1
|
Long HY, Feng GF, Fang J. In-situ remediation of cadmium contamination in paddy fields: from rhizosphere soil to rice kernel. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:404. [PMID: 39207539 DOI: 10.1007/s10653-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) has become an important heavy metal pollutant because of its strong migration and high toxicity. The industrial production process aggravated the Cd pollution in rice fields. Human exposure to Cd through rice can cause kidney damage, emphysema, and various cardiovascular and metabolic diseases, posing a grave threat to health. As modern technology develops, the Cd accumulation model in rice and in-situ remediation of Cd pollution in cornfields have been extensively studied and applied, so it is necessary to sort out and summarize them systematically. Therefore, this paper reviewed the primary in-situ methods for addressing heavy metal contamination in rice paddies, including chemical remediation (inorganic-organic fertilizer remediation, nanomaterials, and composite remediation), biological remediation (phytoremediation and microbial remediation), and crop management remediation technologies. The factors that affect Cd transformation in soil and Cd migration in crops, the advantages and disadvantages of remediation techniques, remediation mechanisms, and the long-term stability of remediation were discussed. The shortcomings and future research directions of in situ remediation strategies for heavily polluted paddy fields and genetic improvement strategies for low-cadmium rice varieties were critically proposed. To sum up, this review aims to enhance understanding and serve as a reference for the appropriate selection and advancement of remediation technologies for rice fields contaminated with heavy metals.
Collapse
Affiliation(s)
- Hai Yan Long
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guang Fu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Vasudhevan P, Pu S, Sridevi G, Devanesan S, Dixit S, Thangavel P. Uptake and translocation of cadmium and trace metals in common rice varieties at different growth stages. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:365. [PMID: 39141250 DOI: 10.1007/s10653-024-02141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Rice (Oryza sativa) is an important nutritional grain for the majority of Asian countries, but it is also a major source of cadmium (Cd) accumulation. A pot experiment was carried out to investigate the Cd uptake and translocation of high Cd (IR-50) and low Cd (White Ponni) rice cultivars in Cd-contaminated soils. The findings revealed that Cd impacts on rice development and growth differed depending on rice cultivars. Soil Cd levels in the seedling stage exceeded the critical levels (3-6 mg kg-1) only 5.0 mg kg-1 Cd treatment for the IR-50 (7.47 mg kg-1). At higher Cd treatments (1.0 and 5.0 mg kg-1), morphometric characteristics and yield of grains showed a declining and increasing trend in both rice varieties, respectively. The accumulation of Cd was higher in soil and roots during seedling and tillering stages, whereas in booting and maturity stages increased in stems and leaves in IR-50 and WP rice varieties. Cd levels in rice grains above the maximum allowable limit (0.4 mg kg-1) only in IR-50 (0.51 mg kg-1) rice cultivar at maturity stage. The EF of Cd were classified as minor enrichment to 'moderate enrichment' in both rice cultivars. TF values exhibited > 1 in booting and maturity stages in both rice cultivars at higher Cd treatments. The study concluded that the IR-50 rice variety exhibited increased Cd intake and transported to various parts of rice plants, particularly grains. The findings indicate that WP rice cultivar is more resistant to Cd toxicity, reducing health hazards for persons who preferred the staple food rice.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saurav Dixit
- Division of Research and Innovation, Uttaranchal University, Dehradun, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura City-140417, Punjab, India
| | - Palaniswamy Thangavel
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India.
| |
Collapse
|
3
|
Yang J, Jiang L, Guo Z, Sarkodie EK, Li K, Shi J, Peng Y, Liu H, Liu X. The Cd immobilization mechanisms in paddy soil through ureolysis-based microbial induced carbonate precipitation: Emphasis on the coexisting cations and metatranscriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133174. [PMID: 38086299 DOI: 10.1016/j.jhazmat.2023.133174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Microbial induced carbonate precipitation (MICP) can immobilize metals and reduce their bioavailability. However, little is known about the immobilization mechanism of Cd in the presence of soil cations and the triggered gene expression and metabolic pathways in paddy soil. Thus, microcosmic experiments were conducted to study the fractionation transformation of Cd and metatranscriptome analysis. Results showed that bioavailable Cd decreased from 0.62 to 0.29 mg/kg after 330 d due to the MICP immobilization. This was ascribed to the increase in carbonate bound, Fe-Mn oxides bound, and residual Cd. The underlying immobilization mechanisms could be attributed to the formation of insoluble Cd-containing precipitates, the complexation and lattice substitution with carbonate and Fe, Mn and Al (hydr)oxides, and the adsorption on functional group on extracellular polymers of cell. During the MICP immobilization process, up-regulated differential expression urease genes were significantly enriched in the paddy soil, corresponding to the arginine biosynthesis, purine metabolism and atrazine degradation. The metabolic pathway of bacterial chemotaxis, flagellum assembly, and peptidoglycan biosynthesis and the expression of cadA gene related to Cd excretion enhanced Cd resistance of soil microbiome. Therefore, this study provided new insights into the immobilization mechanisms of Cd in paddy soils through ureolysis-based MICP process.
Collapse
Affiliation(s)
- Jiejie Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China.
| | - Ziwen Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Kewei Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jiaxin Shi
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Yulong Peng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Yan Z, Wang Z, Si G, Chen G, Feng T, Liu C, Chen J. Bacteria-loaded biochar for the immobilization of cadmium in an alkaline-polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1941-1953. [PMID: 38044401 DOI: 10.1007/s11356-023-31299-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.
Collapse
Affiliation(s)
- Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guohui Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China.
| |
Collapse
|
5
|
Jing H, Yang W, Chen Y, Yang L, Zhou H, Yang Y, Zhao Z, Wu P, Zia-Ur-Rehman M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165369. [PMID: 37433335 DOI: 10.1016/j.scitotenv.2023.165369] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Cadmium (Cd) contamination in rice fields has been recognized as a severe global agro-environmental issue. To reach the goal of controlling Cd risk, we must pay more attention and obtain an in-depth understanding of the environmental behavior, uptake and translocation of Cd in soil-rice systems. However, to date, these aspects still lack sufficient exploration and summary. Here, we critically reviewed (i) the processes and transfer proteins of Cd uptake/transport in the soil-rice system, (ii) a series of soil and other environmental factors affecting the bioavailability of Cd in paddies, and (iii) the latest advances in regard to remediation strategies while producing rice. We propose that the correlation between the bioavailability of Cd and environmental factors must be further explored to develop low Cd accumulation and efficient remediation strategies in the future. Second, the mechanism of Cd uptake in rice mediated by elevated CO2 also needs to be given more attention. Meanwhile, more scientific planting methods (direct seeding and intercropping) and suitable rice with low Cd accumulation are important measures to ensure the safety of rice consumption. In addition, the relevant Cd efflux transporters in rice have yet to be revealed, which will promote molecular breeding techniques to address the current Cd-contaminated soil-rice system. The potential for efficient, durable, and low-cost soil remediation technologies and foliar amendments to limit Cd uptake by rice needs to be examined in the future. Conventional breeding procedures combined with molecular marker techniques for screening rice varieties with low Cd accumulation could be a more practical approach to select for desirable agronomic traits with low risk.
Collapse
Affiliation(s)
- Haonan Jing
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yang Yang
- College of Environment and Ecology, Hunan Agriculture University, Changsha 410128, China
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
6
|
Hou X, Nan H, Chen X, Ge F, Liu Y, Li F, Zhang D, Tian J. Slow release of attapulgite based nano-enabled glyphosate improves soil phosphatase activity, organic P-pool and proliferation of dominant bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122408. [PMID: 37597734 DOI: 10.1016/j.envpol.2023.122408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
Glyphosate (Glp) was encapsulated onto the dopamine-modified attapulgite to develop an attapulgite-based nano-enabled Glp (DGlp) in this study with comparable weed control effects to pure Glp and commercial Glp solutions. Within 24 hours, the active Glp molecule was slowly released from DGlp at a maximum remaining rate of over 90%, and then degraded similarly to Glp solution in soil. The addition of DGlp improved soil available phosphorus (P) contents, phosphatase activity, and enzyme extractable P fraction. However, compared to Glp solution, DGlp addition had no effect on the transformation of soil inorganic P fractions. The 16S rRNA sequencing and co-occurrence network results revealed that DGlp had no significant effect on the soil bacterial diversity but diminished the complexity of soil bacterial network. According to the Mantel test, DGlp addition stimulated soil phosphatase activity and proliferation of dominant bacterial taxa (Proteobacteria and Firmicutes) capable of degrading Glp. Proteobacteria and Firmicutes that had been extensively recruited and enriched for their phosphatase activities may have mobilized reactive enzyme-P, significantly enhancing the transformation of reactive organic P and P-pool in soil. These results contributed to our understanding of the ecotoxicity and environmental impacts of nano-enabled Glp prior to its successful and sustainable application in agriculture.
Collapse
Affiliation(s)
- Xuejuan Hou
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Hui Nan
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Xin Chen
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Yun Liu
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Jiang Tian
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, China.
| |
Collapse
|
7
|
Liu N, Niu G, Xu L, Wang J, Li C, Liu Y. Efficient cadmium immobilization by organic loaded Na-montmorillonite in a contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163457. [PMID: 37062320 DOI: 10.1016/j.scitotenv.2023.163457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023]
Abstract
Clay minerals are effective sorbents for toxic metal immobilization in contaminated soils and waters. However, their Cd immobilization efficiency is unclear when they are loaded with organics. In this study, sodium montmorillonite (Na-M) was successfully loaded with potassium humate, chitosan, and glycine to adsorb Cd(II) in solution. Potassium humate loaded Na-M (Na-M-HA), which had the highest specific surface area and cation exchange capacity (CEC), showed the highest Cd(II) adsorption capacity (73.7 mg g-1), 22.5 % and 81.8 % higher than that of chitosan loaded Na-M (Na-M-CTS) and glycine loaded Na-M (Na-M-G), respectively. The pseudo-second-order kinetic model best described (R2 > 0.98) the adsorption kinetics of Cd(II) on the three Na-Ms, indicating that the adsorption processes were of chemisorption nature. The adsorption isotherm of Cd(II) on Na-M-HA was of the Freundlich type, suggesting multilayer adsorption. In contrast, the isothermal adsorption of Cd(II) on Na-M-CTS (R2 = 0.99) and Na-M-G (R2 = 0.89) was better described by the Langmuir model, suggesting the dominance of monolayer adsorption in the adsorption process. High temperature, high pH, low background ionic strength, and low valence competing cations favored Cd(II) adsorption on Na-M-HA. The underlying mechanisms of Cd(II) sorption on Na-M-HA were electrostatic attraction, ion exchange and complexation. Na-M-HA was applied to a Cd polluted soil planted with lettuce (Lactuca sativa L.). in a pot experiment. Compared to the control with no adsorbent application, Na-M-HA application at 2 % effectively reduced the available Cd content in soil and Cd accumulation in plant by 36.0 % and 56.8 %, respectively. This work demonstrated that Na-M-HA is a green, low-cost and excellent adsorbent for Cd stabilization, and that its application in Cd-polluted soils can efficiently reduce Cd bioavailability and thereby Cd transfer along the food chain and eventually reduce the threat of Cd pollution to human health.
Collapse
Affiliation(s)
- Na Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Guoliang Niu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Liwen Xu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiaqi Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Chengliang Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanli Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
8
|
Zhang T, Li T, Zhou Z, Li Z, Zhang S, Wang G, Xu X, Pu Y, Jia Y, Liu X, Li Y. Cadmium-resistant phosphate-solubilizing bacteria immobilized on phosphoric acid-ball milling modified biochar enhances soil cadmium passivation and phosphorus bioavailability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162812. [PMID: 36924951 DOI: 10.1016/j.scitotenv.2023.162812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) can accumulate in agriculture soil from the regular application of phosphorus (P) fertilizer. Microbiological method is considered as a potentially effective strategy that can not only remediate the Cd-contaminated soil but also provide the phosphorus needed for crop growth. However, the toxicity of Cd may affect the activity of microorganisms. To solve this problem, Klebsiella variicola with excellent phosphate solubilization ability (155.30 mg L-1 at 48 h) and Cd adsorption rate (90.84 % with 10 mg L-1 Cd initial concentration) was firstly isolated and identified in this study. Then, a phosphoric acid and ball milling co-modified biochar (PBC) was selected as the carrier to promote the activities of K. variicola under Cd pollution. Surface characterization revealed that the promotion of K. variicola by PBC was mainly attributed to the large specific surface area and diverse functional groups. Compared to contaminated soil, microbial PBC (MPBC) significantly increased the pakchoi biomass and phosphorus (P) content, while the Cd content in leave and root of pakchoi (Brassica chinensis L.) decreased by 25.90-43.46 % (P < 0.05). The combined application also favored the transformation of the resistant P fractions to bioavailable P, and facilitated the immobilization of 20.12 % exchangeable Cd to reducible, oxidizable, and residual Cd in the treated soil. High-throughput sequencing revealed that the response of the soil microbial community to the MPBC was more beneficial than K. variicola or PBC alone. Therefore, the application of MPBC has the potential to act as an efficient, stable, and environmentally friendly sustainable product for Cd remediation and enhanced P bioavailability in agricultural production.
Collapse
Affiliation(s)
- Tingrui Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zijun Zhou
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Zengqiang Li
- College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shirong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Guiyin Wang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoxun Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaojing Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yun Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Wu J, Hua Y, Feng Y, Xie W. Nitrated hydrochar reduce the Cd accumulation in rice and shift the microbial community in Cd contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118135. [PMID: 37216875 DOI: 10.1016/j.jenvman.2023.118135] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
Rice grown on Cd-contaminated soil may accumulate Cd in grain, which is extremely harmful to human health. Several managements are developed to reduce the Cd load in rice, while in-situ immobilization by soil amendments has been attractive for its feasibility. Waste-derived hydrochar (HC) has been shown effective at immobilizing Cd in soil. However, potential plant negative effects and huge application amount are crucial to resolving in extensive application of HC. Nitric acid ageing may be an effective method to deal with these problems. In this paper, HC and nitrated hydrochar (NHC) were added to the Cd-contaminated soil at rates of 1% and 2% in a rice-soil column experiment. Results showed that NHC markedly promoted root biomass of rice by 58.70-72.78%, whereas HC had effects of 35.86-47.57%. Notably, NHC at 1% reduced the accumulation of Cd in rice grain, root and straw by 28.04%, 15.08% and 11.07%, respectively. A consistent decrease of 36.30% in soil EXC-Cd concentration was caused by NHC-1%. Following soil microbial community was shifted greatly under HC and NHC applications. The relative abundance of Acidobacteria was decreased by 62.57% in NHC-2% and by 56.89% in HC-1%. Nevertheless, Proteobacteria and Firmicutes were promoted by NHC addition. In contrast to HC, co-occurrence network of dominated bacteria was more complex and centralized generated by NHC. Key bacteria in that metabolic network of NHC such as Anaerolineae and Archangiaceae played key roles in Cd immobilization. These observations verified that NHC was more efficient to decrease Cd accumulation in rice and could alleviate the negative roles to plant by microbial changings in community composition and network. It could provide an enrichment of paddy soil microbial responds to the interaction of NHC with Cd and lay a foundation for the remediation of Cd-contaminated soil by NHC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Environmental Science & Engineering, School of Energy & Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Yun Hua
- Key Laboratory for Crop & Animal Integrated Farming of Ministry of Agriculture & Rural Affairs, Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - YanFang Feng
- Key Laboratory for Crop & Animal Integrated Farming of Ministry of Agriculture & Rural Affairs, Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - WenPing Xie
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
10
|
Li X, Mu L, Zhang C, Fu T, He T. Effect of amendments on bioavailability of cadmium in soil-rice system: a field experiment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37659-37668. [PMID: 36574132 DOI: 10.1007/s11356-022-24875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/15/2022] [Indexed: 06/18/2023]
Abstract
The field experiment study investigated the effect of lime (L), manure compost (M), combination of lime and manure (LM), and combinations of lime with four kinds of passivators (LP1, LP2, LP3, and LP4) on the bioavailability of cadmium (Cd) in soil and Cd accumulation in rice plants. These four passivating products were composed of organic and inorganic compounds such as silicon-sulfhydryl group, CaO, SiO2, and so on. The results indicated that the application of these amendments improved soil pH, organic matter content, and cation exchange capacity (CEC) by 0.19-0.73 unit, 0.6-8.2%, and 5.7-38.9%, respectively; meanwhile, decreased soil acid-extractable Cd by 4.0-13.9% compared with before remediation. Alleviating Cd stress to rice also resulted in a significant increase in rice grains yield, whereas the LP4 showed an increment of 15.8-27.6%. Among these amendments, LP4 had a relatively high effectiveness, it promoted the decrease of extractable Cd by 13.9% and the increase of residual Cd by 8.1%; meanwhile, the bioconcentration factor of rice grain in LP4 decreased by 71.3%. The high pH, CEC, and rich functional groups in amendments might cause soil Cd transform from mobile fraction to residual fraction, and the cation ions in amendments also competed with Cd ions due to the antagonism. Taken all of these effects, the amendments alleviated Cd pollution in soil-rice system, decreasing Cd migration from soil to grain. In future, the long-term field experiment will need to be done for verify the long-term effect of soil amendments.
Collapse
Affiliation(s)
- Xiangying Li
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Li Mu
- Hanshou Branch of Changde Municipal Ecology and Environment Bureau, Changde, 415900, China
| | - Chi Zhang
- Guizhou Meteorological Disaster Prevention Technology Center, Guiyang, 550081, China
| | - Tianling Fu
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China.
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
11
|
Zheng X, Zhang B, Lai W, Wang M, Tao X, Zou M, Zhou J, Lu G. Application of bovine bone meal and oyster shell meal to heavy metals polluted soil: Vegetable safety and bacterial community. CHEMOSPHERE 2023; 313:137501. [PMID: 36502914 DOI: 10.1016/j.chemosphere.2022.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The development of efficient, environmentally friendly soil amendments is necessary in order to minimize the risk of metal contaminants (Cd, Pb, Cu, and Zn) to the soil ecosystem. As soil amendments, bovine bone meal (BM) and oyster shell meal (OS) reduced the mobility and bioavailability of metals primarily by increasing soil pH. Soil geochemical properties (pH, EC, CEC, Ca, P, and K) after amendment supplementation were more likely to affect metal migration than enzyme activity. Furthermore, BM and OS were found to suppress the Cd and Pb uptake by water spinach, keeping them below international standards for safe utilization. The protein and sugar content and peroxidase (POD) activity showed a significant negative correlation with the amount of metal in water spinach, whereas superoxide dismutase (SOD), ascorbate peroxidase (APX) activities and malondialdehyde (MDA) content exhibited a positive correlation with metal content in water spinach. We also found that BM and OS had less perturbation to phylum-level and genus-level bacterial composition during the remediation of heavy metals contaminated soil. Based on the above, we assume that BM and OS are eco-friendly soil amendments, which could improve soil nutrients contents, stabilize heavy metals and regulate bacterial community structure. Our research contributes to resource utilization of waste and holds promise for widespread application in current agricultural systems.
Collapse
Affiliation(s)
- Xiongkai Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Bowen Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, 510060, China
| | - Weibin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mengting Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Ding C, Zeng G, Tao Y, Long X, Gong D, Zhou N, Zeng R, Liu X, Deng Y, Zhong ME. Environmental-friendly hydrochar-montmorillonite composite for efficient catalytic degradation of dicamba and alleviating its damage to crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158917. [PMID: 36155028 DOI: 10.1016/j.scitotenv.2022.158917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
In recent years, carbon-based materials catalyzing peroxymonosulfate (PMS) for green degradation of persistent organic pollutants have attracted increasing attention. However, PMS activation by hydrochar composite (e.g. hydrochar-montomorillonite) has rarely been investigated. Herein, a simple preparation, low-cost and eco-friendly catalyst of hydrochar-montmorillonite composite (HC-Mt) was prepared to firstly catalyze PMS for the degradation of dicamba (DIC). The as-prepared HC-Mt showed a remarkably better catalyzing performance for PMS than pure hydrochar (HC) due to its good physicochemical characteristics and abundant oxygen-containing groups. Furthermore, the electron spin resonance (ESR) and quenching tests revealed that active species such as SO4-, OH and O2- all participated in the degradation process. DIC sites on C6, Cl 10, and O15 exhibited higher reactivity according to the density functional theory (DFT) calculation, which were easily attacked by active species. The DIC degradation mainly occurred via hydroxyl substitution, decarboxylation, oxidation and ring-cleavage and finally most of the intermediates were mineralized into CO2 and H2O. Finally, the phytotoxicity assessment was measured by the germination growth situation of tobacco and mung beans in the presence of DIC (with or without treatment by HC-Mt/PMS). The result showed that HC-Mt/PMS could significantly reduce the phytotoxicity of DIC to crops, suggesting that catalyzing PMS using HC-Mt was environmentally friendly. Therefore, this work did not only provide a novel catalyzing PMS strategy using hydrochar composite for wastewater treatment, but also give a new idea for herbicide phytotoxicity management.
Collapse
Affiliation(s)
- Chunxia Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Guangyong Zeng
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Yaping Tao
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China
| | - Xiuyu Long
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Daoxin Gong
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, China
| | - Nan Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Rongying Zeng
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421001, China
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Yaocheng Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410082, China.
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
13
|
Shang C, Wang B, Guo W, Huang J, Zhang Q, Xie H, Gao H, Feng Y. The weathering process of polyethylene microplastics in the paddy soil system: Does the coexistence of pyrochar or hydrochar matter? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120421. [PMID: 36252884 DOI: 10.1016/j.envpol.2022.120421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/21/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study is based on a particular test site to simulate the weathering process of microplastics (MPs) in paddy soil. A substantial amount of plastic waste, especially MPs, inevitably accumulates in agricultural soil due to the high consumption and short average use of plastics. Recently, MP pollution has become a global environmental concern. However, insight into the soil weathering process of MPs in paddy soil, particularly in the presence of biochar, is lacking. In this study, the physicochemical properties of polyethylene (PE) MPs were determined through a 24-week weathering system conducted in paddy soil, paddy soil with pyrochar, or hydrochar. Moreover, the sorption of original and weathered PE MPs toward three typical pollutants (cadmium/Cd, bisphenol A/BPA, and dimethyl phthalate/DMP) was investigated. The surface of PE MPs was fractured, 1.1-fold rougher, yellow-colored (11.7 units), and 1.8-fold more oxidized after paddy soil weathering. In addition, the crystallinity, negative charge, and stronger hydrophilicity of weathered PE MPs increased compared to original PE MPs. Weathering in a pyrochar or hydrochar system caused fissures, extensive destruction of amorphous areas, and accelerated chemical or bio-oxidation processes for PE MPs, resulting in a more noticeable change in roughness (1.4-2.2-fold), yellow color (12.7-13.7), crystallinity (1.2-1.5-fold), and oxygen content (2.5-3.6-fold). Weathered PE MPs facilitated the sorption with Cd and BPA, attributed to larger specific surface area, abundant polar functional groups, and increased negatively charged sites. However, sorption of DMP to PE MPs was highly influenced by their hydrophobicity, resulting in decreased hydrophobic partition sorption on weathered PE MPs. Overall, paddy soil weathering affected the properties of PE MPs and enhanced sorption of Cd and BPA but reduced sorption of DMP. The coexistence of biochar exacerbated the paddy soil weathering effect. The insight gained from this study assists in better understanding the weathering process of PE MPs in agricultural soils.
Collapse
Affiliation(s)
- Cenyao Shang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wenzhen Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiuyue Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hailong Gao
- Jiangsu Provincial Ecological Assessment Center, Nanjing, 210036, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| |
Collapse
|