1
|
Duan Z, Xue Q, Hao Y, Liu L, Liu X, Pan W, Zhang A, Fu J. Stability and fate of hollow mesoporous silica nanoparticles in aqueous environment: Effects of pH and electrolyte. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137750. [PMID: 40020298 DOI: 10.1016/j.jhazmat.2025.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
Hollow mesoporous silica nanoparticles (HMSNs) and their carboxyl-functionalized counterparts (C-HMSNs) are promising materials for environmental applications, but their stability in aquatic environments remains poorly understood. This study investigated the aggregation behavior of HMSNs and C-HMSNs under varying pH and electrolyte conditions. Experimental results showed that HMSNs had critical aggragation concentrations (CCC) of 35 mM in NaCl and 2 mM in CaCl2, while C-HMSNs exhibited higher CCCs of 52 mM and 3 mM, respectively, indicating greater stability. High concentrations of NaCl and CaCl2 promoted rapid aggregation of HMSNs and C-HMSNs, with CaCl2 being more efficient in promoting aggregation. Both HMSNs and C-HMSNs aggregated extensively in acidic environments, while remaining stable in neutral and alkaline environments. Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and molecular dynamics (MD) simulations revealed weakened electrostatic repulsion and reduced total system energy in high ionic strength solutions supporting irreversible aggregation. Simulated environmental conditions showed that HMSNs and C-HMSNs remained stable in rivers, aggregated slightly in groundwater, and aggregated extensively in seawater. These findings provide critical insights into the environmental fate and potential ecological risks of silica nanoparticles, informing future studies on their transport and bioavailability in natural waters.
Collapse
Affiliation(s)
- Zhihui Duan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yuxing Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lizheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, PR China
| | - Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, PR China
| |
Collapse
|
2
|
Fang J, Wang D, Wilkin R, Su C. Realistic and field scale applications of biochar for water remediation: A literature review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125524. [PMID: 40334406 DOI: 10.1016/j.jenvman.2025.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
Biochar has received increasing attention in recent years as a potentially cost-competitive adsorbent for removing various contaminants from surface water and groundwater. However, most published studies have been conducted in the laboratory on a bench scale. Laboratory conditions do not necessarily reflect the complex, heterogeneous, and dynamic field conditions of actual contaminated surface water and groundwater environments. There is a lack of comprehensive literature review regarding the performance of biochar for contaminant removal, especially under realistic field conditions and at field scale. Here, we evaluated 31 studies on realistic applications of biochar for water remediation by searching the keywords: pilot scale, field scale, and mesocosm scale combined with biochar and water remediation. Biochar was found to be incorporated into a variety of water remediation technologies for treating both inorganic and organic contaminants, such as nutrients, heavy metals, pesticides, and pharmaceuticals in polluted waters and wastewaters. Also, biochar showed the potential to be effective on a field scale or in realistic remediation technologies, although it is not always as effective as other sorbents, such as activated carbon (AC). This is partially because AC has better physicochemical characteristics such as higher surface area and more micropores. Effectiveness for contaminant removal varies according to the targeted contaminants, the type and dosage of biochar used, and the treatment technology incorporating biochar. Finally, knowledge gaps and future research areas are identified. For example, more field scale studies are needed to test the effectiveness of biochar as an adsorbent under realistic conditions to pinpoint specific characteristics suitable for target contaminants. Physicochemical characteristics of the biochar can also change over time during the treatment process due to weathering, which may negatively affect the treatment performance. The effects of scaling up production on biochar quality should therefore also be further investigated, as physicochemical characteristics can be affected by varying the synthesis conditions. Regeneration and disposal of spent biochar is another active research area to determine the overall treatment costs.
Collapse
Affiliation(s)
- June Fang
- Oak Ridge Institute for Science and Education Fellow at the U.S. Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Dengjun Wang
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Richard Wilkin
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| | - Chunming Su
- Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, Office of Research and Development, United States Environmental Protection Agency, 919 Kerr Research Drive, Ada, OK, 74820, USA.
| |
Collapse
|
3
|
Zhou Z, Lu M, Huang Y, Zhao C, Wang Y, Pidou M, Wu M, Chen Q, Jeffrey P, Pan B. Molecular mechanistic insights towards aggregation of nano-biochar moderated by aromatic components in dissolved organic matter. ENVIRONMENT INTERNATIONAL 2025; 197:109350. [PMID: 40020635 DOI: 10.1016/j.envint.2025.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 03/03/2025]
Abstract
Nano-biochar (NBC) is a promising tool for sustainable remediation of contaminants in aquatic environments. However, the presence of ubiquitous ions and dissolved organic matter (DOM) can impact NBC aggregation, resulting in reduced application efficacy and potential ecological risks. Understanding and regulating NBC aggregation offers valuable insights for its deployment. This study integrated batch aggregation experiments, theoretical models, Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS), and density functional theory (DFT) calculations to explore the behaviors and mechanisms of NBC aggregation with coexisting ions and model DOM. NBC aggregation kinetics followed the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in both NBC-ions and NBC-ions-fulvic acid (FA) solutions, indicating that the aggregation process is controlled by Van der Waals forces and electrostatic repulsion. Mono/di-valent electrolytes promoted NBC aggregation, whereas FA moderated it, with higher molecular weight FA fractions exhibiting superior performance. Three-dimensional excitation-emission (3D-EEM) fluorescence spectra and Parallel factor analysis (PARAFAC) analyses revealed that HA-like substances, followed by FA-like substances, can form a complex with ions, thereby moderating NBC aggregation. FTICR-MS scans identified lignin substances with aromatic structures as key components that effectively reduce the promoted NBC aggregation with coexisting mono/di-valent electrolytes. DFT calculations confirmed that the aromatic structures in FA spontaneously form complexes with electrolytes, thereby potentially regulating NBC aggregation. This research highlights potential strategies for regulating NBC applications and offers insights into the behavior of nanoparticles in aquatic environments.
Collapse
Affiliation(s)
- Zheng Zhou
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China
| | - Meng Lu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074 Hubei, China
| | - Yu Huang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China; Cranfield Water Science Institute, Cranfield University, Cranfield, United Kingdom.
| | - Changping Zhao
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China
| | - Yafeng Wang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China
| | - Marc Pidou
- Cranfield Water Science Institute, Cranfield University, Cranfield, United Kingdom
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China.
| | - Paul Jeffrey
- Cranfield Water Science Institute, Cranfield University, Cranfield, United Kingdom
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500 Yunnan, China
| |
Collapse
|
4
|
Li Q, Si H, Chen X, Mao M, Shang J. Influence of natural organic matter on the aggregation dynamics of biochar colloids derived from various feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174097. [PMID: 38908602 DOI: 10.1016/j.scitotenv.2024.174097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Abundant biochar colloids (BCs) produced from a wide range of feedstocks, resulting from forest fires, agricultural production, and environmental restoration, exhibit varying aggregation behaviors influenced by feedstock type and natural organic matter. However, the impact of natural organic matter on the colloidal stability of BCs derived from different feedstocks remains poorly understood. In this study, six selected biochars were derived from various feedstocks as follows: sewage sludge (SS), rice husk (RH), oil seed rape straw pellets (OSR), wheat straw pellets (WS), miscanthus straw pellets (MS) and softwood pellets (SW). The colloidal stability of BCs, with the exogenous addition of organic matter, was further determined. The order of critical coagulation concentrations (CCCs) of BCs with the presence of humic acid (HA) was as follows: RH (989.48 mM) < MS (1084.69 mM) < SS (1149.76 mM) < WS (1338.99 mM) < OSR (2402.98 mM) < SW (3151.32 mM). This order was significantly positively correlated with the specific surface area and negatively correlated with the ash content of the bulk biochar. Compared to HA, bovine serum albumin (BSA) more effectively inhibited the aggregation behavior of BCs due to steric hindrance. The initial aggregation rate constant (k) of BCs at 3000 mM NaCl was as follows: MS (0.238 nm/s) > OSR (0.142 nm/s) > WS (0.128 nm/s) > SS (0.126 nm/s) > RH (0.118 nm/s) > SW (0.112 nm/s). The stabilizing effects of BSA on biochar colloids were independent of the physicochemical properties of bulk biochar. In the presence of BSA, a thin layer of protein corona significantly enhanced the stability of biochar colloids, particularly the BCs derived from MS. Our results underscore the importance of considering feedstock resources and natural organic matter type when assessing the aggregation and potential risks of BCs in aquatic systems.
Collapse
Affiliation(s)
- Qirui Li
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Hongyu Si
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Xiuxiu Chen
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Meng Mao
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
5
|
Chen K, Xu X, Li X, Gui X, Zhao L, Qiu H, Cao X. The colloidal stability of molybdenum disulfide nanosheets in different natural surface waters: Combined effects of water chemistry and light irradiation. WATER RESEARCH 2024; 261:121973. [PMID: 38924950 DOI: 10.1016/j.watres.2024.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
With the increasing production and application, more molybdenum disulfide (MoS2) nanosheets could be released into environment. The aggregation and dispersion of MoS2 nanosheets profoundly impact their transport and transformation in the aquatic environment. However, the colloidal stability of MoS2 remains largely unknown in natural surface waters. This study investigated the colloidal stability of MoS2 nanosheets in six natural surface waters affected by both light irradiation and water chemistry. Compared to that of the pristine MoS2 nanosheets, the colloidal stability of MoS2 photoaged in ultrapure water declined. Light irradiation induced the formation of Mo-O bonds, the release of SO42- species, and the decrease in 1T/2H ratio, which reduced negative charge and enhanced hydrophobicity. However, the colloidal stability of MoS2 photoaged in natural surface waters was increased relative to that in ultrapure water not only for the smaller extent of photochemical transformation but more importantly the surface modification by water chemistry. Furthermore, the colloidal stability of MoS2 photoaged in natural surface waters followed the order of sea water > lake water > river water. The abundant cations (e.g., Ca2+ and Mg2+) in sea water facilitated the covalent grafting (S-C bonds) of more dissolved organic matter (DOM) on MoS2 via charge screening and cation bridging, thus inducing stronger electrostatic repulsion and steric effect to stabilize nanosheets. The crucial role of the covalent grafting of DOM was further confirmed by the positive correlation between the critical coagulation concentration values and S-C ratios (R2 = 0.82, p < 0.05). Our results highlighted the dominant role of water chemistry than light irradiation in dictating the colloidal stability of MoS2 photoaged in natural surface waters, which provided new insight into the environmental behavior of MoS2 in aquatic environment.
Collapse
Affiliation(s)
- Kexin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangyang Gui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
6
|
Tang N, Guo Y, Zhu Z, Jiang L, Li N, Hu T, Lu L, Zhang J, Li X, Liang J. New Insights into Aggregation Behaviors of the UV-Irradiated Dissolved Biochars (DBioCs) in Aqueous Environments: Effects of Water Chemistries and Variation in the Hamaker Constant. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8053-8064. [PMID: 38662987 DOI: 10.1021/acs.est.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The aggregation behavior of ubiquitous dissolved black carbon (DBC) largely affects the fate and transport of its own contaminants and the attached contaminants. However, the photoaging processes and resulting effects on its colloidal stability remain yet unknown. Herein, dissolved biochars (DBioCs) were extracted from common wheat straw biochar as a proxy for an anthropogenic DBC. The influences of UV radiation on their aggregation kinetics were systematically investigated under various water chemistries (pH, electrolytes, and protein). The environmental stability of the DBioCs before and after radiation was further verified in two natural water samples. Hamaker constants of pristine and photoaged DBioCs were derived according to Derjaguin-Landau-Verwey-Overbeek (DLVO) prediction, and its attenuation (3.19 ± 0.15 × 10-21 J to 1.55 ± 0.07 × 10-21 J after 7 days of radiation) was described with decay kinetic models. Pearson correlation analysis revealed that the surface properties and aggregation behaviors of DBioCs were significantly correlated with radiation time (p < 0.05), indicating its profound effects. Based on characterization and experimental results, we proposed a three-stage mechanism (contended by photodecarboxylation, photo-oxidation, and mineral exposure) that DBioCs might experience under UV radiation. These findings would provide an important reference for potential phototransformation processes and relevant behavioral changes that DBC may encounter.
Collapse
Affiliation(s)
- Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Yihui Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Na Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Tingting Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Lan Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Jingyi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
7
|
Zhang G, Wang B, Jiang N, Pang K, Wu W, Yin X. Effect of water-soluble polymers on the transport of functional group-modified polystyrene nanoplastics in goethite-coated saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134044. [PMID: 38493628 DOI: 10.1016/j.jhazmat.2024.134044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The research on the impact of water-soluble polymers (WSPs) on the migration and fate of plastic particles is extremely limited. This article explored the effects of polyacrylic acid (PAA, a common WSP) and physicochemical factors on the transport of polystyrene nanoparticles (PSNPs-NH2/COOH) with different functional groups in QS (quartz sand) and FOS (goethite-modified quartz sand, simulates mineral colloids). Research has shown that PAA can selectively adsorb onto the surface of PSNPs-NH2, forming ecological corona heterogeneous aggregates. This process increased the spatial hindrance and elastic repulsion, resulting in the recovery of PSNPs-NH2 always exceeding that of PSNPs-COOH. Overall, PAA can hinder the migration of PSNPs in QS but can promote their migration in FOS. When multivalent cations coexist with PAA, the transport of PSNPs in the media is primarily affected by cation bridging and CH-cation-π interaction. The presence of oxyanions and PAA prevents PSNPs from following the Hofmeister rule and promotes their migration (PO43-: 82.34 ± 0.16% to 94.63 ± 2.82%>SO42-: 81.38 ± 2.73% to 91.15 ± 0.93%>NO3-: 55.85 ± 0.70%-87.16 ± 3.80%). The findings of this study contribute significantly to a better understanding of the migration of WSPs and group-modified NPs in complex saturated porous media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
8
|
He X, Wang Q, Jin Y, Chen Y, Huang L. Properties of biochar colloids and behaviors in the soil environment: Influencing the migration of heavy metals. ENVIRONMENTAL RESEARCH 2024; 247:118340. [PMID: 38309559 DOI: 10.1016/j.envres.2024.118340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Biochar pyrolyzed by biomass shows excellent application prospects for heavy metal (HM) remediation, but a part of biochar can be inevitably broken into micro- and nano-sized biochar colloids (BCs) under biological and physicochemical actions in soil. BCs derived in the process of remediation have rough surface, rich elemental species and contents, and multiple functional groups, which are similar to biochar. However, BCs have some unique colloidal properties because of their micro and nano scale size. Due to these properties, BCs exhibit strong mobilities in the soil environment, and the mobilities may be influenced by a combination of colloidal properties of BCs and environmental factors including soil colloids and other soil environmental conditions. In addition, BCs may have affinity effects on HMs through electrostatic adsorption, ion exchange, surface complexation, precipitation/co-precipitation, and redox because of the properties such as large specific surface area, and rich oxygen-containing functional groups and minerals on the surface. This review summarizes the physicochemical and migratory properties of BCs, and the internal and external factors affecting the migration of BCs in the soil environment, and the possible effects of BCs on HMs are high-lighted. This review provides a theoretical basis for the optimization of soil contaminated with HMs after remediation using biochar. Notably, the innovative idea that BCs may influence the presence of HMs in soil needs to be further confirmed by more targeted detection and analysis methods in future studies to prevent the possible environmental toxicities of the lateral and vertical diffusion of HM caused by BCs in soil.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Qinghua Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yinie Jin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China
| | - Yucheng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China
| | - Lei Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400716, PR China; Chongqing Engineering Research Center of Rural Cleaner Production, Chongqing, 400716, PR China.
| |
Collapse
|
9
|
Guo Y, Tang N, Lu L, Li N, Hu T, Guo J, Zhang J, Zeng Z, Liang J. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation. CHEMOSPHERE 2024; 350:140998. [PMID: 38142881 DOI: 10.1016/j.chemosphere.2023.140998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Aggregation kinetics of plastics are affected by the surface functional groups and exposure orders (electrolyte and protein) with kinds of mechanisms in aquatic environment. This study investigates the aggregation of polystyrene nanoplastics (PSNPs) with varying surface functional groups in the presence of common electrolytes (NaCl, CaCl2, Na2SO4) and bovine serum albumin (BSA). It also examines the impact of different exposure orders, namely BSA + NaCl (adding them together), BSA → NaCl (adding BSA firstly and then NaCl), and NaCl → BSA (adding NaCl firstly and then BSA), on PSNPs aggregation. The presence of BSA decreased the critical coagulation concentration in NaCl (CCCNa+) of the non-modified PS-Bare from 222.17 to 142.81 mM (35.72%), but increased that of the carboxyl-modified PS-COOH from 157.34 to 160.03 mM (1.71%). This might be ascribed to the thicker absorbed layer of BSA onto the PS-Bare surface, known from Ohshima's soft particle theory. Their aggregation in CaCl2 was both increased because of Ca2+ bridging. Different from the monotonous effects of BSA on PS-Bare and PS-COOH, BSA initially facilitated PS-NH2 aggregation via patch-charge attraction, then inhibited it at higher salt levels through steric repulsion. Furthermore, exposure orders had no significant effect on PS-Bare and PS-COOH, but had a NaCl concentration-dependent impact on PS-NH2. At the low NaCl concentrations (10 and 100 mM), no obvious influence could be observed. While, at 300 mM NaCl, the high concentrations of BSA could not totally stabilize the salt-induced aggregates in NaCl → BSA, but could achieve it in the other two orders. These might be attributed to the electrical double layer compression by NaCl, "patch-charge" force and steric hindrance by BSA. These experimental findings shed light on the potential fate and transport of nanoparticles in aquatic environments.
Collapse
Affiliation(s)
- Yihui Guo
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lan Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Na Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Tingting Hu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jiayin Guo
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, PR China
| | - Jingyi Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Zhuotong Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Jie Liang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
10
|
Pan Y, Chen C, Shang J. Effect of reduced inherent organic matter on stability and transport behaviors of black soil colloids. CHEMOSPHERE 2023:139149. [PMID: 37307927 DOI: 10.1016/j.chemosphere.2023.139149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Soil organic matter plays an important role in the stability, transport, and fate of soil colloids. At present, studies have mostly focused on the effects of adding exogenous organic matter on soil colloidal properties, while there is very limited research on the effect of reduced inherent soil organic matter on the environmental behavior of soil colloids. This study investigated the stability and transport behavior of black soil colloids (BSC) and black soil colloids with reduced inherent organic matter (BSC-ROM) under different ionic strength (5, 50 mM) and background solution pH (4.0, 7.0, and 9.0) conditions. Meanwhile, the release behavior of two soil colloids in the saturated sand column under transient ionic strength conditions was also studied. The results showed that both ionic strength reduction and pH increase increased the negative charges of BSC and BSC-ROM, and improved the electrostatic repulsion between soil colloids and grain surface, thereby promoting the stability and mobility of soil colloids. The decrease in inherent organic matter had little effect on the surface charge of soil colloids, suggesting that the electrostatic repulsive force was not the main force affecting the stability and mobility of BSC and BSC-ROM, and reducing inherent organic matter might significantly reduce the stability and mobility of soil colloids by weakening the steric hindrance interaction. The decrease of transient ionic strength reduced the depth of the energy minimum and activated the soil colloids retained on the surface of the grain at three pH conditions. This study is helpful to predict the potential impact of soil organic matter degradation on the fate of black soil colloids in natural environment system.
Collapse
Affiliation(s)
- Yue Pan
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Chong Chen
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
11
|
Xing J, Qi Z, Dong W, Chen Q, Wu M, Yi P, Pan B, Xing B. Aggregation of biochar nanoparticles and the impact on bisphenol A sorption: Experiments and molecular dynamics simulations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162724. [PMID: 36906025 DOI: 10.1016/j.scitotenv.2023.162724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The unique properties and environmental implications of biochar nanoparticles (BNPs) have attracted increasing attention. The abundant functional groups and aromatic structures in BNPs may promote the aggregation of BNPs, but the mechanism and implications of this aggregation process remain unclear. Thus, this study investigated the aggregation of BNPs and the sorption of bisphenol A (BPA) on BNPs by combining experimental investigations with molecular dynamics simulations. As the concentration of BNP increased from 100 mg/L to 500 mg/L, the particle size increased from approximately 200 nm to 500 nm, and the exposed surface area ratio in the aqueous phase decreased from 0.46 to 0.05, which confirmed the aggregation of BNPs. The sorption of BPA on BNPs decreased with increasing BNP concentration in both the experiments and molecular dynamics simulations because of BNP aggregation. According to a detailed analysis of the BPA molecules adsorbed on BNP aggregates, the sorption mechanisms were hydrogen bonding, hydrophobic effect, and π-π interactions, which were driven by aromatic rings and O- and N-containing functional groups. The aggregation of BNPs embedded some functional groups in the aggregates and thus inhibited sorption. Interestingly, the steady configuration of the BNP aggregates in the molecular dynamics simulations (2000 ps relaxation) also determined the apparent BPA sorption. BPA molecules were adsorbed in the V-shaped interlayers of the BNP aggregates that acted as semi-closed pores, but could not be adsorbed in the parallel interlayers because of their small layer spacing. This study can provide theoretical guidance for the application of BNPs in pollution control and remediation.
Collapse
Affiliation(s)
- Jing Xing
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Zhaoxiong Qi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Wei Dong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Peng Yi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
12
|
Li Q, Zhang X, Mao M, Wang X, Shang J. Carbon content determines the aggregation of biochar colloids from various feedstocks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163313. [PMID: 37030377 DOI: 10.1016/j.scitotenv.2023.163313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023]
Abstract
The aggregation kinetics of biochar colloids (BCs) play a crucial role in the fate and transport of contaminants, as well as the carbon (C) cycle in the environment. However, the colloidal stability of BCs from various feedstocks is very limited. In this study, the critical coagulation concentration (CCC) of twelve standard biochars pyrolyzed from various feedstocks (municipal source, agricultural waste, herbaceous residue, and woody feedstock) at 550 °C and 700 °C were investigated, and the relationship between the physicochemical characteristics of biochar and the colloidal stability of BCs was further analyzed. The CCC of BCs in the NaCl solution followed the trend of municipal source < agricultural waste < herbaceous residue < woody feedstock, which was similar to the order of C content in biochar. The CCC of BCs showed a strong positive correlation with the C content of various biochars, especially pyrolyzed at a higher temperature of 700 °C. The BCs derived from lignin-rich feedstock (e.g., woody feedstock) had the highest colloidal stability, followed by cellulose-rich feedstock (e.g., agricultural waste and herbaceous residue). The BCs derived from organic matter-rich feedstock (municipal source) were easy to aggregate in the aqueous environment. This study quantitatively provides new insights into the relationship between BCs stability and biochar characteristics from various feedstocks, which is critical to assess biochar environmental behavior in aqueous environments.
Collapse
Affiliation(s)
- Qirui Li
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Zhang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Meng Mao
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiang Wang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|