1
|
Ding L, Zhang Q, Yu L, Jiang R, Yao C, Wang C, Li Q. Decay of Airborne Bacteria from Cattle Farm Under A-Band Ultraviolet Radiation. Animals (Basel) 2024; 14:3649. [PMID: 39765553 PMCID: PMC11672824 DOI: 10.3390/ani14243649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inspired by the effects of solar or UV radiation on the decay of airborne bacteria during their transport, this study investigated the effect of UVA on the decay of airborne bacteria from cattle houses and analyzed the potential use of UVA to reduce indoor airborne bacteria under laboratory conditions. Airborne bacteria from the cattle source were generated and released into a small-scale test chamber (1.5 m3) with different strategies according to the different objectives in decay tests and simulated sterilization tests. Increasing with the UVA radiation gradients (0, 500, 1000, 1500 μW cm-2), the average decay rate of total curable airborne bacteria ranged from 2.7% to 61.6% in decay tests. Under the combination of different UVA radiation intensities (2000 μW cm-2 in maximum) and radiation durations (60 min in maximum), simulated sterilization tests were conducted to examine the potential use of UVA radiation for air sterilization in animal houses. With the dynamic inactive rate (DIR) ranging from 17.2% to 62.4%, we proved that UVA may be an alternative way to reduce the indoor airborne bacteria in cattle houses if applied properly. Similar effects would be achieved using either a high radiation intensity with a short radiation duration or a low radiation intensity with a long radiation duration.
Collapse
Affiliation(s)
- Luyu Ding
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Qing Zhang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Ligen Yu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Ruixiang Jiang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Chunxia Yao
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Chaoyuan Wang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Qifeng Li
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| |
Collapse
|
2
|
Garrido Zornoza M, Mitarai N, Haerter JO. Stochastic microbial dispersal drives local extinction and global diversity. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231301. [PMID: 39076806 PMCID: PMC11285425 DOI: 10.1098/rsos.231301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 07/31/2024]
Abstract
Airborne dispersal of microorganisms is a ubiquitous migration mechanism, allowing otherwise independent microbial habitats to interact via biomass exchange. Here, we study the ecological implications of such advective transport using a simple spatial model for bacteria-phage interactions: the population dynamics at each habitat are described by classical Lotka-Volterra equations; however, species populations are taken as integer, that is, a discrete, positive extinction threshold exists. Spatially, species can spread from habitat to habitat by stochastic airborne dispersal. In any given habitat, the spatial biomass exchange causes incessant population density oscillations, which, as a consequence, occasionally drive species to extinction. The balance between local extinction events and dispersal-induced migration allows species to persist globally, even though diversity would be depleted by competitive exclusion, locally. The disruptive effect of biomass dispersal thus acts to increase microbial diversity, allowing system-scale coexistence of multiple species that would not coexist locally.
Collapse
Affiliation(s)
| | - Namiko Mitarai
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jan O. Haerter
- The Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Constructor University, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
- Department of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| |
Collapse
|
3
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
4
|
Yong SS, Lee JI, Kang DH. Bacterial composition of refrigerators in households and inactivation of airborne Staphylococcus aureus using a TiO 2-UVLED module in a 512 L aerobiology chamber. Food Microbiol 2023; 114:104274. [PMID: 37290863 DOI: 10.1016/j.fm.2023.104274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/10/2023]
Abstract
This study aimed to investigate the microbiota in the air and on the surface of a refrigerator and to inactivate aerosolized Staphylococcus aureus using a TiO2-UVLED module. A total of 100 L of the air and 5000 cm2 surfaces in seven household refrigerators were collected using an air sampler and a swab, respectively. Samples were subjected to microbiota analysis as well as quantitative analyses of aerobic or anaerobic bacteria. The level of airborne aerobic bacteria was 4.26 log CFU/vol (100 L), while that of surface aerobic bacteria was 5.27 log CFU/surface (5000 cm2). PCoA based on the Bray-Curtis metric revealed that the bacterial composition differed between samples collected from refrigerators with and without a vegetable drawer. Moreover, pathogenic bacteria containing genera and order from each sample were found, such as Enterobacaterales, Pseudomonas, Staphylococcus, Listeria, and Bacillus. Among them, Staphylococcus aureus was determined to be a core hazardous pathogen in air. Therefore, three S. aureus strains isolated from the air in refrigerators, as well as a reference strain of S. aureus (ATCC 6538P), were inactivated by a TiO2-UVLED module in a 512 L aerobiology chamber. All aerosolized S. aureus were reduced over 1.6 log CFU/vol after treatment with TiO2 under UVA (365 nm) light at 40 J/cm2. These findings suggest that TiO2-UVLED modules have the potential to be used to control airborne bacteria in household refrigerators.
Collapse
Affiliation(s)
- So-Seum Yong
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
5
|
Peng L, Wang H, Li G, Liang Z, Zhang W, Zhao W, An T. Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols. Nat Commun 2023; 14:2412. [PMID: 37106011 PMCID: PMC10134728 DOI: 10.1038/s41467-023-38194-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Bioaerosol can cause the spread of disease, and therefore, capture and inactivation of bioaerosols is desirable. However, filtration systems can easily become blocked, and are often unable to inactivate the bioaerosol once it is captured. Herein, we reported a bioinspired artificial spider silk (ASS) photocatalyst, consisting of a periodic spindle structure of TiO2 on nylon fiber that can efficiently capture and concentrate airborne bacteria, followed by photocatalytic inactivation in situ, without a power-supply exhaust system. The ASS photocatalyst exhibits a higher capture capacity than the nylon fiber substrate and a photocatalytic inactivation efficiency of 99.99% obtained under 4 h irradiation. We found that the capture capacity of the ASS photocatalyst can be mainly attributed to the synergistic effects of hydrophilicity, Laplace pressure differences caused by the size of the spindle knots and surface energy gradients induced by surface roughness. The bacteria captured by the ASS photocatalyst are inactivated by photocatalysis within droplets or at the air/photocatalyst interfaces. This strategy paves the way for constructing materials for bioaerosol purification.
Collapse
Affiliation(s)
- Linghui Peng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiyu Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhishu Liang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weiping Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Weina Zhao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Xu X, Wang C, Wang P, Chu Y, Guo J, Bo X, Lin A. Bioaerosol dispersion and environmental risk simulation: Method and a case study for a biopharmaceutical plant of Gansu province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160506. [PMID: 36442625 PMCID: PMC9691505 DOI: 10.1016/j.scitotenv.2022.160506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/04/2023]
Abstract
Pathogenic bacteria pose a great threat to global public health from environmental and public health perspectives, especially regarding the impact of the COVID-19 pandemic worldwide. As a result, the increased risk of pathogenic bioaerosol exposure imposes a considerable health burden and raises specific concerns about the layout and location of vaccine manufacturers. This study proposed a grid computing method based on the CALPUFF modelling system and population-based environmental risks to reduce bioaerosol-related potential risks. We previously used the CALPUFF model to quantify the diffusion level, the spatial distribution of emissions, and potential environmental risks of bioaerosol leakage in Gansu province's Zhongmu Lanzhou biopharmaceutical plant from July 24, 2019, to August 20, 2019. By combining it with publicly available test data, the credibility was confirmed. Based on our previous research, the CALPUFF model application combined with the environmental population-based environmental risks in two scenarios: the layout and site selection, was explored by using the leakage accident of Zhongmu Lanzhou biopharmaceutical plant of Gansu province as a case study. Our results showed that the site selection method of scenario 2 coupled with the buffer area was more reasonable than scenario 1, and the final layout site selection point of scenario 2 was grid 157 as the optimal layout point. The simulation results demonstrated agreement with the actual survey. Our findings could assist global bioaerosol manufacturers in developing appropriate layout and site selection strategies to reduce bioaerosol-related potential environmental risks.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengxin Wang
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- 3Clear Technology Co., Ltd, Beijing 100029, China
| | - Yinghao Chu
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jing Guo
- School of Economics and Management, Beihang University, Beijing 100191, China
| | - Xin Bo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|