1
|
Attiani V, Smidt H, van der Wielen PWJJ. Impact of environmental and process conditions on the microbial ecology and performance of full-scale slow sand filters in drinking water treatment. WATER RESEARCH 2025; 277:123328. [PMID: 40022770 DOI: 10.1016/j.watres.2025.123328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/15/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Slow sand filters (SSFs) are commonly used for treating drinking water, effectively removing contaminants such as particles, organic matter, and microorganisms. However, the ecological dynamics of prokaryotic communities within SSFs remain poorly understood. This study investigated the top sand layer, the Schmutzdecke (SCM), along with the influent and effluent water of full-scale SSFs at four drinking water treatment plants (DWTPs) in the Netherlands. These plants use SSFs as the final step in their treatment to produce unchlorinated drinking water. Two DWTPs treat surface water after dune infiltration and do not apply advanced oxidation processes prior the SSF. In contrast, the other two DWTPs treat reservoir-stored surface water and incorporate ozonation or UV and activated carbon filtration as part of their treatment train. All SSFs consistently reduced biomass in the effluent compared to the influent, confirming their role in biomass load reduction. Key biological and chemical parameters showed that pretreatment with dune infiltration produced more biologically stable drinking water compared to reservoir storage. Moreover, while SSFs act as polishing filters when treating dune-infiltrated surface water, they significantly alter the prokaryotic community and biological stability of the water when treating reservoir-stored surface water. Prokaryotic communities in the SCM and water samples showed distinct compositions rather than merely the accumulation of microorganisms in the SCM from the influent water, demonstrating that SSF are active ecosystems different from water. The SCM exhibited a higher relative abundance of the genera SWB02, Gemmata, Pedomicrobium, Nitrospira, and mle1-7, while in the water samples the genus Candidatus Omnitrophus was relatively more abundant. Moreover, each DWTP hosts a unique prokaryotic profiles in both the SCM and water samples. Source water, upstream treatment and/or the biological stability of the influent water are identified as potential causes affecting the prokaryotic communities in SSFs that affect the microbial water quality of the effluent water.
Collapse
Affiliation(s)
- Valentina Attiani
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700, EH, Wageningen, The Netherlands.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700, EH, Wageningen, The Netherlands
| | - Paul W J J van der Wielen
- Laboratory of Microbiology, Wageningen University & Research, P.O. Box 8033, 6700, EH, Wageningen, The Netherlands; KWR Watercycle Research Institute, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
| |
Collapse
|
2
|
Hu Y, Li R, Bian K, Zhou Q, Pan Y, Ye L, Li A, Shi P. Biofilm formation dynamics in long-distance water conveyance pipelines: Impacts of nutrient levels and metal stress. WATER RESEARCH 2025; 268:122672. [PMID: 39461210 DOI: 10.1016/j.watres.2024.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/08/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Biofilm formation in long-distance water conveyance pipelines poses significant risks to water quality, particularly under varying nutrient levels and heavy metal stress. However, the impacts of pipeline material on biofilm formation dynamics under different raw water conditions remain elusive. This study investigated the effects of nutrient availability and Fe-Mn stress on biofilm development, structural stability, bacterial community composition, and the occurrence of viable but non-culturable (VBNC) bacteria. Using reactors with different nutrient conditions, we observed that increased nutrient levels promote biofilm growth but lead to greater instability, heightening the risk of secondary contamination. Notably, nutrient escalation beyond a critical threshold had a diminishing impact on biofilm community composition. Additionally, Fe-Mn stress, while initially enhancing microbial adhesion and metabolic activity, ultimately inhibited biofilm formation over time and increases the prevalence of VBNC bacteria, particularly on stainless steel (SS) surfaces. Our findings also highlighted the importance of material selection for pipelines, with polyvinyl chloride (PVC) showing reduced biofilm formation compared to SS, making it a more suitable option for transporting raw water in environments with high metal content. Dispersal limitation determined the bacterial community assembly during the biofilm formation, accounting for 64.53-90.67 % of the variability in different scenarios. These insights offer valuable guidance for managing biofilm-related issues in water distribution systems, emphasizing the need for careful control of nutrient levels and material choice to ensure water safety over long distances.
Collapse
Affiliation(s)
- Yifan Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ruiting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Kaiqin Bian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
3
|
Tobias Cudahy PG, Liu PC, Warren JL, Sobkowiak B, Yang C, Ioerger TR, Wu CY, Lu PL, Wang JY, Chang HH, Huang HL, Cohen T, Lin HH. Phylogeographic Analysis of Mycobacterium kansasii Isolates from Patients with M. kansasii Lung Disease in Industrialized City, Taiwan. Emerg Infect Dis 2024; 30:1562-1570. [PMID: 39043390 PMCID: PMC11286038 DOI: 10.3201/eid3008.240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Little is known about environmental transmission of Mycobacterium kansasii. We retrospectively investigated potential environmental acquisition, primarily water sources, of M. kansasii among 216 patients with pulmonary disease from an industrial city in Taiwan during 2015-2017. We analyzed sputum mycobacterial cultures using whole-genome sequencing and used hierarchical Bayesian spatial network methods to evaluate risk factors for genetic relatedness of M. kansasii strains. The mean age of participants was 67 years; 24.1% had previously had tuberculosis. We found that persons from districts served by 2 water purification plants were at higher risk of being infected with genetically related M. kansasii isolates. The adjusted odds ratios were 1.81 (1.25-2.60) for the Weng Park plant and 1.39 (1.12-1.71) for the Fongshan plant. Those findings unveiled the association between water purification plants and M. kansasii pulmonary disease, highlighting the need for further environmental investigations to evaluate the risk for M. kansasii transmission.
Collapse
|
4
|
Waegenaar F, García-Timermans C, Van Landuyt J, De Gusseme B, Boon N. Impact of operational conditions on drinking water biofilm dynamics and coliform invasion potential. Appl Environ Microbiol 2024; 90:e0004224. [PMID: 38647288 PMCID: PMC11107155 DOI: 10.1128/aem.00042-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Biofilms within drinking water distribution systems serve as a habitat for drinking water microorganisms. However, biofilms can negatively impact drinking water quality by causing water discoloration and deterioration and can be a reservoir for unwanted microorganisms. In this study, we investigated whether indicator organisms for drinking water quality, such as coliforms, can settle in mature drinking water biofilms. Therefore, a biofilm monitor consisting of glass rings was used to grow and sample drinking water biofilms. Two mature drinking water biofilms were characterized by flow cytometry, ATP measurements, confocal laser scanning microscopy, and 16S rRNA sequencing. Biofilms developed under treated chlorinated surface water supply exhibited lower cell densities in comparison with biofilms resulting from treated groundwater. Overall, the phenotypic as well as the genotypic characteristics were significantly different between both biofilms. In addition, the response of the biofilm microbiome and possible biofilm detachment after minor water quality changes were investigated. Limited changes in pH and free chlorine addition, to simulate operational changes that are relevant for practice, were evaluated. It was shown that both biofilms remained resilient. Finally, mature biofilms were prone to invasion of the coliform, Serratia fonticola. After spiking low concentrations (i.e., ±100 cells/100 mL) of the coliform to the corresponding bulk water samples, the coliforms were able to attach and get established within the mature biofilms. These outcomes emphasize the need for continued research on biofilm detachment and its implications for water contamination in distribution networks. IMPORTANCE The revelation that even low concentrations of coliforms can infiltrate into mature drinking water biofilms highlights a potential public health concern. Nowadays, the measurement of coliform bacteria is used as an indicator for fecal contamination and to control the effectiveness of disinfection processes and the cleanliness and integrity of distribution systems. In Flanders (Belgium), 533 out of 18,840 measurements exceeded the established norm for the coliform indicator parameter in 2021; however, the source of microbial contamination is mostly unknown. Here, we showed that mature biofilms, are susceptible to invasion of Serratia fonticola. These findings emphasize the importance of understanding and managing biofilms in drinking water distribution systems, not only for their potential to influence water quality, but also for their role in harboring and potentially disseminating pathogens. Further research into biofilm detachment, long-term responses to operational changes, and pathogen persistence within biofilms is crucial to inform strategies for safeguarding drinking water quality.
Collapse
Affiliation(s)
- Fien Waegenaar
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Cristina García-Timermans
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Josefien Van Landuyt
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Bart De Gusseme
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
- Farys, Department R&D – Innovation Water, Ghent, Belgium
| | - Nico Boon
- Department of Biotechnology, Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
- Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| |
Collapse
|
5
|
Hu H, Xu F, Wang R, Zhou C, Li N, Shao S. Achieving zero fouling in the ultrafiltration for secondary water supply systems in the absence of residual chlorine. WATER RESEARCH 2024; 253:121281. [PMID: 38364461 DOI: 10.1016/j.watres.2024.121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Ultrafiltration (UF) technology is widely used in secondary water supply systems (SWSS) to provide high-quality drinking water. However, the challenge of severe membrane fouling, which leads to frequent cleaning requirements, makes UF maintenance intensive. In this study, we tried to validate the feasibility of achieving zero fouling without the need for cleaning in the UF for SWSS, i.e., the fouling resistance can be maintained for a very long time without any increase. We operated dead-end UF systems at different fluxes, both with and without residual chlorine, and monitored the formation of fouling layers during filtration. The results demonstrated the successful achievement of zero fouling under a flux of 10 L/(m2 h) in the absence of chlorine, evidenced by no increase in transmembrane pressure for three months. This zero-fouling phenomenon was attributed to the formation of a self-regulating biofouling layer. This biofouling layer could degrade the deposited foulants and featured a loose morphology, facilitated by microbial activities in the cake layer. Although residual chlorine reduced the fouling rate by half at a flux of 30 L/(m2 h), it hindered the achievement of zero fouling at the lower flux of 10 L/(m2 h), due to its inhibitory effect on microbial activity. Intermittent operation of UF was effective in achieving zero fouling at higher fluxes (e.g., 30 L/(m2 h)). This benefit was primarily ascribed to the biodegradation of accumulated foulants and the expansion of biofouling layer during the pause of the intermittent filtration, which prompted the formation of biofouling layers with loose structure and balanced composition. To the best of our knowledge, this study is the first attempt to achieve zero fouling in UF for SWSS, and the findings may offer valuable insights for the development of cleaning-free and low-maintenance membrane processes.
Collapse
Affiliation(s)
- Huizhi Hu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, PR China
| | - Fang Xu
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, PR China
| | - Rui Wang
- Faculty of Resources and Environmental Science, Hubei University, Wuhan, 430062, PR China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Na Li
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
6
|
Søborg DA, Højris B, Brinkmann K, Pedersen MR, Skovhus TL. Characterizing the development of biofilm in polyethylene pipes in the non-chlorinated Danish drinking-water distribution system. BIOFOULING 2024; 40:262-279. [PMID: 38695072 DOI: 10.1080/08927014.2024.2343839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/11/2024] [Indexed: 06/11/2024]
Abstract
In newly commissioned drinking-water polyethylene (PE) pipes, biofilm develops on the inner pipe surface. The microbial community composition from colonization to the establishment of mature biofilms is less known, including the effect on the distributed water quality. Biofilm development was followed through 1.5 years in PE-pipe side streams at two locations of a full-scale, non-chlorinated drinking-water distribution system (leaving a waterworks versus 5-6 km from a waterworks) along with inlet and outlet water quality. Mature biofilms were established after ∼8-9 months, dominated by Proteobacteria, Actinobacteria and Saccharibacteria (61-93% relative abundance), with a higher diversity (OTUs/Shannon Index/16S rRNA gene amplicon sequencing) in pipes in the far end of the distribution system. Comamonadaceae, and specifically Aquabacterium (>30% of reads), dominated young (∼1.5-month-old) biofilms. Young biofilms were linked to increased microbiological counts in drinking water (HPC/ATP/qPCR), while the establishment of mature biofilms led to a drop in HPC and benefited the water quality, highlighting the importance of optimizing commissioning procedures for rapidly achieving mature and stable biofilms.
Collapse
Affiliation(s)
- Ditte A Søborg
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| | - Bo Højris
- Water Application and Technology, GRUNDFOS Holding A/S, Bjerringbro, Denmark
| | | | | | - Torben L Skovhus
- Research Centre for Built Environment, Climate, Water Technology and Digitalization, VIA University College, Horsens, Denmark
| |
Collapse
|
7
|
Abkar L, Moghaddam HS, Fowler SJ. Microbial ecology of drinking water from source to tap. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168077. [PMID: 37914126 DOI: 10.1016/j.scitotenv.2023.168077] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
As drinking water travels from its source, through various treatment processes, hundreds to thousands of kilometres of distribution network pipes, to the taps in private homes and public buildings, it is exposed to numerous environmental changes, as well as other microbes living in both water and on surfaces. This review aims to identify the key locations and factors that are associated with changes in the drinking water microbiome throughout conventional urban drinking water systems from the source to the tap water. Over the past 15 years, improvements in cultivation-independent methods have enabled studies that allow us to answer such questions. As a result, we are beginning to move towards predicting the impacts of disturbances and interventions resulting ultimately in management of drinking water systems and microbial communities rather than mere observation. Many challenges still exist to achieve effective management, particularly within the premise plumbing environment, which exhibits diverse and inconsistent conditions that may lead to alterations in the microbiota, potentially presenting public health risks. Finally, we recommend the establishment of global collaborative projects on the drinking water microbiome that will enhance our current knowledge and lead to tools for operators and researchers alike to improve global access to high-quality drinking water.
Collapse
Affiliation(s)
- Leili Abkar
- Civil Engineering Department, University of British Columbia, Canada.
| | | | - S Jane Fowler
- Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
8
|
Modra H, Ulmann V, Gersl M, Babak V, Konecny O, Hubelova D, Caha J, Kudelka J, Falkinham JO, Pavlik I. River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria. MICROBIAL ECOLOGY 2023; 87:15. [PMID: 38102317 PMCID: PMC10724323 DOI: 10.1007/s00248-023-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.
Collapse
Affiliation(s)
- Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00, Ostrava, Czech Republic
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Ondrej Konecny
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Caha
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Kudelka
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | | | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
9
|
Li M, Zhang D, Zhang R, Wang F, Song Y, Chen F, Yang J, Li C. Recent advances in the unlined cast iron pipe scale characteristics, cleaning techniques and harmless disposal methods: An overview. CHEMOSPHERE 2023; 340:139849. [PMID: 37595692 DOI: 10.1016/j.chemosphere.2023.139849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Drinking water discoloration and its potential health risks (e.g., heavy metals, pathogens, carcinogenic organics) have aroused wide public concerns around the world, and the characteristics and corresponding cleaning techniques of pipe scales are one of the most important research fields closely related to people's lives and health. This Overview Article summarizes the latest research achievements about the new insights into the unlined cast iron pipe corrosion scale characteristics as well as the advanced cleaning techniques applied in drinking water distribution systems. The typical pollutants such as heavy metal ions, pathogens and disinfection by-products (DBPs) in pipe scales and the main cleaning techniques including unidirectional flushing (UDF), air scouring, ice pigging and guided ultrasonic waves (GUW) are categorized and elaborated. In the final part, the current challenges and future opportunities are also further discussed from the viewpoint of evolution process of pipe scales as well as the widespread application of advanced cleaning techniques. Moreover, the possible technical route for the innocent treatment and resource utilization of pipe scale waste is also proposed. It is anticipated that this review will attract more attention toward the in-depth study of pipe scales and their cleaning techniques to enjoy cleaner and healthier drinking water for people.
Collapse
Affiliation(s)
- Ming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Dong Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Ru Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China.
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan, 250101, China
| | - Juan Yang
- Nanjing Chibo Environmental Technology (China) Co., Ltd., Nanjing, 210044, Jiangsu Province, China
| | - Changming Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
10
|
Stefan DS, Bosomoiu M, Teodorescu G. The Behavior of Polymeric Pipes in Drinking Water Distribution System-Comparison with Other Pipe Materials. Polymers (Basel) 2023; 15:3872. [PMID: 37835921 PMCID: PMC10575437 DOI: 10.3390/polym15193872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The inner walls of the drinking water distribution system (DWDS) are expected to be clean to ensure a safe quality of drinking water. Complex physical, chemical, and biological processes take place when water comes into contact with the pipe surface. This paper describes the impact of leaching different compounds from the water supply pipes into drinking water and subsequent risks. Among these compounds, there are heavy metals. It is necessary to prevent these metals from getting into the DWDS. Those compounds are susceptible to impacting the quality of the water delivered to the population either by leaching dangerous chemicals into water or by enhancing the development of microorganism growth on the pipe surface. The corrosion process of different pipe materials, scale formation mechanisms, and the impact of bacteria formed in corrosion layers are discussed. Water treatment processes and the pipe materials also affect the water composition. Pipe materials act differently in the flowing and stagnation conditions. Moreover, they age differently (e.g., metal-based pipes are subjected to corrosion while polymer-based pipes have a decreased mechanical resistance) and are susceptible to enhanced bacterial film formation. Water distribution pipes are a dynamic environment, therefore, the models that are used must consider the changes that occur over time. Mathematical modeling of the leaching process is complex and includes the description of corrosion development over time, correlated with a model for the biofilm formation and the disinfectants-corrosion products and disinfectants-biofilm interactions. The models used for these processes range from simple longitudinal dispersion models to Monte Carlo simulations and 3D modeling. This review helps to clarify what are the possible sources of compounds responsible for drinking water quality degradation. Additionally, it gives guidance on the measures that are needed to maintain stable and safe drinking water quality.
Collapse
Affiliation(s)
- Daniela Simina Stefan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Magdalena Bosomoiu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
| | - Georgeta Teodorescu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.S.S.); (G.T.)
- Doctoral School, Specialization of Environmental Engineering, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
11
|
Zheng S, Lin T, Chen H, Zhang X, Jiang F. Characterization of young biofilm morphology, disinfection byproduct formation potential and toxicity of renewed water supply pipelines by phosphorus release from corroded pipes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163813. [PMID: 37121323 DOI: 10.1016/j.scitotenv.2023.163813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
The deterioration of drinking water quality due to corrosion of the water supply network has become inevitable and regular renewal of pipes has become a common means of doing so. Severely corroded pipes release certain nutrients (e.g., elemental phosphorus), however, little has been reported on the effect of old pipes on the young biofilm of new pipe sections and on ensuring water safety in the early stages of the water supply. The aim of our study was to model the effect of key phosphorus nutrients released from corroded old pipes on the morphological characteristics of young biofilms in new pipe sections, mediated disinfection byproducts (DBPs) production and their combined toxicity. Based on the experimental results, phosphorus showed significant differences in the morphological characteristics, spatial structure of extracellular polymers (EPS), functional abundance, disinfection byproduct formation potential (DBPsFP) and toxicity of young biofilms. Under residual chlorine (1.0 ± 0.2 mg/L) incubation, the functional abundance of young biofilm metabolism was dominant, particularly amino acid metabolism and carbohydrate metabolism. There is a dynamic balance between the trophic and shedding effects of phosphorus, where concentration changes affect young biofilm morphology and DBPFP. Relatively moderate phosphorus concentrations resulted in the highest density of PN/PS organic precursors in EPS and a clear advantage of DBPFP; relatively high phosphorus conditions had limited promotion of young biofilm, while membrane structure shedding was more pronounced, increasing young biofilm-mediated DBPs production. Nitrogen-containing disinfection byproducts (N-DBPs) in young biofilms had a clear toxicity advantage, with HANs and HNMs being key to controlling cytotoxicity and genotoxicity, respectively.
Collapse
Affiliation(s)
- Songyuan Zheng
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Zhang
- Suzhou Water Supply Company, Suzhou 215002, China
| | - Fuchun Jiang
- Suzhou Water Supply Company, Suzhou 215002, China
| |
Collapse
|