1
|
Mei Y, Zhuang S, Wang J. Adsorption of heavy metals by biochar in aqueous solution: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178898. [PMID: 39986038 DOI: 10.1016/j.scitotenv.2025.178898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Heavy metal pollution (e.g., Cd, Hg, Pb, Cu, Ni, Zn, As and Cr) has become a crucial issue worldwide. Among various remediation strategies, adsorption is widely recognized for its environmental sustainability, cost-effectiveness, and operational simplicity. In this context, biochar has gained significant attention due to its promising adsorption performance. To systematically support adsorption studies, this review compiled essential models for adsorption experiments, including commonly used adsorption kinetics models, isotherm models, and thermodynamic analysis methods. Moreover, we systematically analyzed key factors affecting heavy metal adsorption by biochar, such as its physicochemical properties, environmental pH, temperature, initial concentration, dosage, and the presence of coexisting ions, to identify the conditions that govern adsorption capacity. In addition, the adsorption performance of biochar toward eight significant heavy metals is reviewed in detail, with a focus on elucidating the underlying mechanisms, including complexation, ion exchange, cation-π bonding, electrostatic interactions, and precipitation. Finally, based on identified research gaps and critical challenges, we discuss emerging research tools, including machine learning and advanced surface modifications, to guide the targeted design of biochar materials for enhanced adsorption capacity.
Collapse
Affiliation(s)
- Yichuan Mei
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Shuting Zhuang
- School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Tian K, Li C, Liu H, Wang L. Functionalization of biochar using SDS/SAP nanomicelles enhanced its immobilization capacity for dyes and heavy metals in water. Sci Rep 2025; 15:7199. [PMID: 40021799 PMCID: PMC11871042 DOI: 10.1038/s41598-025-91229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
To enhance the adsorption capacity of biochar (BC), herein a novel multifunction modified biochar (SDMBC) was prepared by directly crosslinking of the nanomicelle of sodium dodecyl sulfate/sapindus-saponin (SDS/SAP) composite system onto the BC through a simple, environmental friendly approach. Result showed that the adsorption performance of SDMBC has been greatly improved, compared with BC or using alone SDS and SAP, adsorption ability increased by 48.83%, 29.50%, 36.44%, respectively, the best modified effect was appeared when the concentration of SAP to SDS was 0.8 and 0.8 CMC. SDMBC exhibited high adsorption abilities of 130.23, 108.43, 277.09 125.27, 112.78 mg/g for heavy metal ions lead Pb(II), Cadmium Cd(II) and organic pollutants with different chemical properties bisphenol A(BPA), Methylene blue (MB), P-nitrophenol (PNP), respectively, higher than most previously reported adsorbents, importantly, SDMBC can still efficient removal capabilities even in the binary competition. Subsequently, the SDMBC and BC was characterized by Fourier Transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), Zeta potential (Zeta), it found SDMBC has a more layered structure, richer functional groups and more amorphous structure compared with BC, which are closely related with improving its adsorption capacity. The adsorption behavior of SDMBC for MB show that process was found to be spontaneous, propitious, endothermic, the adsorption isotherms fitted Freundlich models well, pseudo-second-order best describes kinetics adsorption, suggesting that the process is multi-layer chemical adsorption. The little affected by ionic strength and coexisting substances, could remained removal rate over a wide pH range, SDMBC still keep high removal rates even after 5 reuses. Based on FT-IR analysis, plausible adsorption mechanism proposed, including hydrogen bond, electrostatic attraction and π-π bonding. Cost analysis manifests that the SDMBC are high efficiency and cheap eco-adsorbents compared with commercial activated carbon, and the SDMBC dosage required for the removal of 99% of a fixed amount of MB in different volumes of effluent was predicted. Seven machine learning (ML) models were used to predict the MB (60 mg/L) adsorption of the SDMBC, using Shapley Additive Explanations (SHAP) for model interpretation. Finding Extreme Gradient Boosting (XGBoost) exhibited best performance, the order of feature importance as time> Ratio> pH> concentration> temperature. Thus, SDMBC as a new cheap and eco-adsorbents, can be used to effectively remove various types of pollutants, has a great application potential in sewage treatment, while the accurate ML prediction model presented a valuable advice for designing efficient adsorbents and optimization operating conditions in the future.
Collapse
Affiliation(s)
- Kun Tian
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China
- College of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Chunping Li
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China
- College of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Huiming Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China
| | - Lianchun Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, Yunnan, China.
- College of Forestry, Southwest Forestry University, Kunming, 650224, Yunnan, China.
| |
Collapse
|
3
|
Bao Q, Yang Y, Li Y, Shi Y, Fan M, Guo H, Liu X, Xie W. Adsorption characteristics and mechanism of novel ink melanin composite modified chitosan for Cd(II) in water. Int J Biol Macromol 2024; 282:137147. [PMID: 39488311 DOI: 10.1016/j.ijbiomac.2024.137147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/14/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
In this study, chitosan (CS), carboxymethyl chitosan (CMCS), and chitosan quaternary ammonium salt (HACC) were successfully loaded with ink melanin (ME) as efficient adsorbents for Cd(II) removal. The results of batch adsorption experiments and structural characterization showed that the modified CS loaded with ME improved the adsorption capacity of the composites for Cd(II). The pseudo-second-order kinetic and Langmuir equations were better suited to describe the batch adsorption experiments. The adsorption of Cd(II) was chemisorption with desirable adsorption effect when the concentration of the three composites was 0.5 mg/mL and the pH value was neutral. Among them, HACC-ME demonstrated remarkable Cd(II) adsorption performance (107.18 mg/g) and sustained an 85 % efficiency in Cd(II) removal over five adsorption-desorption cycles. Ion exchange, complexation, electrostatic attraction, and hydrophobic interaction were the primary mechanisms for Cd(II) removal. Overall, HACC-ME could be employed as a low-cost and highly efficient new natural adsorbent material for the removal of Cd(II) ions from wastewater. These findings illuminate pathways for the development of efficient and novel natural adsorbent materials for environmental cleanup purposes.
Collapse
Affiliation(s)
- Qi Bao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ye Yang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuxue Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Mingyue Fan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hao Guo
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Black Cat New Material Research Institute Co., Ltd., Qingdao 266042, China
| | - Xiaoli Liu
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Wancui Xie
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Qingdao Collaborative Innovation Center of Marine Bioactive Factor Health Food, Qingdao 266042, China; Qingdao Keda Future Biotechnology Co., Ltd., Qingdao 266042, China.
| |
Collapse
|
4
|
Li Z, Xiao X, Xu T, Chu S, Wang H, Jiang K. Removal of Pb(II) and Cd(II) from a Monometallic Contaminated Solution by Modified Biochar-Immobilized Bacterial Microspheres. Molecules 2024; 29:4757. [PMID: 39407684 PMCID: PMC11477854 DOI: 10.3390/molecules29194757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Lead (Pb) and cadmium (Cd) are toxic pollutants that are prevalent in wastewater and pose a serious threat to the natural environment. In this study, a new immobilized bacterial microsphere (CYB-SA) was prepared from corn stalk biochar and Klebsiella grimontii by sodium alginate encapsulation and vacuum freeze-drying technology. The removal effect of CYB-SA on Pb(II) and Cd(II) in a monometallic contaminated solution was studied. The results showed that the removal of Pb(II) and Cd(II) by CYB-SA was 99.14% and 83.35% at a dosage of 2.0 g/L and pH = 7, respectively, which was 10.77% and 18.58% higher than that of biochar alone. According to the Langmuir isotherm model, the maximum adsorption capacities of Pb(II) and Cd(II) by CYB-SA at 40 °C were 278.69 mg/g and 71.75 mg/g, respectively. A combination of the kinetic model, the isothermal adsorption model, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main adsorption mechanisms of CYB-SA encompass functional group complexation, ion exchange, electrostatic attraction and physical adsorption. The findings of this study offer practical and theoretical insights into the development of highly efficient adsorbents for heavy metals.
Collapse
Affiliation(s)
- Zaiquan Li
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Xu Xiao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Tao Xu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Shiyu Chu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Hui Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
| | - Ke Jiang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; (Z.L.); (K.J.)
- Engineering Research Center of Green and Low-Carbon Technology for Plastic Application, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
5
|
Sivaranjanee R, Senthil Kumar P, Chitra B, Rangasamy G. A critical review on biochar for the removal of toxic pollutants from water environment. CHEMOSPHERE 2024; 360:142382. [PMID: 38768788 DOI: 10.1016/j.chemosphere.2024.142382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As an effort to tackle some of the most pressing ecological issues we are currently experiencing, there has been an increasing interest in employing biomass-derived char products in various disciplines. Thermal combustion of biomass results in biochar production, which is a remarkably rich source of carbon. Not only does the biochar obtained by the thermochemical breakdown of biomass lower the quantity of carbon released into the environment, but it also serves as an eco-friendly substitute for activated carbon (AC) and further carbon-containing products. An overview of using biochar to remove toxic pollutants is the main subject of this article. Several techniques for producing biochar have been explored. The most popular processes for producing biochar are hydrothermal carbonization, gasification and pyrolysis. Carbonaceous materials, alkali, acid and steam are all capable of altering biochar. Depending on the environmental domains of applications, several modification techniques are chosen. The current findings on characterization and potential applications of biochar are compiled in this survey. Comprehensive discussion is given on the fundamentals regarding the formation of biochar. Process variables influencing the yield of biochar have been summarized. Several biochars' adsorption capabilities for expulsion pollutants under various operating circumstances are compiled. In the domain of developing biochar, a few suggestions for future study have been given.
Collapse
Affiliation(s)
- R Sivaranjanee
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - P Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| | - B Chitra
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, 641021, Tamil Nadu, India; Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
6
|
Gao C, Lan Y, Zhan Y, Li Y, Jiang J, Li Y, Zhang L, Fan X. Preparation of porous biochar from fusarium wilt-infected banana straw for remediation of cadmium pollution in water bodies. Sci Rep 2024; 14:13821. [PMID: 38879683 PMCID: PMC11180127 DOI: 10.1038/s41598-024-63954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
The problem of cadmium pollution and its control is becoming increasingly severe issue in the world. Banana straw is an abundant bio raw material, but its burning or discarding in field not only causes pollution but also spreads fusarium wilt. The objective of this paper is to utilize biochar derived from the wilt-infected banana straw for remediation of Cd(II) pollution while to eliminate the pathogen. The activity of wilt pathogen in biochar was determined by PDA petri dish test. The Cd(II) adsorption of the biochar was determined by batch adsorption experiments. The effects of KOH concentration (0.25, 0.5 and 0.75 M) on the physicochemical characteristics of the biochar were also observed by BET, SEM, FTIR, XRD and XPS. Results showed that pristine banana straw biochar (PBBC) did not harbor any pathogen. The specific surface area (SSA) and Cd(II) adsorption capacity of 0.75 M KOH modified banana straw biochar (MBBC0.75M) were increased by 247.2% and 46.1% compared to that of PBBC, respectively. Cd(II) adsorption by MBBC0.75M was suitable to be described by the pseudo-second-order kinetic model and Freundlich isotherm. After Cd(II) adsorption, the CdCO3 were confirmed by XRD and observed through SEM. The weakness and shift of oxygen-containing functional groups in MBBC0.75M after Cd(II) adsorption implied that those groups were complexed with Cd(II). The results showed that pyrolysis could not only eliminate banana fusarium wilt, but also prepare porous biochar with the wilt-infected banana straw. The porous biochar possessed the potential to adsorb Cd(II) pollutants.
Collapse
Affiliation(s)
- Chengxiang Gao
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yi Lan
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yaowei Zhan
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yuechen Li
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Jiaquan Jiang
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Yuanqiong Li
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China
| | - Lidan Zhang
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China.
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China.
| | - Xiaolin Fan
- Guangdong Engineering Technology Research Center of Low Carbon Agricultural Green Inputs, South China Agricultural University, Guangzhou City, 510642, China.
- R&D Center of Environmental Friendly Fertilizer Science and Technology of Education Department of Guangdong Province, College of Natural Resources and Environment, South China Agricultural University, Guangzhou City, 510642, China.
| |
Collapse
|
7
|
Meng Z, Huang S, Zhao Q, Xin L. Respective evolution of soil and biochar on competitive adsorption mechanisms for Cd(II), Ni(II), and Cu(II) after 2-year natural ageing. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133938. [PMID: 38479140 DOI: 10.1016/j.jhazmat.2024.133938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
To reveal the respective evolution of soil and biochar on competitive heavy metal adsorption mechanisms after natural ageing, three soils and two biochars were tested in this study. The soil-biochar interlayer samples were buried in the field for 0.5, 1, and 2 years, for which competitive adsorption characteristics and mechanisms of soils and biochars in four systems (Cd, Cd+Ni, Cd+Cu, and Cd+Ni+Cu) were investigated. Results showed that physicochemical properties, adsorption capacity and mechanisms of soils and biochars all changed the most in the first 0.5 years. The properties and adsorption capacity of biochars gradually weakened with the ageing time, meanwhile, those of soils gradually enhanced. After co-ageing with acidic soil for 0.5 years, the Cd(II) adsorption capacity of modified biochar decreased by 86.59% in the ternary system; meanwhile, that of acidic soil increased by 65.52%. The contributions of mineral mechanisms decreased significantly, while non-mineral mechanisms were slightly affected by ageing. This study highlighted that when using biochar to remediate heavy metal-contaminated soils, biochar should be applied at least half a year in advance before planting crops so that biochar can fully contact and react with the soil.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Shuang Huang
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
| | - Qin Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Lei Xin
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Yang Y, Han T, Wang J. Ultrafast and highly efficient Cd(II) and Pb(II) removal by magnetic adsorbents derived from gypsum and corncob: Performances and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116265. [PMID: 38547730 DOI: 10.1016/j.ecoenv.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
The utilization of gypsum and biomass in environmental remediation has become a novel approach to promote waste recycling. Generally, raw waste materials exhibit limited adsorption capacity for heavy metal ions (HMIs) and often result in poor solid-liquid separation. In this study, through co-pyrolysis with corncob waste, titanium gypsum (TiG) was transformed into magnetic adsorbents (GCx, where x denotes the proportion of corncob in the gypsum-corncob mixture) for the removal of Cd(II) and Pb(II). GC10, the optimal adsorbent, which was composed primarily of anhydrite, calcium sulfide, and magnetic Fe3O4, exhibited significantly faster adsorption kinetics (rate constant k1 was 218 times and 9 times of raw TiG for Cd(II) and Pb(II)) and higher adsorption capacity (Qe exceeded 200 mg/g for Cd(II) and 400 mg/g for Pb(II)) than raw TiG and previous adsorbents. Cd(II) removal was more profoundly inhibited in a Cd(II) + Pb(II) binary system, suggesting that GC10 showed better selectivity for Pb(II). Moreover, GC10 could be easily separated from purified water for further recovery, due to its high saturation magnetization value (6.3 emu/g). The superior removal capabilities of GC10 were due to adsorption and surface precipitation of metal sulfides and metal sulfates on the adsorbent surface. Overall, these waste-derived magnetic adsorbents provide a novel and sustainable approach to waste recycling and the deep purification of multiple HMIs.
Collapse
Affiliation(s)
- Yuhong Yang
- School of Water Conservancy, Henan Key Laboratory of Water Environment Simulation and Treatment, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, PR China
| | - Tongtong Han
- School of Water Conservancy, Henan Key Laboratory of Water Environment Simulation and Treatment, North China University of Water Resources and Electric Power, Zhengzhou, Henan 450046, PR China
| | - Jing Wang
- International Joint Laboratory of Henan Province for Environmental Functional Materials, Institute of Chemistry, Henan Academy of Sciences, Zhengzhou, Henan 450002, PR China.
| |
Collapse
|
9
|
Xu W, Xie X, Li Q, Yang X, Ren J, Shi Y, Liu D, Shaheen SM, Rinklebe J. Biochar co-pyrolyzed from peanut shells and maize straw improved soil biochemical properties, rice yield, and reduced cadmium mobilization and accumulation by rice: Biogeochemical investigations. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133486. [PMID: 38244456 DOI: 10.1016/j.jhazmat.2024.133486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024]
Abstract
Biochar is an eco-friendly amendment for the remediation of soils contaminated with cadmium (Cd). However, little attention has been paid to the influence and underlying mechanisms of the co-pyrolyzed biochar on the bioavailability and uptake of Cd in paddy soils. The current study explored the effects of biochar co-pyrolyzed from peanut shells (P) and maize straw (M) at different mixing ratios (1:0, 1:1, 1:2, 1:3, 0:1, 2:1 and 3:1, w/w), on the bacterial community and Cd fractionation in paddy soil, and its uptake by rice plant. Biochar addition, particularly P1M3 (P/M 1:3), significantly elevated soil pH and cation exchange capacity, transferred the mobile Cd to the residual fraction, and reduced Cd availability in the rhizosphere soil. P1M3 application decreased the concentration of Cd in different rice tissues (root, stem, leaf, and grain) by 30.0%- 49.4%, compared to the control. Also, P1M3 enhanced the microbial diversity indices and relative abundance of iron-oxidizing bacteria in the rhizosphere soil. Moreover, P1M3 was more effective in promoting the formation of iron plaque, increasing the Cd sequestration by iron plaque than other treatments. Consequently, the highest yield and lowest Cd accumulation in rice were observed following P1M3 application. This study revealed the feasibility of applying P1M3 for facilitating paddy soils contaminated with Cd.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xiaocui Xie
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Qi Li
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Renmin Road 58, Haikou 570228, China
| | - Jiajia Ren
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Yanping Shi
- Agriculture and Rural of Jiaxing, Jiaxing 323500, China
| | - Dan Liu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an 311300, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
10
|
Chen Y, Yang W, Zou Y, Wu Y, Mao W, Zhang J, Zia-Ur-Rehman M, Wang B, Wu P. Quantification of the effect of biochar application on heavy metals in paddy systems: Impact, mechanisms and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168874. [PMID: 38029988 DOI: 10.1016/j.scitotenv.2023.168874] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Biochar (BC) has shown great potential in remediating heavy metal(loid)s (HMs) contamination in paddy fields. Variation in feedstock sources, pyrolysis temperatures, modification methods, and application rates of BC can result in great changes in its effects on HM bioavailability and bioaccumulation in soil-rice systems and remediation mechanisms. Meanwhile, there is a lack of application guidelines for BC with specific properties and application rates when targeting rice fields contaminated with certain HMs. To elucidate this topic, this review focuses on i) the effects of feedstock type, pyrolysis temperature, and modification method on the properties of BC; ii) the changes in bioavailability and bioaccumulation of HMs in soil-rice systems applying BC with different feedstocks, pyrolysis temperatures, modification methods, and application rates; and iii) exploration of potential remediation mechanisms for applying BC to reduce the mobility and bioaccumulation of HMs in rice field systems. In general, the application of Fe/Mn modified organic waste (OW) derived BC for mid-temperature pyrolysis is still a well-optimized choice for the remediation of HM contamination in rice fields. From the viewpoint of remediation efficiency, the application rate of BC should be appropriately increased to immobilize Cd, Pb, and Cu in rice paddies, while the application rate of BC for immobilizing As should be <2.0 % (w/w). The mechanism of remediation of HM-contaminated rice fields by applying BC is mainly the direct adsorption of HMs by BC in soil pore water and the mediation of soil microenvironmental changes. In addition, the application of Fe/Mn modified BC induced the formation of iron plaque (IP) on the root surface of rice, which reduced the uptake of HM by the plant. Finally, this paper describes the prospects and challenges for the extension of various BCs for the remediation of HM contamination in paddy fields and makes some suggestions for future development.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China.
| | - Yuzheng Zou
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Yuhong Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Wenjian Mao
- Guizhou Environment and Engineering Appraisal Center, Guiyang, China
| | - Jian Zhang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Wang Y, Meng X, Wang S, Mo Y, Xu W, Liu Y, Shi W. Efficient adsorption of Cu 2+ and Cd 2+ from groundwater by MgO-modified sludge biochar in single and binary systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9237-9250. [PMID: 38191722 DOI: 10.1007/s11356-023-31795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
In this study, MgO-modified sludge biochar (1MBC) prepared from sewage sludge was successfully used as an efficient adsorbent to remove heavy metals from groundwater. The adsorption performance and mechanism of 1MBC on Cu2+ and Cd2+ were investigated in single and binary systems, and the contribution of different mechanisms was quantified. Adsorption kinetics and isotherms analysis revealed that the adsorption processes of Cu2+ and Cd2+ by 1MBC followed the pseudo-second-order kinetic and Langmuir isotherm model in both systems, indicating that Cu2+ and Cd2+ were mainly controlled by chemisorption, and their theoretical maximum adsorption capacities were 240.36 and 219.06 mg·g-1, respectively. The results of the binary system showed that due to the competitive adsorption, the adsorption capacity of 1MBC for both heavy metals was lower than that of the single system, and the selective adsorption of Cu2+ was higher. The influencing variable experiments revealed that the adsorption of Cu2+ and Cd2+ by 1MBC had a wide pH adaption range and strong anti-interference ability to coexisting organics and ions. The adsorption mechanisms involved ion exchange (Cu: 47.39%, Cd: 53.17%), mineral precipitation (Cu: 35.31%, Cd: 24.18%), functional group complexation (Cu: 10.44%, Cd: 14.53%), and other possible mechanisms (Cu: 6.87%, Cd: 8.12%). Furthermore, 1MBC demonstrated excellent regeneration potential after five cycle times. Overall, the results have significant reference value for the practical application of removing heavy metals.
Collapse
Affiliation(s)
- Yan Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Xianrong Meng
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Shanhu Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Yuanye Mo
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Wei Xu
- Postdoctoral Innovation Practice Base of Jiangsu Province, Suzhou Institute of Environmental Science, Suzhou, 215009, China
| | - Yang Liu
- Suzhou Yifante Environmental Remediation Co. Ltd., Suzhou, 215100, China
| | - Weilin Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
12
|
Gan R, Ye Y, Zhan Z, Zhang Q, Deng Y, Liu Y, Li H, Wan J, Pei X, Li Q, Pan F. One-step strategy for efficient Cr(VI) removal via phytate modified zero-valent iron: Accelerated electron transfer and enhanced coordination effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133636. [PMID: 38309166 DOI: 10.1016/j.jhazmat.2024.133636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
The toxic Cr(VI) from industrial wastewater pose serious threat to the human beings and eco-systems. To reduce the operation processes and enhance the removal efficiency of Cr(VI), targeted design of functionalized material is critical in practical applications. Herein, we developed a one-step strategy for simultaneous Cr(VI) reduction and total Cr capture by a novel phytate modified zero-valent iron (PA-ZVI). The reaction kinetics of Cr(VI) removal by PA-ZVI (0.2225 min-1) was 53 times higher compared to ZVI (0.0042 min-1). The Fe(0) content on the surface of PA-ZVI increased from 2.2% to 15.6% compared to ZVI. Meanwhile, Cr(VI) was liable to adsorb on the surface of PA-ZVI due to its lower adsorption energy compared with the original ZVI (-2.09 eV vs -0.85 eV). The incorporation of the phytate ligand promoted electron transfer from iron core to Cr(VI), leading to the rapid in-situ reduction of Cr(VI) adsorbed on the surface of PA-ZVI to Cr(III). PA-ZVI exhibited a satisfactory performance for Cr(VI) removal at a broad pH range (3-11) and in the presence of coexisting ions and humic acid. Moreover, the reactor with the addition of PA-ZVI achieved more than 90% Cr(VI) removal within 72 h in continuous flow experiments. The feasibility of PA-ZVI for the removal of Cr(VI) is also validated in authentic wastewater. This work provides novel ZVI materials that can effectively address decontamination challenges from Cr(VI) pollution.
Collapse
Affiliation(s)
- Rui Gan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuxuan Ye
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing 210023, China.
| | - Ziyi Zhan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiuyue Zhang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuwei Deng
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yingjie Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Haochen Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jun Wan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Xuanyuan Pei
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
13
|
Qiao H, Zhang S, Liu X, Wang L, Zhu L, Wang Y. Adsorption characteristics and mechanisms of Cd(II) from wastewater by modified chicken manure biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3800-3814. [PMID: 38095792 DOI: 10.1007/s11356-023-31341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024]
Abstract
Due to the threat to food supply and human health posed by cadmium-contaminated wastewater, a highly effective adsorbent is under necessary development to remove cadmium from wastewater. In this study, four new types of modified biochars with different modifier concentrations were prepared from chicken manure using K2FeO4 as a modifier, and the modified biochar KFBC1 with the best adsorption effect was obtained through optimal experiments. Various characterization analyses have shown that KFBC1 has a rough surface structure, abundant pore structure, and a large number of functional groups. Additionally, iron oxides are introduced on the surface of the biochar, which provided a favorable condition for the adsorption of Cd(II) in wastewater. The adsorption performance of Cd(II) on the biochar before and after modification was investigated through batch adsorption experiments. The adsorption kinetic model of KFBC1 to Cd(II) in solution was in accordance with the quasi-secondary kinetic model, and the adsorption isothermal model was in accordance with the Langmuir model, with a maximum adsorption capacity of 330.06 mg/g, which was 5.15 fold of pristine BC. Meanwhile, the adsorption rate of Cd(II) by KFBC1 was positively correlated with dosage and pH. Pore adsorption, ion exchange, surface precipitation, interaction with -π electrons, and complexation of oxygen-containing functional groups on the surface were considered as important mechanisms for the removal of Cd(II) by KFBC1. According to the results, KFBC1 is a novel and efficient adsorbent that can be used as a treatment agent for cadmium-contaminated wastewater.
Collapse
Affiliation(s)
- Hua Qiao
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China.
| | - Shuhao Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Longhui Zhu
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Yongxin Wang
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| |
Collapse
|
14
|
Wu A, Sun R, Zhang D, Zhou S, Liu Q, Ge J, Chen J, Hu G. Separable calcium sulphate modified biochar gel beads for efficient cadmium removal from wastewater. Int J Biol Macromol 2023; 252:126253. [PMID: 37562475 DOI: 10.1016/j.ijbiomac.2023.126253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
This study outlines the synthesis of a novel, cost-effective composite material comprising calcium sulphate-modified biochar (Ca-BC) cross-linked with polyethyleneimine (PEI) and sodium alginate (SA), which was subsequently transformed into gel beads (Ca-BC@PEI-SA). These beads were engineered to enable effective cadmium ion (Cd(II)) adsorption from wastewater. Batch adsorption experiments were conducted to evaluate the effects of pH, contact time, temperature, and coexisting ions on adsorption performance. The isotherms and kinetics in the adsorption process were investigated. The results indicated that the removal of Cd(II) by Ca-BC@PEI-SA adheres more closely to the Langmuir model, with maximum adsorption capacities of 138.44 mg/g (15 °C), 151.98 mg/g (25 °C), and 165.56 mg/g (35 °C) at different temperatures. The pseudo-secondary model fit well with Cd(II) adsorption kinetics, suggesting that the removal process was a monolayer process controlled by chemisorption. Moreover, the mechanical strength of the Ca-BC@PEI-SA gel beads allowed easy recovery and reduced secondary contamination. In addition, the adsorption capacity remained nearly constant after four cycles. The main Cd(II) adsorption mechanisms involved surface complexation, ion exchange, and cation-π-bonding interactions.
Collapse
Affiliation(s)
- Ai Wu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Ruiyi Sun
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Dafeng Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Shuxing Zhou
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Junyan Ge
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China.
| | - Jianbing Chen
- Research Academy of Non-metallic Mining Industry Development, Materials and Environmental Engineering College, Chizhou University, Chizhou 247000, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
15
|
Li S, Luo C, Yan F, Yang Y, Guo B, Wang L, Xu S, Wu F, Ji P. Remediation of Pb(II) and Cd(II) in polluted waters with calcium thioglycolate-modified straw biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122638. [PMID: 37775026 DOI: 10.1016/j.envpol.2023.122638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
The pollution of water bodies by heavy metals (HMs) such as Pb(II) and Cd(II) poses a serious environmental risk. Herein, rice straw biochar (RBC) modified with calcium thioglycolate was used to remove Pb(II) and Cd(II) from aqueous solutions. The adsorption performance of the modified biochar was investigated via adsorption kinetics and isotherm model fitting. Furthermore, scanning electron microscopy (SEM), X-ray energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) were used to elucidate the modification and adsorption mechanisms. The results showed that the modification process loaded sulfur-containing functional groups, calcium carbonate, and calcium oxalate crystals on the biochar surface, considerably enhancing its complexation performance and ion-exchange capacity. The equilibrium adsorption amounts for Pb(II) and Cd(II) reached 124.92 and 65.44 mg g-1 in unary systems, respectively; they reached 121.34 and 39.43 mg g-1 in a binary Pb(II) and Cd(II), respectively. Moreover, the optimal adsorption conditions were as follows: pH = 6, temperature = 25 °C, dosage = 0.8 g L-1, and contact time = 2 h. In the binary Pb(II) and Cd(II) system, the adsorption process obeyed the Langmuir competitive adsorption model, which means that one adsorption site on the modified biochar was effective for only one heavy-metal ion, and the modified biochar was more selective for Pb(II) than for Cd(II). The adsorption mechanism, which was dominated by chemisorption, mainly involved complexation, precipitation, ion exchange, and cation-π interactions. Meanwhile, adsorption and desorption experiments indicated that the modified biochar exhibited satisfactory recycling performance, demonstrating its feasibility as an inexpensive and efficient heavy-metal adsorbent for polluted water.
Collapse
Affiliation(s)
- Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yan
- Lvliang City Ecological Environmental Protection Bureau, Lvliang, 032100, Shanxi, China
| | - Yue Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shaoquan Xu
- Qinghai Delingha Agriculture and Animal Husbandry Comprehensive Service Center, Room 304, Jinghuawan Office Building, Chaidamu West Road, Delingha, 817099, Qinghai, China
| | - Feng Wu
- Northwest Bureau of China Metallurgical Geology Bureau, Xi'an, 710119, Shaanxi, China
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
16
|
Gusiatin MZ, Rouhani A. Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7342. [PMID: 38068085 PMCID: PMC10707613 DOI: 10.3390/ma16237342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 01/31/2025]
Abstract
Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.
Collapse
Affiliation(s)
- Mariusz Z. Gusiatin
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Abdulmannan Rouhani
- Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic;
| |
Collapse
|
17
|
Liu Y, Chen Y, Li Y, Chen L, Jiang H, Jiang L, Yan H, Zhao M, Hou S, Zhao C, Chen Y. Elaborating the mechanism of lead adsorption by biochar: Considering the impacts of water-washing and freeze-drying in preparing biochar. BIORESOURCE TECHNOLOGY 2023; 386:129447. [PMID: 37399959 DOI: 10.1016/j.biortech.2023.129447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
This paper examined the impacts of different pretreatments on the characteristics of biochar and its adsorption behavior for Pb2+. Biochar with combined pretreatment of water-washing and freeze-drying (W-FD-PB) performed a maximum adsorption capacity for Pb2+ of 406.99 mg/g, higher than that of 266.02 mg/g on water-washing pretreated biochar (W-PB) and 188.21 mg/g on directly pyrolyzed biochar (PB). This is because the water-washing process partially removed the K and Na, resulting in the relatively enriched Ca and Mg on W-FD-PB. And the freeze-drying pretreatment broke the fiber structure of pomelo peel, favoring the development of a fluffy surface and large specific surface area during pyrolysis. Quantitative mechanism analysis implied that cation ion exchange and precipitation were the driving forces in Pb2+ adsorption on biochar, and both mechanisms were enhanced during Pb2+ adsorption on W-FD-PB. Furthermore, adding W-FD-PB to Pb-contaminated soil increased the soil pH and significantly reduced the availability of Pb.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Yuanping Li
- School of Municipal and Geomatics Engineering, Hunan City University, Yiyang 413000, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Hongjuan Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Haoqin Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mengyang Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Suzhen Hou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yanrong Chen
- School of Resource & Environment, Hunan University of Technology and Business, Changsha 410205, China
| |
Collapse
|
18
|
Sun Y, Liu C, Gao Y, Zhang T, Jia Y, Wang S. All-in-one strategy to prepare molded biochar with magnetism from sewage sludge for high-efficiency removal of Cd(Ⅱ). JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131488. [PMID: 37121035 DOI: 10.1016/j.jhazmat.2023.131488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/15/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
Biochar in powder could lead to the separation difficulties after using and easy dispersion by wind with non-necessary consumption during the practical application. The current method for preparing molded biochar is multi-step, tedious, and required exogenous reagents. Moreover, the dehydration of sewage sludge with high water content (>85%) causes expensive production cost, limiting its secondary utilization. Therefore, an "all-in-one" strategy was developed to prepare molded biochar with magnetism by using sewage sludge as endogenetic binder, water source, carbon source, as well as magnetic source, and biomass wastes as water moderator and pore-forming agent. The molded biochar showed high removal capacity towards Cd(Ⅱ) of 456.2 mg/g, which was 6 times higher than the commercial activated carbon in powder (69.1 mg/g). The excellent removal performance of the molded biochar was in linear correlation the O/C ratio (R2 =0.855), resulting in the complexation with Cd(Ⅱ). DFT calculations indicated the amounts and species of oxygen changed the electron distribution and electron-donation properties of biochar for Cd(Ⅱ). Moreover, the Na+ exchanges with Cd(Ⅱ) were also an important removal mechanism. This study provided a novel synthesis strategy for the molded biochar with both high particle density and high adsorption capability.
Collapse
Affiliation(s)
- Yueru Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chuanqun Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yuan Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Tingyu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
19
|
Liu B, Zhang Z, Guan DX, Wang B, Zhou S, Chen T, Wang J, Li Y, Gao B. Qualitative and quantitative analysis for Cd 2+ removal mechanisms by biochar composites from co-pyrolysis of corn straw and fly ash. CHEMOSPHERE 2023; 330:138701. [PMID: 37062388 DOI: 10.1016/j.chemosphere.2023.138701] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/14/2023]
Abstract
Removal of heavy metals (e.g., Cd) from contaminated water using waste-converted adsorbents is promising, but the efficiency still needs to be improved. Here, we prepared a functional biochar composite as novel Cd adsorbents by co-pyrolysis of two typical solid wastes, i.e., agricultural corn straw and industrial fly ash. The adsorption behavior and mechanism were investigated using batch and column adsorption experiments and modern characterization techniques. Results showed that alkali-modified fly ash (AMFA) was loaded onto the surface of the corn straw biochar as some fine particle forms, with quartz (SiO2) and silicate being the main mineral phases on the surface. The maximum sorption capacity fitted by Langmuir model for functionalized biochar composite (FBC700) was up to 137.1 mg g-1, which was 7.7 times higher than that of the original corn straw biochar (BC700). Spectroscopic analysis revealed that adsorption mechanisms of Cd onto the FBC700 included mainly precipitation and ion exchange, with complexation and Cd-π interaction also contributing. The AMFA could effectively improve the mineral precipitation with Cd. The adsorption columns filled with FBC700 exhibited a longer breakthrough time than that filled with BC700. The adsorption capacity calculated by Thomas model for FBC700 was also approximately 6.0 times higher than that for BC700, showing that FBC700 was more suited to practical applications. This study provided a novel perspective for recycling solid wastes and treating Cd-contaminated water.
Collapse
Affiliation(s)
- Bingxiang Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei, 230601, China.
| | - Zihang Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bing Wang
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang, 550025, China
| | - Tong Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jintao Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Bo Gao
- Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
20
|
Meng Z, Huang S, Wu J, Lin Z. Competitive adsorption and immobilization of Cd, Ni, and Cu by biochar in unsaturated soils under single-, binary-, and ternary-metal systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131106. [PMID: 36907057 DOI: 10.1016/j.jhazmat.2023.131106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the competitive adsorption and immobilization of cadmium (Cd), nickel (Ni), and copper (Cu) by biochar in unsaturated soils under single-, binary-, and ternary-metal systems. The results showed that the immobilization effects by the soil itself were in the order of Cu > Ni > Cd, and the adsorption capacities of freshly contaminated heavy metals by biochar were in the order of Cd > Ni > Cu in unsaturated soils. The adsorption and immobilization of Cd by biochars in soils was weakened by competition more in the ternary-metal system than that in the binary-metal system; the competition with Cu caused a more significant weakening effect than that with Ni. For Cd and Ni, nonmineral mechanisms preferentially adsorbed and immobilized Cd and Ni compared to mineral mechanisms, but the contributions of the mineral mechanisms to the adsorption gradually increased and became dominant with increasing concentrations (at average percentages of 62.59%-83.30% and 41.38%-74.29%, respectively). However, for Cu, the contributions of the nonmineral mechanisms to Cu adsorption were always dominant (average percentages of 60.92%-74.87%) and gradually increased with increasing concentrations. This study highlighted that the types of heavy metals and coexistence should be focused when remediating heavy metal contamination in soils.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Wang Q, Wen J, Yang L, Cui H, Zeng T, Huang J. Exploration on the role of different iron species in the remediation of As and Cd co-contamination by sewage sludge biochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39154-39168. [PMID: 36595173 DOI: 10.1007/s11356-022-24952-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Numerous studies have explored the adsorption of cadmium (Cd) and arsenic (As) by iron (Fe)-modified biochar, but few studies have examined in-depth the similarities and differences in the adsorption behavior of different iron types on Cd and As. In this study, sewage sludge biochar (BC) was co-pyrolyzed with self-made Fe minerals (magnetite, hematite, ferrihydrite, goethite, and schwertmannite) to treat Cd and As co-contaminated water. The adsorption of Cd and As on the Fe-modified biochar was further analyzed by adsorption kinetics, adsorption isotherms, and adsorption thermodynamics combined with a series of characterization experiments. Both SEM-EDX and XRD results confirmed the successful loading of iron minerals onto BC. Both adsorption kinetics and adsorption isotherms experiments showed that the adsorption of Cd and As by BC and the other five Fe-modified biochar was mainly controlled by chemical interactions. The results also indicated that goethite biochar (GtBC) was the most effective for the adsorption of Cd among the five Fe-modified biochar. Ferrihydrite biochar (FhBC) formed more diverse complexes, coupled with the relatively stronger electrons accepting ability, thus making it more effective for As adsorption than the others. Additionally, GtBC and hematite biochar (HmBC) were found effective for the adsorption of both Cd and As, whereas MBC was not found effective for either metal. Furthermore, combined with XPS results, the adsorption of Cd by the materials was mainly governed by Cd2+-π interactions, complexation precipitation, and co-precipitation, while oxidation reactions also existed for As.
Collapse
Affiliation(s)
- Qi Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Hongsheng Cui
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Tianjing Zeng
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, People's Republic of China
| | - Jin Huang
- State Environmental Protection Key Laboratory of Monitoring for Heavy Metal Pollutants, Changsha, 410019, People's Republic of China
| |
Collapse
|
22
|
Meng Z, Huang S, Mu W, Wu J, Lin Z. Quantitative transport and immobilization of cadmium in saturated-unsaturated soils with the combined application of biochar and organic fertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47221-47233. [PMID: 36735122 DOI: 10.1007/s11356-023-25342-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
In this study, cadmium (Cd) transport and immobilization on passivators (biochar, organic fertilizer) and soils under saturated-unsaturated conditions were independently analyzed. The results showed that the Cd adsorption capacities of biochar and organic fertilizer were comparable in acidic soils. But in alkaline soils, the Cd adsorption capacity of organic fertilizer was significantly larger than that of biochar. In acidic soils, passivators effectively immobilized Cd, and the total net effects were in the order: combination (44.05-58.13%) > 3% biochar (31.96-46.88%) > 3% organic fertilizer (28.78-41.82%). In alkaline soils, all treatments had negative effects on Cd immobilization. For acidic soils, the immobilization of Cd was mainly attributed to the passivators, and the positive contribution percentages of relatively stable Cd increase by passivators were 81.05-100%, while those by soils were 0-18.95%. For alkaline soils, after the treatments of passivators, although a considerable amount of Cd was immobilized inside the passivator, Cd was activated more inside the soil. Therefore, it is noteworthy that soil conditions must be fully considered when applying biochar and organic fertilizers for Cd remediation.
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China.
| | - Wenting Mu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
23
|
Wu J, Yang C, Zhao H, Shi J, Liu Z, Li C, Song F. Efficient removal of microplastics from aqueous solution by a novel magnetic biochar: performance, mechanism, and reusability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26914-26928. [PMID: 36374390 DOI: 10.1007/s11356-022-24130-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microplastics' (MPs) pollution removal from water bodies has become an urgent task to ensure water quality safety and water ecological security on a global scale. In this work, coprecipitation was employed to investigate the adsorption of MPs by magnetic biochar (MRB) prepared from agricultural waste rice husks in an aquatic system. The results showed that MRB can adsorb up to 99.96% of MPs in water; acidic conditions were favorable for the effective MPs' adsorption reaction, and competing anions had a greater effect on adsorption. The adsorption mechanism results revealed that the adsorption of MPs by MRB was a spontaneous process, and electrostatic attraction, surface complexation, hydrogen bonding and π-π interactions were present in the adsorption process. Furthermore, after the adsorption of MPs, MRB can be recovered by thermal treatment (500 °C) and still exhibits up to 90% MPs adsorption (after four uses). This work reveals that MRB is an inexpensive, efficient, and reusable nanoscale adsorbent for MPs pollution removal in water, which may provide new ideas for microplastic pollution control in the aqueous environment.
Collapse
Affiliation(s)
- Juanjuan Wu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chan Yang
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Hanghang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Juan Shi
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Zhifeng Liu
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Chen Li
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Fengmin Song
- School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
- Qinba Mountains of Bio-Resource Collaborative Innovation Center of Southern Shaanxi Province, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China.
| |
Collapse
|
24
|
Guo S, Liu Y, Zhang W, Wang Y, Xiao B, Gao Y. N-doped carbon fibers in situ prepared by hydrothermal carbonization of Camellia sinensis branches waste for efficient removal of heavy metal ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88951-88961. [PMID: 35841510 DOI: 10.1007/s11356-022-21923-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
N-doped carbon fibers (NCFs) were in situ prepared by Camellia sinensis branches waste through hydrothermal carbonization with urea/ZnCl2 at 160-280 °C under 0.8-8.9 MPa. The structural characteristics of NCFs were investigated by elemental analysis, SEM, TEM, XRD, XPS, Raman spectra, and BET surface area. The highest N content of NCFs obtained at 280 °C was 8.96%, and the main forms of doped N were pyridinic N, pyrrolic N, and graphitic N. Moreover, NCFs were applied to remove metal ions successfully. The results showed that NCF-240 had the maximum adsorption amounts of 106.52, 125.23, and 153.49 mg/g for Cu2+, Pb2+, and Zn2+, respectively, while NCF-280 had the best removal ability on Cr6+ (145.67 mg/g). Finally, it demonstrated that the adsorption behavior of NCFs was well fitted by the pseudo-second-order kinetic and the Langmuir adsorption isotherm models.
Collapse
Affiliation(s)
- Shasha Guo
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yubo Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Weiguo Zhang
- Shaanxi Dongyu Biotechnology Co., Ltd., Xixiang, 723500, China
| | | | - Bin Xiao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Yuefang Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
25
|
Liu M, Hou R, Fu Q, Li T, Zhang S, Su A. Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120143. [PMID: 36096259 DOI: 10.1016/j.envpol.2022.120143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/14/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high-latitude cold regions, this study simulated freeze-thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze-thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze-thaw cycles caused the total amount of PTEs to have a U-shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28-56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
Collapse
Affiliation(s)
- Mingxuan Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shoujie Zhang
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang, 150080, China
| | - Anshuang Su
- Heilongjiang Water Conservancy Research Institute, Harbin, Heilongjiang, 150080, China
| |
Collapse
|
26
|
Meng Z, Huang S, Lin Z, Wu J. First "unsaturated soils" view towards quantitative adsorption and immobilization mechanisms of Cd by biochar in soils during aging. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157393. [PMID: 35843334 DOI: 10.1016/j.scitotenv.2022.157393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Instead of traditional batch and column experiments with large water-soil ratios, this study investigated the behaviors and mechanisms of Cd adsorption and immobilization by biochar in unsaturated soils, in which the soil moisture conditions were closer to those in the actual field. The transport, transformation, and immobilization of cadmium (Cd) by pristine and KMnO4-modified biochars in unsaturated soils were investigated during a 48-week mild aging process. Biochar acidified with HCl solution was employed to quantify the contributions of mineral and non-mineral components in biochar to Cd adsorption and immobilization in unsaturated soils with a three-layer mesh method. The behaviors and mechanisms of Cd adsorption by biochar in unsaturated soils significantly differed from those in aqueous solutions. The equilibrium times of Cd adsorption by biochar in unsaturated soils (weeks) were much longer than those in aqueous solutions (hours). The percentages of the Cd adsorbed by pristine and modified biochar remained relatively constant relative to the total Cd in unsaturated soils, which accounted for 39.50-49.39 % and 57.35-68.94 %, respectively. The contribution of mineral components to Cd adsorption dominated in both unsaturated soils (45.00-94.09 %) and aqueous solutions (70.73-95.51 %). The process of Cd immobilization in unsaturated soils was that biochar firstly adsorbed the exchangeable Cd from the soil, and then converted it to relatively stable Cd. After aging for 48 weeks, the contributions of non-mineral components to Cd immobilization dominated in unsaturated soil with a low concentration (1.23 mg·kg-1), and the contributions of mineral components to Cd immobilization dominated in unsaturated soil with medium-high concentrations (4.08-51.26 mg·kg-1).
Collapse
Affiliation(s)
- Zhuowen Meng
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Shuang Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhongbing Lin
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| | - Jingwei Wu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
27
|
Liu Y, Yuan Y, Wang Z, Wen Y, Liu L, Wang T, Xie X. Removal of ofloxacin from water by natural ilmenite-biochar composite: A study on the synergistic adsorption mechanism of multiple effects. BIORESOURCE TECHNOLOGY 2022; 363:127938. [PMID: 36100186 DOI: 10.1016/j.biortech.2022.127938] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The preparation cost is one of the major constraints for adsorbent applied to practical situations. Here, a novel, economical and eco-friendly ilmenite biochar composite (ILM-BC) was successfully prepared by co-cracking of natural ilmenite and corn stover for the removal ofloxacin from water. The adsorption experiments indicated that the removal ofloxacin by ILM-BC was chemisorption and belonged to a spontaneous and entropy-increasing heat absorption process. Among composites, ILM-BC5 had superior adsorption capacity and stability, with a removal rate 1.6 times higher than that of biochar, and it could remove more than 90% ofloxacin in the pH range of 2-10. Multiple characterization results indicated that the adsorption of ILM-BC was the result of the synergistic effect of pore filling, hydrogen bonding, and π-π interactions. The introduction of ilmenite promoted hydrogen bonding formation and π-π interactions by enriching -OH and -COO on the surface of ILM-BC, which could enhance the adsorption capacity of ILM-BC.
Collapse
Affiliation(s)
- Yijie Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Key Laboratory for Environmental Pollution Prediction and Control, Gansu 730000, China
| | - Yi Yuan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Key Laboratory for Environmental Pollution Prediction and Control, Gansu 730000, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Key Laboratory for Environmental Pollution Prediction and Control, Gansu 730000, China.
| | - Yuan Wen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Key Laboratory for Environmental Pollution Prediction and Control, Gansu 730000, China
| | - Lijuan Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Key Laboratory for Environmental Pollution Prediction and Control, Gansu 730000, China
| | - Tianyu Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Key Laboratory for Environmental Pollution Prediction and Control, Gansu 730000, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Key Laboratory for Environmental Pollution Prediction and Control, Gansu 730000, China
| |
Collapse
|
28
|
Liu Z, Zhen F, Zhang Q, Qian X, Li W, Sun Y, Zhang L, Qu B. Nanoporous biochar with high specific surface area based on rice straw digestion residue for efficient adsorption of mercury ion from water. BIORESOURCE TECHNOLOGY 2022; 359:127471. [PMID: 35710052 DOI: 10.1016/j.biortech.2022.127471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The unreasonable disposal of residue after anaerobic digestion seriously affects the stability of the ecosystem, and the preparation of adsorbent is an effective way to value-added utilization of the residue. In this study, a high adsorption capacity (209.65 mg/g) biochar-based adsorbent was prepared by hydrothermal carbonization and alkali modification using rice straw biogas residue. The lignocellulosic structure was destroyed after anaerobic digestion, forming porous biochar with larger specific surface area (2372.51 m2/g) and richer pore structure. Besides, the mercury ion complexed on the adsorbent surface in monovalent and divalent forms and possessed favorable selectivity in the presence of other examples of interference. The adsorption process is consistent with pseudo second-order kinetics and the Langmuir isotherm, indicating a predominance of chemisorption. This study provides a methodology for use of rice straw biogas residue and treatment of mercury containing wastewater, which offers a fresh direction for resource utilization of biogas residue.
Collapse
Affiliation(s)
- Zhiyuan Liu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Quanguo Zhang
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China; Key Laboratory of New Materials and Facilities for Rural Renewable Energy, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Qian
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Wenzhe Li
- Institute of Agricultural Engineering, Huanghe Science and Technology University, Zhengzhou 450006, China
| | - Yong Sun
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Lingling Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Bin Qu
- College of Engineering, Northeast Agricultural University, Harbin 150030, China; College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Effect of Pyrolysis Temperature on Removal Efficiency and Mechanisms of Hg(II), Cd(II), and Pb (II) by Maize Straw Biochar. SUSTAINABILITY 2022. [DOI: 10.3390/su14159022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pyrolysis temperature significantly affects the properties of biochar, which in turn can affect the removal of heavy metal ions and the underlying mechanism. In this work, biochars from the pyrolysis of maize straw at 300, 400, and 500 °C (BC300, BC400, and BC500, respectively) and wheat straw at 400 °C (WBC400) were investigated. The influence of production temperature on the adsorption of Hg2+, Cd2+, and Pb2+ by maize straw biochar was investigated by the characterization of the biochars and by adsorption tests. The adsorption capacities of maize and wheat straw biochar were compared in an adsorption experiment. Biochar BC400 showed the best physical and chemical properties and had the largest number of surface functional groups. The pseudo-second-order kinetic model was more suitable for describing the adsorption behavior of metal ions to biochar. The Langmuir model better fit the experimental data. Biochar BC400 had a higher adsorption speed and a stronger adsorption capacity than WBC400. The sorption of Pb2+ and Hg2+ to maize straw biochar followed the mechanisms of surface precipitation of carbonates and phosphates and complexation with oxygenated functional groups and delocalized π electrons. The adsorption mechanism for Cd2+ was similar to those of Hg2+ and Pb2+, but precipitation mainly occurred through the formation of phosphate. In the multi-heavy-metal system, the adsorption of Cd2+ by BC400 was inhibited by Pb2+ and Hg2+. In summary, BC400 biochar was most suitable for the adsorption effect of heavy metals in aqueous solution.
Collapse
|