled plasma mass spectrometry was employed to detect the contamination levels of target trace elements in 58 Rhizoma Cibotii samples. The results demonstrated that the trace elements of Cr, Ni, Cu, Zn, and Pb were detected in all analyzed samples; the occurrence frequencies of As, Se, and Cd were 98.3%, 96.6%, and 98.3%, respectively. The highest mean levels were found in Zn (17.32 mg/kg), followed by Pb (8.50 mg/kg) and Cu (3.51 mg/kg). For a further step, one-way ANOVA was used to compare the difference of eight elements levels among groups, and Pearson's correlation analysis was used to explore the correlation between elements in Rhizoma Cibotii. A strong positive correlation between Zn and Cd was observed by Pearson's correlation analysis, which indicated that the possible presence of Cd contamination in Rhizoma Cibotii. Based on the contamination levels, the mean exposure of individual element and the health risks of eight trace elements in Rhizoma Cibotii were estimated by health risk assessment models. The calculated HQ values were less than 1, indicating that the contamination of trace elements in Rhizoma Cibotii did not pose significant health risks to human. In conclusion, the study provided baseline information on the contamination levels of trace elements in Rhizoma Cibotii. Moreover, it is necessary to monitor the trend of trace elements levels in Rhizoma Cibotii, which will be useful for ingredient control and human health protection.
Collapse
Affiliation(s)
- Zhijie Chu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Nannan Zhu
- Xintai Hospital of Traditional Chinese Medicine, Taian, 271200, People's Republic of China
| | - Lijun Shao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Hongxia Xu
- Department of Clinical Laboratory, The Third People's Hospital of Liaocheng, Liaocheng, 252000, People's Republic of China
| | - Jin Li
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Xiaolin Wang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Yanni Jiao
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China
| | - Dafeng Jiang
- Shandong Academy of Preventive Medicine, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, People's Republic of China.
| | - Peimin Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| |
Collapse
|
11
|
Tang W, Zhan W, Chen Q. The mediating role of telomere length in multi-pollutant exposure associated with metabolic syndrome in adults. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82068-82082. [PMID: 37322399 DOI: 10.1007/s11356-023-28017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
Metabolic syndrome is a chronic and complex disease characterized by environmental and genetic factors. However, the underlying mechanisms remain unclear. This study assessed the relationship between exposure to a mixture of environmental chemicals and metabolic syndrome (MetS) and further examined whether telomere length (TL) moderated these relationships. A total of 1265 adults aged > 20 years participated in the study. Data on multiple pollutants (polycyclic aromatic hydrocarbons, phthalates, and metals), MetS, leukocyte telomere length (LTL), and confounders were provided in the 2001-2002 National Health and Nutrition Examination Survey. The correlations between multi-pollutant exposure, TL, and MetS in the males and females were separately assessed using principal component analysis (PCA), logistic and extended linear regression models, Bayesian kernel machine regression (BKMR), and mediation analysis. Four factors were generated in PCA that accounted for 76.2% and 77.5% of the total environmental pollutants in males and females, respectively. The highest quantiles of PC2 and PC4 were associated with the risk of TL shortening (P < 0.05). We observed that the relationship between PC2, PC4, and MetS risk was significant in the participants with median TL levels (P for trend = 0.04 for PC2, and P for trend = 0.01 for PC4). Furthermore, mediation analysis revealed that TL could explain 26.1% and 17.1% of the effects of PC2 and PC4 associated with MetS in males, respectively. The results of BKMR model revealed that these associations were mainly driven by 1-PYE (cPIP = 0.65) and Cd (cPIP = 0.29) in PC2. Meanwhile, TL could explain 17.7% of the mediation effects of PC2 associated with MetS in the females. However, the relationships between pollutants and MetS were sparse and inconsistent in the females. Our findings suggest that the effects of the risk of MetS associated with mixed exposure to multiple pollutants are mediated by TL, and this mediating effect in the males is more pronounced than that in the females.
Collapse
Affiliation(s)
- Weifeng Tang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiang Zhan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Liu Y, Bei K, Zheng W, Yu G, Sun C. Assessment of health risks associated with pesticide and heavy metal contents in Fritillaria thunbergii Miq. (Zhe Beimu). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26807-26818. [PMID: 36369441 DOI: 10.1007/s11356-022-23995-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Fritillaria thunbergii Miq. (Zhe Beimu, F. thunbergii) is widely cultivated in China's Zhejiang province, and pesticides and heavy metals are two major factors affecting its quality and safety. A total of 106 F. thunbergii samples from six main production areas were analyzed for 76 pesticides and four heavy metal content (As, Cd, Hg, and Pb). The pesticide detection rate of the samples was 66.98%; overall, the pesticide residues were very low, and residue levels ranged from 0.010 to 0.231 mg kg-1. The detection rates of As, Cd, Hg, and Pb were 95.3%, 100%, 76.4%, and 100%, respectively. A risk assessment of human exposure to pesticides and heavy metals via intake of F. thunbergii was performed, and the results revealed that the pesticide residues and heavy metal content detected in F. thunbergii does not pose a potential risk to human health, either in the long or short term. The exposure assessment showed that the levels of pesticides and heavy metals in F. thunbergii were safe for human consumption. These results provide useful information on F. thunbergii consumption.
Collapse
Affiliation(s)
- Yuhong Liu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Ke Bei
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Weiran Zheng
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Guoguang Yu
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China
| | - Caixia Sun
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, 198# Shiqiao Road, Hangzhou, 310021, Zhejiang, People's Republic of China.
- State Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection, Ministry of Agriculture and Rural Affairs, Hangzhou, 310021, China.
| |
Collapse
|
13
|
Zhang W, Huang W, Tan J, Huang D, Ma J, Wu B. Modeling, optimization and understanding of adsorption process for pollutant removal via machine learning: Recent progress and future perspectives. CHEMOSPHERE 2023; 311:137044. [PMID: 36330979 DOI: 10.1016/j.chemosphere.2022.137044] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is crucial to reduce the concentration of pollutants in water environment to below safe levels. Some cost-effective pollutant removal technologies have been developed, among which adsorption technology is considered as a promising solution. However, the batch experiments and adsorption isotherms widely employed at present are inefficient and time-consuming to some extent, which limits the development of adsorption technology. As a new research paradigm, machine learning (ML) is expected to innovate traditional adsorption models. This reviews summarized the general workflow of ML and commonly employed ML algorithms for pollutant adsorption. Then, the latest progress of ML for pollutant adsorption was reviewed from the perspective of all-round regulation of adsorption process, including adsorption efficiency, operating conditions and adsorption mechanism. General guidelines of ML for pollutant adsorption were presented. Finally, the existing problems and future perspectives of ML for pollutant adsorption were put forward. We highly expect that this review will promote the application of ML in pollutant adsorption and improve the interpretability of ML.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Wenguang Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China.
| | - Jie Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Dawei Huang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Jun Ma
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of PR China, Guangzhou, 510655, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215002, People's Republic of China.
| |
Collapse
|