1
|
Mendoza C, Arias S, Botero ML, Agudelo JR. Hazardous gas emissions from drop-in biofuels: mutagenicity, cytotoxicity, and unregulated pollutants. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136696. [PMID: 39616848 DOI: 10.1016/j.jhazmat.2024.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/28/2025]
Abstract
This study investigates cancer-related mutations (TA98 and YG5185 strains/Ames test), cell death (human A549 cell line/MTT assay) and unregulated pollutants (16 PAH, 13 carbonyls) from the gas exhaust emissions from a last-mile delivery vehicle following the WLTC driving cycle, operating with hydrotreated vegetable oil and biodiesel. Both biofuels were used pure and blended 20 % by volume with diesel fuel. Gas phase samples were collected using XAD-2 Amberlite® resin. Total carbonyl emission factors for the different fuels ranged from 9.4 ± 0.4 (HVO100) to 14.8 ± 1.6 mg/km (B20), while PAH emission factors ranged from 1.8 ± 0.5 (B100) to 4.3 ± 0.9 mg/km (HVO20). The ester group in biodiesel demonstrated a significant impact on increasing carbonyl emissions. All fuels were cytotoxic at the highest concentration of exhaust gases, causing more than 30 % cell death in human cell line A549 (HVO100 ≈ HVO20 > B100 ≈ B20 > ULSD). No significant correlation was found between cytotoxicity and most of PAH and carbonyls. A strong correlation between PAH and mutagenicity (Pearson correlation coefficient higher than 0.6 for PAH with 3 or more rings) was observed with strain YG5185, particularly when using the metabolic activator. These results indicate that the exhaust gases from the tested biofuels pose potential health risks, particularly in chronic exposure scenarios.
Collapse
Affiliation(s)
- Carolina Mendoza
- Grupo de Manejo Eficiente de la energía GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Silvana Arias
- Grupo de Investigación Ingeniería para la Sostenibilidad, Energía y Cambio Climático ISEC², Universidad EAFIT, Carrera 49, Calle 7 Sur #50, Medellín, Colombia
| | - Maria L Botero
- Grupo de Investigación Ingeniería para la Sostenibilidad, Energía y Cambio Climático ISEC², Universidad EAFIT, Carrera 49, Calle 7 Sur #50, Medellín, Colombia
| | - John R Agudelo
- Grupo de Manejo Eficiente de la energía GIMEL, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
2
|
Salana S, Verma V. Review of in vitro studies evaluating respiratory toxicity of aerosols: impact of cell types, chemical composition, and atmospheric processing. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1922-1954. [PMID: 39291816 DOI: 10.1039/d4em00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In recent decades, several cell-based and acellular methods have been developed to evaluate ambient particulate matter (PM) toxicity. Although cell-based methods provide a more comprehensive assessment of PM toxicity, their results are difficult to comprehend due to the diversity in cellular endpoints, cell types, and assays and the interference of PM chemical components with some of the assays' techniques. In this review, we attempt to clarify some of these issues. We first discuss the morphological and immunological differences among various macrophage and epithelial cells, belonging to the respiratory systems of human and murine species, used in the in vitro studies evaluating PM toxicity. Then, we review the current state of knowledge on the role of different PM chemical components and the relevance of atmospheric processing and aging of aerosols in the respiratory toxicity of PM. Our review demonstrates the need to adopt more physiologically relevant cellular models such as epithelial (or endothelial) cells instead of macrophages for oxidative stress measurement. We suggest limiting macrophages for investigating other cellular responses (e.g., phagocytosis, inflammation, and DNA damage). Unlike monocultures (of macrophages and epithelial cells), which are generally used to study the direct effects of PM on a given cell type, the use of co-culture systems should be encouraged to investigate a more comprehensive effect of PM in the presence of other cells. Our review has identified two major groups of toxic PM chemical species from the existing literature, i.e., metals (Fe, Cu, Mn, Cr, Ni, and Zn) and organic compounds (PAHs, ketones, aliphatic and chlorinated hydrocarbons, and quinones). However, the relative toxicities of these species are still a matter of debate. Finally, the results of the existing studies investigating the effect of aging on PM toxicity are ambiguous, with varying results due to different cell types, different aging conditions, and the presence/absence of specific oxidants. More systematic studies are necessary to understand the role of different SOA precursors, interactions between different PM components, and aging conditions in the overall toxicity of PM. We anticipate that our review will guide future investigations by helping researchers choose appropriate cell models, resulting in a more meaningful interpretation of cell-based assays and thus ultimately leading to a better understanding of the health effects of PM exposure.
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, 61801, USA.
| |
Collapse
|
3
|
Goksel O, Sipahi MI, Yanasik S, Saglam-Metiner P, Benzer S, Sabour-Takanlou L, Sabour-Takanlou M, Biray-Avci C, Yesil-Celiktas O. Comprehensive analysis of resilience of human airway epithelial barrier against short-term PM2.5 inorganic dust exposure using in vitro microfluidic chip and ex vivo human airway models. Allergy 2024; 79:2953-2965. [PMID: 38868934 DOI: 10.1111/all.16179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND OBJECTIVE The updated World Health Organization (WHO) air quality guideline recommends an annual mean concentration of fine particulate matter (PM2.5) not exceeding 5 or 15 μg/m3 in the short-term (24 h) for no more than 3-4 days annually. However, more than 90% of the global population is currently exposed to daily concentrations surpassing these limits, especially during extreme weather conditions and due to transboundary dust transport influenced by climate change. Herein, the effect of respirable METHODS Silica particles at an average size of 1 μm, referred to as RESULTS In the AEB-on-a-chip platform, short-term exposure to 800 μg/mL PM2.5 disrupted AEB integrity via increasing barrier permeability, decreasing cell adhesion-barrier markers such as ZO-1, Vinculin, ACE2, and CD31, impaired cell viability and increased the expression levels of proinflammatory markers; IFNs, IL-6, IL-1s, TNF-α, CD68, CD80, and Inos, mostly under dynamic conditions. Besides, decreased tissue viability, impaired tissue integrity via decreasing of Vinculin, ACE2, β-catenin, and E-cadherin, and also proinflammatory response with elevated CD68, IL-1α, IL-6, IFN-Ɣ, Inos, and CD80 markers, were observed after PM2.5 exposure in ex vivo tissue. CONCLUSION The duration and concentration of PM2.5 that can be exposed during extreme weather conditions and natural events aligns with our exposure model (0-800 μg/mL 72 h). At this level of exposure, the resilience of the epithelial barrier is demonstrated by both AEB-on-a-chip platform emulating dynamic forces in the body and ex vivo bronchial biopsy slices. Lung-on-a-chip models will serve as reliable exposure models in this context.
Collapse
Affiliation(s)
- Ozlem Goksel
- Department of Pulmonary Medicine, Division of Immunology and Allergy, Laboratory of Occupational & Environmental Respiratory Diseases and Asthma, Faculty of Medicine, Ege University, Izmir, Turkey
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| | - Meryem Irem Sipahi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sena Yanasik
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Pelin Saglam-Metiner
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Sema Benzer
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | | | | | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
4
|
Daniel J, Schönberger Alvarez AA, te Heesen P, Lehrheuer B, Pischinger S, Hollert H, Roß-Nickoll M, Du M. Air-liquid interface exposure of A549 human lung cells to characterize the hazard potential of a gaseous bio-hybrid fuel blend. PLoS One 2024; 19:e0300772. [PMID: 38913629 PMCID: PMC11195957 DOI: 10.1371/journal.pone.0300772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
Gaseous and semi-volatile organic compounds emitted by the transport sector contribute to air pollution and have adverse effects on human health. To reduce harmful effects to the environment as well as to humans, renewable and sustainable bio-hybrid fuels are explored and investigated in the cluster of excellence "The Fuel Science Center" at RWTH Aachen University. However, data on the effects of bio-hybrid fuels on human health is scarce, leaving a data gap regarding their hazard potential. To help close this data gap, this study investigates potential toxic effects of a Ketone-Ester-Alcohol-Alkane (KEAA) fuel blend on A549 human lung cells. Experiments were performed using a commercially available air-liquid interface exposure system which was optimized beforehand. Then, cells were exposed at the air-liquid interface to 50-2000 ppm C3.7 of gaseous KEAA for 1 h. After a 24 h recovery period in the incubator, cells treated with 500 ppm C3.7 KEAA showed significant lower metabolic activity and cells treated with 50, 250, 500 and 1000 ppm C3.7 KEAA showed significant higher cytotoxicity compared to controls. Our data support the international occupational exposure limits of the single KEAA constituents. This finding applies only to the exposure scenario tested in this study and is difficult to extrapolate to the complex in vivo situation.
Collapse
Affiliation(s)
- Jonas Daniel
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | - Pia te Heesen
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Bastian Lehrheuer
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Stefan Pischinger
- TME—Chair of Thermodynamics of Mobile Energy Conversion Systems, RWTH Aachen University, Aachen, Germany
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology (E3T), Faculty Biological Sciences (FB15), Goethe University Frankfurt, Frankfurt, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | - Miaomiao Du
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Kęska A, Rusak A, Włostowski R, Dziemieszkiewicz M, Szymlet N. Low-vacuum SEM imaging and viability test of L929 cells exposed to a Euro 6 diesel exhaust gas mixture in a BAT-CELL chamber in comparison with hydrocarbons emission. Sci Rep 2024; 14:12883. [PMID: 38839874 PMCID: PMC11153568 DOI: 10.1038/s41598-024-63560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Exhaust emissions, which count among the most common causes of premature death worldwide, can cause irreversible changes in cells, leading to their damage or degeneration. In this research, L929 line cells were observed after exposure in the BAT-CELL chamber to exhaust gases emitted from a Euro 6 compression-ignition engine. Real road traffic conditions were simulated, taking into account air resistance while driving at speeds of 50 km/h, 120 km/h and idling engine. Morphological analysis of the cells was performed using an environmental scanning electron microscope. It has been observed that diesel exhaust fumes can cause inflammation, which can induce apoptosis or leads to necrotic cell death. The impact of the vehicle exhaust gases can inhibit cell proliferation by almost three times. Moreover, a correlation has been observed between the speed of the inflammatory reaction in cells and the presence of specific hydrocarbon compounds that determine the toxicity of exhaust gases. Research has shown that the toxicity of the emitted exhaust gases has been the highest at the driving speed of 120 km/h. In order to reduce the harmful effects of exhaust emissions, ecological alternatives and the supplementation of legal provisions regarding the compounds subject to limitation are necessary.
Collapse
Affiliation(s)
- Aleksandra Kęska
- Department of Automotive Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Agnieszka Rusak
- Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chałubińskiego 6a, 50-368, Wrocław, Poland
| | - Radosław Włostowski
- Department of Automotive Engineering, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | | | - Natalia Szymlet
- Institute of Combustion Engines and Powertrains, Poznan University of Technology, Pl. Marii Skłodowskiej-Curie 5, 60-965, Poznań, Poland
| |
Collapse
|
6
|
Wang L, Wen W, Gu Y, Mao J, Tong X, Jia B, Yan J, Zhu K, Bai Z, Zhang W, Shi L, Chen Y, Morawska L, Chen J, Huang LH. Characterization of Biodiesel and Diesel Combustion Particles: Chemical Composition, Lipid Metabolism, and Implications for Health and Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20460-20469. [PMID: 38019752 DOI: 10.1021/acs.est.3c04994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Biodiesel, derived from alkyl esters of vegetable oils or animal fats, has gained prominence as a greener alternative to diesel due to its reduced particle mass. However, it remains debatable whether biodiesel exposure has more severe health issues than diesel. This study performed high-resolution mass spectrometry to examine the detailed particle chemical compositions and lipidomics analysis of human lung epithelial cells treated with emissions from biodiesel and diesel fuels. Results show the presence of the peak substances of CHO compounds in biodiesel combustion that contain a phthalate ester (PAEs) structure (e.g., n-amyl isoamyl phthalate and diisobutyl phthalate). PAEs have emerged as persistent organic pollutants across various environmental media and are known to possess endocrine-disrupting properties in the environment. We further observed that biodiesel prevents triglyceride storage compared to diesel and inhibits triglycerides from becoming phospholipids, particularly with increased phosphatidylglycerols (PGs) and phosphatidylethanolamines (PEs), which potentially could lead to a higher probability of cancer metastasis.
Collapse
Affiliation(s)
- Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wen Wen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yu Gu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Jianwen Mao
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Xiao Tong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| | - Boyue Jia
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jiaqian Yan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhe Bai
- School of Ecology and Environment, Inner Mongolia University, Inner Mongolia 010021, China
| | - Wei Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Longbo Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Lidia Morawska
- International Laboratory for Air Quality and Health (ILAQH), School of Earth of Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai200438, China
| |
Collapse
|
7
|
Kęska A. The Actual Toxicity of Engine Exhaust Gases Emitted from Vehicles: The Development and Perspectives of Biological and Chemical Measurement Methods. ACS OMEGA 2023; 8:24718-24726. [PMID: 37483244 PMCID: PMC10357457 DOI: 10.1021/acsomega.3c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023]
Abstract
Most of the current studies on vehicle engine exhaust emissions are focused on qualitative and quantitative measurements. Approval tests for admitting vehicles to traffic and tests performed at vehicle inspection stations are limited to measuring the concentrations of individual compounds or selected groups of compounds. For vehicles with compression-ignition engines, the annual emission control comprises only an exhaust gas opacity test, performed with an opacimeter. This approach does not consider very harmful groups of compounds that determine the toxicity of exhaust gases but are not directly covered by the emission standards, such as polycyclic aromatic hydrocarbons and volatile organic compounds. Also, it does not provide a clear answer to the question of the actual toxicity of exhaust gases, understood as the harmful effect that a given substance causes on living organisms or biological processes. Studies on the actual toxicity of engine exhaust gases present a new area of interest, increasingly more discussed but still not approached in a comprehensive way. The studies include experiments using in vitro biological methods and chemical analyses of gas mixtures. In this Review, I present an overview of current research and a critical comparison of commonly used methods of testing engine exhaust emissions and methods that might supplement them in a significant manner. The development of in vitro biological methods, including methods of microscopic analysis of cells in the assessment of exhaust gas toxicity, provides an innovative approach to the problem of air pollution. This type of research presents the opportunity to indisputably answer the question of the actual toxicity of a given gas mixture and to make a new contribution to science in the field of molecular biology. Current data show that the survival of cells exposed to engine exhaust emissions from older generation vehicles is higher compared to that of newer generation vehicles.
Collapse
|
8
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure. Int J Mol Sci 2023; 24:ijms24065130. [PMID: 36982203 PMCID: PMC10049281 DOI: 10.3390/ijms24065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Kelly NA, Shontz KM, Bergman M, Manning AM, Reynolds SD, Chiang T. Biobanked tracheal basal cells retain the capacity to differentiate. Laryngoscope Investig Otolaryngol 2022; 7:2119-2125. [PMID: 36544928 PMCID: PMC9764751 DOI: 10.1002/lio2.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Objective While airway epithelial biorepositories have established roles in the study of bronchial progenitor stem (basal) cells, the utility of a bank of tracheal basal cells from pediatric patients, who have or are suspected of having an airway disease, has not been established. In vitro study of these cells can enhance options for tracheal restoration, graft design, and disease modeling. Development of a functional epithelium in these settings is a key measure. The aim of this study was the creation a tracheal basal cell biorepository and assessment of recovered cells. Methods Pediatric patients undergoing bronchoscopy were identified and endotracheal brush (N = 29) biopsies were collected. Cells were cultured using the modified conditional reprogramming culture (mCRC) method. Samples producing colonies by day 14 were passaged and cryopreserved. To explore differentiation potential, cells were thawed and differentiated using the air-liquid interface (ALI) method. Results No adverse events were associated with biopsy collection. Of 29 brush biopsies, 16 (55%) were successfully cultured to passage 1/cryopreserved. Samples with higher initial cell yields were more likely to achieve this benchmark. Ten unique donors were then thawed for analysis of differentiation. The average age was 2.2 ± 2.2 years with five donors (50%) having laryngotracheal pathology. Nine donors (90%) demonstrated differentiation capacity at 21 days of culture, as indicated by detection of ciliated cells (ACT+) and mucous cells (MUC5B+). Conclusion Pediatric tracheal basal cells can be successfully collected and cryopreserved. Recovered cells retain the ability to differentiate into epithelial cell types in vitro. Level of Evidence Level 3.
Collapse
Affiliation(s)
- Natalie A. Kelly
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
| | - Kimberly M. Shontz
- Center for Regenerative MedicineAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Maxwell Bergman
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State Wexner Medical CenterColumbusOhioUSA
| | - Amy M. Manning
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State Wexner Medical CenterColumbusOhioUSA
| | - Susan D. Reynolds
- Center for Perinatal MedicineAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Center for Regenerative MedicineAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
10
|
Villasclaras P, Jaén C, van Drooge BL, Grimalt JO, Tauler R, Bedia C. Phenotypic and Metabolomic Characterization of 3D Lung Cell Cultures Exposed to Airborne Particulate Matter from Three Air Quality Network Stations in Catalonia. TOXICS 2022; 10:632. [PMID: 36355924 PMCID: PMC9695742 DOI: 10.3390/toxics10110632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Air pollution constitutes an environmental problem that it is known to cause many serious adverse effects on the cardiovascular and respiratory systems. The chemical characterization of particulate matter (PM) is key for a better understanding of the associations between chemistry and toxicological effects. In this work, the chemical composition and biological effects of fifteen PM10 air filter samples from three air quality stations in Catalonia with contrasting air quality backgrounds were investigated. Three-dimensional (3D) lung cancer cell cultures were exposed to these sample extracts, and cytotoxicity, reactive oxygen species (ROS) induction, metabolomics, and lipidomics were explored. The factor analysis method Multivariate Curve Resolution-Alternating Least-Squares (MCR-ALS) was employed for an integrated interpretation of the associations between chemical composition and biological effects, which could be related to urban traffic emission, biomass burning smoke, and secondary aerosols. In this pilot study, a novel strategy combining new approach methodologies and chemometrics provided new insights into the biomolecular changes in lung cells associated with different sources of air pollution. This approach can be applied in further research on air pollution toxicity to improve our understanding of the causality between chemistry and its effects.
Collapse
|
11
|
Landwehr KR, Nabi MN, Rasul MG, Kicic A, Mullins BJ. Biodiesel Exhaust Toxicity with and without Diethylene Glycol Dimethyl Ether Fuel Additive in Primary Airway Epithelial Cells Grown at the Air-Liquid Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14640-14648. [PMID: 36177943 DOI: 10.1021/acs.est.2c03806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biodiesel usage is increasing steadily worldwide as the push for renewable fuel sources increases. The increased oxygen content in biodiesel fuel is believed to cause decreased particulate matter (PM) and increased nitrous oxides within its exhaust. The addition of fuel additives to further increase the oxygen content may contribute to even further benefits in exhaust composition. The aim of this study was to assess the toxicity of 10% (v/v) diethylene glycol dimethyl ether (DGDME) added as a biodiesel fuel additive. Primary human airway epithelial cells were grown at the air-liquid interface and exposed to diluted exhaust from an engine running on either grapeseed, bran, or coconut biodiesel or the same three biodiesels with 10% (v/v) DGDME added to them; mineral diesel and air were used as controls. Exhaust properties, culture permeability, epithelial cell damage, and IL-6 and IL-8 release were measured postexposure. The fuel additive DGDME caused a decrease in PM and nitrous oxide concentrations. However, exhaust exposure with DGDME also caused decreased permeability, increased epithelial cell damage, and increased release of IL-6 and IL-8 (p < 0.05). Despite the fuel additive having beneficial effects on the exhaust properties of the biodiesel, it was found to be more toxic.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia 6102, Australia
- Respiratory Environmental Health, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
| | - Md Nurun Nabi
- School of Engineering and Technology, Fuel and Energy Research Group, Central Queensland University, Perth, Western Australia 6000, Australia
| | - Mohammad G Rasul
- School of Engineering and Technology, Fuel and Energy Research Group, Central Queensland University, Rockhampton, Queensland 4701, Australia
| | - Anthony Kicic
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia 6102, Australia
- Respiratory Environmental Health, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- Department of of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment & Safety, School of Population Health, Curtin University, Perth, Western Australia 6102, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia 6009, Australia
- St. John of God Hospital, Subiaco, Western Australia 6008, Australia
| |
Collapse
|