1
|
Sudo K, Uno K, Tamahara T, Asano N, Kusano K, Tanabe M, Ogasawara K, Kanno T, Koike T, Shimizu R, Masamune A. Costimulation with high-fat diet and acidic bile salts may promote Warburg effect in gastric carcinogenesis around the squamocolumnar junction in Gan mice. Am J Physiol Gastrointest Liver Physiol 2025; 328:G645-G662. [PMID: 40246521 DOI: 10.1152/ajpgi.00305.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/05/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025]
Abstract
Epidemiological studies demonstrated relationships between gastric cardia adenocarcinoma (GCA) and metabolic syndrome (MetS). We aimed to clarify the mechanism underlying their relationship. To investigate whether systemic inflammation against high-fat diet (HFD)-related dysbiosis promotes the Warburg effect in tumors at the squamocolumnar junction (SCJ), we applied K19-Wnt1/C2mE (Gan) mice, fed either HFD or control diet ± acidic bile salts (ABS) with/without clodronate liposomes (CLs), and in vitro studies using MKN7 cells with/without THP1-derived macrophages. Then, we assessed the involvement of oxidative stress (OS) in the Warburg effect by comparing nuclear factor-erythroid 2-related factor 2 (Nrf2) knockout Gan mice with Gan mice. Tumors with macrophage infiltration in the HFD + ABS group were larger than in the control group. Gene Set Enrichment Analysis revealed enhancement of the OS signaling in tumor of the HFD + ABS group. The HFD + ABS group mice demonstrated induction of OS, Nqo1, tumor necrosis factor alpha (TNFα), and the Warburg effect in tumors and mucosal barrier dysfunction of dysbiotic gut. All of them were abolished with diminishing macrophage infiltration by additional CL treatment. Stimulation with TNFα, but not ABS nor lipopolysaccharide, on MKN7 cells activated the Warburg effect. In MKN7 cells cocultured with the macrophages whose TNFα expression was induced by the lipopolysaccharide pretreatment, the Warburg effect was enhanced in TNFα concentration-dependent manners. In Nrf2 knockout Gan mice, tumors shrank with reducing OS, TNFα, and Warburg effect, along with decreasing macrophage infiltration. Accordingly, MetS may develop GCA through the Nrf2-related Warburg effect under the TNFα stimulation from the macrophages activated by both local ABS exposure and systemic lipopolysaccharide exposure from leaky gut with HFD-related dysbiosis.NEW & NOTEWORTHY In K19-Wnt1/C2mE (Gan) mice, a high-fat diet accompanied by orally taking acidic bile salts (ABS) promoted inflammation-associated carcinogenesis at the squamocolumnar junction (SCJ), maybe due to transudates from dysbiotic gut into systemic circulation. Systemic lipopolysaccharide exposure and local ABS exposure at the SCJ activate macrophages to induce the expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2) and TNFα, which might promote Warburg effect in cancer cells. These phenomena were abolished in the Nrf2-knockout Gan mice.
Collapse
Affiliation(s)
- Koichiro Sudo
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Tamahara
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keisuke Kusano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mizuki Tanabe
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kouya Ogasawara
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeshi Kanno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Sahoo SA, Kulkarni J, Sounderajan S, Checker R, Sandur SK, Srivastava AK. Linear-no-threshold concept for evaluating arsenic toxicity in rice grains. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137010. [PMID: 39808957 DOI: 10.1016/j.jhazmat.2024.137010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Arsenic (As) is a potent carcinogen that enters the human food chain mainly through rice, which is one of the staple food crops worldwide. During February 2022, a market survey was conducted and 500 samples of rice grains were collected across 41 different locations in Mumbai/Navi-Mumbai. On the basis of grain As-accumulation, samples were grouped into three categories including low- (0-30 ng g-1 DW), medium- (31-70 ng g-1 DW) or high- (>71 ng g-1 DW). The health risk assessment revealed that a significant proportion of samples under the mid-As category with As-level below WHO permissible limit of 100 ng g-1 DW, have hazard quotient > 1, indicating significant risk considering the dietary intake of 400 g rice/day. Further, a combination of parboiling and absorption-based traditional Indian cooking method was found effective in significantly reducing As-accumulation by ∼0.4-fold, in lieu of marginal dietary supplement of essential nutrients like iron and manganese. The extracts of Kolam rice significantly increased the levels of reactive-oxygen species (ROS) and reduced glutathione (GSH) in murine lymphocytes, compared those grown on As-free soil, indicating redox imbalance. Taken together, the findings supported that "linear-no-threshold" concept should be followed for evaluating toxicity of As-contaminated rice grains, to be safe or unsafe for human consumption.
Collapse
Affiliation(s)
- Sripati Abhiram Sahoo
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, CG 492012, India; Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jayant Kulkarni
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Suvarna Sounderajan
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rahul Checker
- Radiation Biology and Heath Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Santosh Kumar Sandur
- Radiation Biology and Heath Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
3
|
Li MK, Yu RJ, Chen KL, Zhao Y, Yang C, Wan YJ, Long YT, Ying YL. Long-Term Real-Time Tracking of Morphology and Migration of Neuronal Cells under Oxidative Stress. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:191-198. [PMID: 40151819 PMCID: PMC11938163 DOI: 10.1021/cbmi.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 03/29/2025]
Abstract
Neuronal cells exhibit diverse morphologies that are crucial for their function within the neuronal network. Long-term quantitative analysis of both neuronal cell morphology and migration is essential in neuroscience research but remains challenging. Sodium arsenite, a known inducer of oxidative stress in neurons, affects both cell morphology and migration. To rapidly assess oxidative stress in HT22 neuronal cells, we developed a method for tracking key morphological features and migration trajectories of the individual cells. Three time-dependent parameters-velocity, circularity increment, and turn angle-are identified as rapid, direct indicators of the early stages of oxidative stress in neuronal cells. This method is then applied to investigate the effects of arsenite exposure on neuronal cells. Our approach provides a valuable tool for the rapid, label-free, and long-term real-time tracking of oxidative stress in neuronal cells, offering potential insights into cellular responses under stress conditions.
Collapse
Affiliation(s)
- Ming-Kang Li
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Ru-Jia Yu
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Ke-Le Chen
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yan Zhao
- School
of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Cheng Yang
- School
of Electronic Sciences and Engineering, Nanjing University, Nanjing 210023, People’s
Republic of China
| | - Yong-Jing Wan
- School
of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yi-Tao Long
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yi-Lun Ying
- School
of Chemistry and Chemical Engineering, Molecular Sensing and Imaging
Center (MSIC), Nanjing University, Nanjing 210023, People’s Republic of China
- Chemistry
and Biomedicine Innovation Center, Nanjing
University, Nanjing 210023, People’s
Republic of China
| |
Collapse
|
4
|
Zeng Q, Lv C, Qi L, Wang Y, Hao S, Li G, Sun H, Du L, Li J, Wang C, Zhang Y, Wang X, Ma R, Wang T, Li Q. Sodium selenite inhibits cervical cancer progression via ROS-mediated suppression of glucose metabolic reprogramming. Life Sci 2024; 357:123109. [PMID: 39384146 DOI: 10.1016/j.lfs.2024.123109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
AIMS This study aims to explore the inhibitory effect of selenium on cervical cancer through suppression of glucose metabolic reprogramming and its underlying mechanisms. METHODS Sodium selenite (SS) treated HeLa and SiHa cells were assessed for proliferation using the CCK-8 assay and immunofluorescence. DNA synthesis was measured with the EdU assay. A nude mouse xenograft model evaluated SS's anti-cervical cancer effects. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured using flow cytometry, DCFH-DA, and JC-1 probes, respectively. Apoptosis was detected via Annexin V/PI staining and Western blot. Glucose uptake, lactate production, and ATP generation were determined using 2-NBDG probes and assay kits. The mRNA and protein levels of glycolysis-related genes HK2, GLUT1, and PDK1 were measured using RT-qPCR and Western blot. KEY FINDINGS SS inhibited HeLa and SiHa cells viability in a dose- and time-dependent manner. Intraperitoneal injection of SS in nude mice significantly inhibited HeLa cell xenograft growth without evident hepatotoxicity or nephrotoxicity. SS inhibited glucose metabolic reprogramming in cancer cells primarily via ROS-mediated AKT/mTOR/HIF-1α pathway inhibition. Pretreatment with N-acetylcysteine (NAC) or MHY1485 (an mTOR activator) partially reversed the inhibitory effects of SS on glucose metabolic reprogramming, cell proliferation, and migration, as well as its pro-apoptotic effects. SIGNIFICANCE SS exhibited anti-cervical cancer effects, likely through the induction of ROS generation and inhibition of glucose metabolic reprogramming in cervical cancer cells, thereby inhibiting cell proliferation and promoting apoptosis. These findings provide new insights into understanding the molecular mechanisms underlying SS for potential new drug development for cervical cancer.
Collapse
Affiliation(s)
- Qingyu Zeng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Cunqi Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Lei Qi
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; School of Public Health, Qiqihar Medical University, Qiqihar 161003, Heilongjiang, China
| | - Yuanyuan Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Shuxiu Hao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Guijin Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huixin Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Linlin Du
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jiacheng Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Cheng Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xinshu Wang
- Nanchang University Queen Mary School, Nanchang 330000, China
| | - Rong Ma
- Department of Gynecological Oncoology, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Tong Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Qi Li
- Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
5
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Yang L, Li Q, Wang S, Ji Y, Ma X, Qin M, Gao Y, Yang Y. Sirtuin 3-activated superoxide dismutase 2 mediates fluoride-induced osteoblastic differentiation in vitro and in vivo by down-regulating reactive oxygen species. Arch Toxicol 2024; 98:3351-3363. [PMID: 39012504 DOI: 10.1007/s00204-024-03819-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Skeletal fluorosis is a chronic metabolic bone disease caused by long-term excessive fluoride intake. Abnormal differentiation of osteoblasts plays an important role in disease progression. Research on the mechanism of fluoride-mediated bone differentiation is necessary for the prevention and treatment of skeletal fluorosis. In the present study, a rat model of fluorosis was established by exposing it to drinking water containing 50 mg/L F-. We found that fluoride promoted Runt-related transcription factor 2 (RUNX2) as well as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) expression in osteoblasts of rat bone tissue. In vitro, we also found that 4 mg/L sodium fluoride promoted osteogenesis-related indicators as well as SOD2 and SIRT3 expression in MG-63 and Saos-2 cells. In addition, we unexpectedly discovered that fluoride suppressed the levels of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS) in osteoblasts. When SOD2 or SIRT3 was inhibited in MG-63 cells, fluoride-decreased ROS and mtROS were alleviated, which in turn inhibited fluoride-promoted osteogenic differentiation. In conclusion, our results suggest that SIRT3/SOD2 mediates fluoride-promoted osteoblastic differentiation by down-regulating reactive oxygen species.
Collapse
Affiliation(s)
- Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Ming Qin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
7
|
Deng Y, Jiang M, Wang M, Ren K, Luo X, Luo Y, Chen Q, Lu CA, Huang CZ, Liu Q. Synergistic Mitochondrial Genotoxicity of Carbon Dots and Arsenate in Earthworms Eisenia fetida across Generations: The Critical Role of Binding. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39258979 DOI: 10.1021/acs.est.4c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The escalating utilization of carbon dots (CDs) in agriculture raises ecological concerns. However, their combined toxicity with arsenic remains poorly understood. Herein, we investigated the combined mitochondrial genotoxicity of CDs and arsenate at environmentally relevant concentrations across successive earthworm generations. Iron-doped CDs (CDs-Fe) strongly bound to arsenate and arsenite, while nitrogen-doped CDs (CDs-N) exhibited weaker binding. Both CDs enhanced arsenate bioaccumulation without affecting its biotransformation, with most arsenate being reduced to arsenite. CDs-Fe generated significantly more reactive oxygen species than did CDs-N, causing stronger mitochondrial DNA (mtDNA) damage. Arsenate further exacerbated the oxidative mtDNA damage induced by CDs-N, as evidenced by increased reactive oxygen species, elevated 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) levels, and a higher correlation between 8-OHdG and mtDNA damage. This was due to arsenic inhibiting the antioxidant enzyme catalase. This exacerbation was negligible with CDs-Fe because their strong binding with arsenic prevented catalase inhibition. Maternal mitochondrial DNA damage was inherited by filial earthworms, which experienced significant weight loss in coexposure groups coupled with mtDNA toxicity. This study reveals the synergistic genotoxicity of CDs and arsenate, suggesting that CDs could disrupt the arsenic biogeochemical cycle, increase arsenate risk to terrestrial animals, and influence ecosystem stability and health through multigenerational impacts.
Collapse
Affiliation(s)
- Yuhan Deng
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Min Jiang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Mao Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Kewei Ren
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xia Luo
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yan Luo
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Qing Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
- Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Prenatal arsenic metabolite exposure is associated with increased newborn mitochondrial DNA copy number: evidence from a birth cohort study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38142-38152. [PMID: 38789711 DOI: 10.1007/s11356-024-32933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 05/26/2024]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether maternal urinary arsenic metabolite levels in different trimesters were related to neonatal cord blood mtDNAcn. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters. We determined cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each one-unit increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the third trimester was related to 8.43% (95% CI 1.13%, 16.26%) and 12.15% (95% CI 4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the third trimester with mtDNAcn (DMA percent changes (%Δ) = 25.60 (95% CI 6.73, 47.82), for the highest vs the lowest tertile (P = 0.02); TAs %Δ = 40.31 (95% CI 19.25, 65.10), for the highest vs the lowest tertile (P = 0.0002)). These findings may prove the relationships between prenatal arsenic species levels and neonatal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, 430023, Hubei, People's Republic of China
| | - Xin Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhenxian Jia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yujie He
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yi Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Zhangpeng Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, 02912, USA
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
9
|
Li Y, Liu J, Yao D, Guo Z, Jiang X, Zhang C, Qu L, Liu Y, Hu Y, Gao L, Wang Y, Xu Y. Elevated aerobic glycolysis driven by p62-mTOR axis promotes arsenic-induced oncogenic phenotypes in human mammary epithelial cells. Arch Toxicol 2024; 98:1369-1381. [PMID: 38485781 DOI: 10.1007/s00204-024-03709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024]
Abstract
Chronic arsenic exposure is considered to increase the risk of breast cancer. p62 is a multifunctional adaptor protein that controls myriad cellular processes and is overexpressed in breast cancer tissues. Although previous studies have indicated the involvement of p62 accumulation in arsenic tumorigenesis, the underlying mechanism remains obscure. Here, we found that 0.1 µM or 0.5 µM arsenite exposure for 24 weeks induced oncogenic phenotypes in human mammary epithelial cells. Elevated aerobic glycolysis, cell proliferation capacity, and activation of p62-mTOR pathway, as indicated by increased protein levels of p62, phosphorylated-mTOR (p-mTOR) and hypoxia-inducible factor 1α (HIF1α), were observed in chronically arsenite-exposed cells, and of note in advance of the onset of oncogenic phenotypes. Moreover, p62 silencing inhibited acquisition of oncogenic phenotypes in arsenite-exposed cells. The protein levels of p-mTOR and HIF1α, as well as aerobic glycolysis and cell proliferation, were suppressed by p62 knockdown. In addition, re-activation of p‑mTOR reversed the inhibitory effects of p62 knockdown. Collectively, our data suggest that p62 exerts an oncogenic role via mTORC1 activation and acts as a key player in glucose metabolism during arsenite-induced malignant transformation, which provides a new mechanistic clue for the arsenite carcinogenesis.
Collapse
Affiliation(s)
- Yongfang Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Jiao Liu
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Zijun Guo
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Xuheng Jiang
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Chengwen Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Litong Qu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuyan Liu
- Department of Clinical Epidemiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Lanyue Gao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China.
- School of Public Health, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
10
|
Wang R, Min Q, Guo Y, Zhou Y, Zhang X, Wang D, Gao Y, Wei L. GL-V9 inhibits the activation of AR-AKT-HK2 signaling networks and induces prostate cancer cell apoptosis through mitochondria-mediated mechanism. iScience 2024; 27:109246. [PMID: 38439974 PMCID: PMC10909900 DOI: 10.1016/j.isci.2024.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
Prostate cancer (PCa) is a serious health concern for men due to its high incidence and mortality rate. The first therapy typically adopted is androgen deprivation therapy (ADT). However, patient response to ADT varies, and 20-30% of PCa cases develop into castration-resistant prostate cancer (CRPC). This article investigates the anti-PCa effect of a drug candidate named GL-V9 and highlights the significant mechanism involving the AKT-hexokinase II (HKII) pathway. In both androgen receptor (AR)-expressing 22RV1 cells and AR-negative PC3 cells, GL-V9 suppressed phosphorylated AKT and mitochondrial location of HKII. This led to glycolytic inhibition and mitochondrial pathway-mediated apoptosis. Additionally, GL-V9 inhibited AR activity in 22RV1 cells and disrupted the feedback activation of AKT signaling in condition of AR inhibition. This disruption greatly increased the anti-PCa efficacy of the AR antagonist bicalutamide. In conclusion, we present a novel anti-PCa candidate and combination drug strategies to combat CRPC by intervening in the AR-AKT-HKII signaling network.
Collapse
Affiliation(s)
- Rui Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Qi Min
- Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, the People's Republic of China
- Department of Oncology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huaian, the People's Republic of China
| | - Yongjian Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Yuxin Zhou
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Xin Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Dechao Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Yuan Gao
- Pharmaceutical Animal Experiment Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| | - Libin Wei
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, the People's Republic of China
| |
Collapse
|
11
|
Shan B, Zhou H, Guo C, Liu X, Wu M, Zhai R, Chen J. Tanshinone IIA ameliorates energy metabolism dysfunction of pulmonary fibrosis using 13C metabolic flux analysis. J Pharm Anal 2024; 14:244-258. [PMID: 38464785 PMCID: PMC10921327 DOI: 10.1016/j.jpha.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 03/12/2024] Open
Abstract
Evidence indicates that metabolic reprogramming characterized by the changes in cellular metabolic patterns contributes to the pathogenesis of pulmonary fibrosis (PF). It is considered as a promising therapeutic target anti-PF. The well-documented against PF properties of Tanshinone IIA (Tan IIA) have been primarily attributed to its antioxidant and anti-inflammatory potency. Emerging evidence suggests that Tan IIA may target energy metabolism pathways, including glycolysis and tricarboxylic acid (TCA) cycle. However, the detailed and advanced mechanisms underlying the anti-PF activities remain obscure. In this study, we applied [U-13C]-glucose metabolic flux analysis (MFA) to examine metabolism flux disruption and modulation nodes of Tan IIA in PF. We identified that Tan IIA inhibited the glycolysis and TCA flux, thereby suppressing the production of transforming growth factor-β1 (TGF-β1)-dependent extracellular matrix and the differentiation and proliferation of myofibroblasts in vitro. We further revealed that Tan IIA inhibited the expression of key metabolic enzyme hexokinase 2 (HK2) by inhibiting phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/hypoxia-inducible factor 1α (HIF-1α) pathway activities, which decreased the accumulation of abnormal metabolites. Notably, we demonstrated that Tan IIA inhibited ATP citrate lyase (ACLY) activity, which reduced the collagen synthesis pathway caused by cytosol citrate consumption. Further, these results were validated in a mouse model of bleomycin-induced PF. This study was novel in exploring the mechanism of the occurrence and development of Tan IIA in treating PF using 13C-MFA technology. It provided a novel understanding of the mechanism of Tan IIA against PF from the perspective of metabolic reprogramming.
Collapse
Affiliation(s)
- Baixi Shan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Haoyan Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Congying Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaolu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Mingyu Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Rao Zhai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
12
|
Li Y, Liang K, Yuan L, Gao J, Wei L, Zhao L. The role of thioredoxin and glutathione systems in arsenic-induced liver injury in rats under glutathione depletion. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:547-563. [PMID: 36528894 DOI: 10.1080/09603123.2022.2159016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Antioxidant systems like thioredoxin (Trx) and glutaredoxin (Grx) maintain oxidative stress balance. These systems have cross-talk supported by some in vitro studies. We investigated the underlying mechanisms of arsenic-induced liver injury in glutathione-deficient rats and whether there was any cross-talk between the Trx and Grx systems. The rats in arsenic-treated groups were administered with sodium arsenite (10, 20 mg/kg b w/d) for four weeks. In buthionine sulfoximine (BSO, an inhibitor of GSH) and 20 mg/kg arsenic combined groups, rats were injected with 2 mmol/kg BSO intraperitoneally twice per week. BSO exacerbated arsenic-induced liver injury by increasing arsenic accumulation in urine, serum, and liver while decreasing glutathione activity and resulting in upregulated mRNA expression of the Trx system and downregulation of Grx mRNA expression. The impact of Trx lasted longer than that of the Grx. The Trx system remained highly expressed, while GSH, Grx1, and Grx2 levels were decreased. The inhibitory effect of only BSO treatment on Grx1 and Grx2 was not pronounced. However, the combined impact of arsenic and BSO upregulated Trx expression, primarily related to further reduction of GSH. As a result, the suppressed Grxs were protected by the upregulated Trxs, which serve as a backup antioxidant defense system in the liver.
Collapse
Affiliation(s)
- Yuanyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Kun Liang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Science and Education, Bayan Nur Hospital, Bayan Nur, China
| | - Lin Yuan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Jing Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
- Department of Public Health, Dalian Health Development Center, Dalian, China
| | - Linquan Wei
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| | - Lijun Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & National Health and Family Planning Commission (23618504), Harbin, China
| |
Collapse
|
13
|
Li L, Xi HM, Lu H, Cai X. Combination of Ethacrynic Acid and ATRA Triggers Differentiation and/or Apoptosis of Acute Myeloid Leukemia Cells through ROS. Anticancer Agents Med Chem 2024; 24:412-422. [PMID: 38204257 DOI: 10.2174/0118715206273000231211092743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND AND OBJECTIVE All-trans retinoic acid (ATRA), an effective differentiation inducer, has been applied clinically to treat acute promyelocytic leukemia (APL). Unfortunately, it is not as potent in other kinds of acute myeloid leukemia (AML). Ethacrynic acid (EA), a classical powerful diuretic, can increase reactive oxygen species (ROS) contents, which can assist ATRA in inducing differentiation in AML cells. Here, we investigated the effect of EA combined with ATRA (EA+RA) on some AML cells except APL. METHODS Apoptosis and differentiation were determined by morphology, cell viability, Annexin-V assay and CD11c expression. Western blot analysis and the detection of ROS and mitochondrial transmembrane potentials (MMP) were used to investigate the mechanisms. RESULTS AML cells exhibited differentiation and/or apoptosis after EA+RA treatment. EA+RA increased the intracellular ROS contents. EA+RA-induced apoptosis was accompanied by MMP attenuation and caspase-3/7 activation. EA+RA-induced differentiation was along with MEK/ERK and Akt activation and increased expression of PU.1, CCAAT/enhancer-binding protein β (C/EBPβ) and C/EBPε. N-acetyl-L-cysteine (NAC), an antioxidant, thoroughly reduced EA+RA-increased ROS, and also inhibited MMP attenuation, the activation of caspase- 3/7, MEK/ERK and Akt pathways, the elevation of PU.1 and C/EBPs, and apoptosis and differentiation. However, MEK or PI3K specific inhibitors only suppressed EA+RA-triggered differentiation and the elevation of PU.1 and C/EBPs, but not ROS levels. CONCLUSION EA+RA induced cell apoptosis through ROS dependent MMP attenuation and caspase 3/7 activation while inducing differentiation by ROS-MEK/ERK-PU.1/C/EBPs and ROS-Akt-PU.1/C/EBPs pathways. In summary, it may provide innovative ATRA-based combination therapy strategies for AML patients via ROS.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| | - Hui-Min Xi
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| | - Hao Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| | - Xun Cai
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, No. 197 Ruijin Road II, Shanghai, 200025, China
| |
Collapse
|
14
|
Shi XY, Zheng XM, Liu HJ, Han X, Zhang L, Hu B, Li S. Rotundic acid improves nonalcoholic steatohepatitis in mice by regulating glycolysis and the TLR4/AP1 signaling pathway. Lipids Health Dis 2023; 22:214. [PMID: 38049817 PMCID: PMC10694891 DOI: 10.1186/s12944-023-01976-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Steatosis and inflammation are the hallmarks of nonalcoholic steatohepatitis (NASH). Rotundic acid (RA) is among the key triterpenes of Ilicis Rotundae Cortex and has exhibited multipronged effects in terms of lowering the lipid content and alleviating inflammation. The study objective is to systematically evaluate the potential mechanisms through which RA affects the development and progression of NASH. METHODS Transcriptomic and proteomic analyses of primary hepatocytes isolated from the control, high-fat diet-induced NASH, and RA treatment groups were performed through Gene Ontology analysis and pathway enrichment. Hub genes were identified through network analysis. Integrative analysis revealed key RA-regulated pathways, which were verified by gene and protein expression studies and cell assays. RESULTS Hub genes were identified and enriched in the Toll-like receptor 4 (TLR4)/activator protein-1 (AP1) signaling pathway and glycolysis pathway. RA reversed glycolysis and attenuated the TLR4/AP1 pathway, thereby reducing lipid accumulation and inflammation. Additionally, lactate release in L-02 cells increased with NaAsO2-treated and significantly decreased with RA treatment, thus revealing that RA had a major impact on glycolysis. CONCLUSIONS RA is effective in lowering the lipid content and reducing inflammation in mice with NASH by ameliorating glycolysis and TLR4/AP1 pathways, which contributes to the existing knowledge and potentially sheds light on the development of therapeutic interventions for patients with NASH.
Collapse
Affiliation(s)
- Xing-Yang Shi
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xiao-Min Zheng
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Hui-Jie Liu
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Xue Han
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Lei Zhang
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- NMPA Key Laboratory for Quality Control of Blood Products, Guangdong Institute for Drug Control, Guangzhou, 510663, PR China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510030, PR China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, PR China.
| | - Shan Li
- MOE International Joint Laboratory for Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, P. R. China.
| |
Collapse
|
15
|
Chu F, Lu C, Jiao Z, Yang W, Yang X, Ma H, Yu H, Wang S, Li Y, Sun D, Sun H. Unveiling the LncRNA-miRNA-mRNA Regulatory Network in Arsenic-Induced Nerve Injury in Rats through High-Throughput Sequencing. TOXICS 2023; 11:953. [PMID: 38133354 PMCID: PMC10747658 DOI: 10.3390/toxics11120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
Arsenic is a natural toxin which is widely distributed in the environment, incurring diverse toxicities and health problems. Previous studies have shown that long non-coding RNAs (LncRNAs) are also reported to contribute to As-induced adverse effects. LncRNAs are involved in the development of nerve injury, generally acting as sponges for microRNAs (miRNAs). This study aimed to investigate the competitive endogenous RNA (ceRNA) regulatory networks associated with arsenic-induced nerve damage. A total of 40 male Wistar rats were exposed to different doses of arsenic for 12 weeks, and samples were collected for pathological observation and high-throughput sequencing. The ceRNA network was constructed using Cytoscape, and key genes were identified through the PPI network and CytoHubba methods. A real-time quantitative PCR assay was performed to validate gene expression levels. The results showed that subchronic exposure to arsenic in drinking water resulted in pathological and ultrastructural damage to the hippocampal tissue, including changes in neuron morphology, mitochondria, and synapses. Exposure to arsenic results in the dysregulation of LncRNA and mRNA expression in the hippocampal tissues of rats. These molecules participated in multiple ceRNA axes and formed a network of ceRNAs associated with nerve injury. This study also verified key molecules within the ceRNA network and provided preliminary evidence implicating the ENRNOT-00000022622-miR-206-3p-Bdnf axis in the mechanism of neural damage induced by arsenic in rats. These findings provide novel insights into the underlying mechanism of nervous system damage induced by arsenic exposure.
Collapse
Affiliation(s)
- Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Zhe Jiao
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
- Institute for Kashin-Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Yang Li
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China; (F.C.); (C.L.); (W.Y.); (X.Y.); (H.M.); (H.Y.); (S.W.); (Y.L.)
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China;
| |
Collapse
|
16
|
Wang Q, Ma L, Sun B, Zhang A. Reduced Peripheral Blood Mitochondrial DNA Copy Number as Identification Biomarker of Suspected Arsenic-Induced Liver Damage. Biol Trace Elem Res 2023; 201:5083-5097. [PMID: 36720785 DOI: 10.1007/s12011-023-03584-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
Arsenic (As) can cause liver damage and liver cancer and is capable of seriously affecting human health. Therefore, it is important to identify biomarkers of arsenic-induced liver damage. Mitochondria are key targets of hepatotoxicity caused by arsenic. The mitochondrial DNA copy number (mtDNAcn) is the number of mitochondrial DNA (mtDNA) copies in the genome. mtDNA is vulnerable to exogenous chemical attacks, thus causing mtDNAcn to change after exposure to environmental pollutants. Therefore, mtDNAcn can serve as a potential marker to identify and assess the risk of diseases caused by exposure to environmental pollutants. In this study, we selected 272 arsenicosis patients (155 cases without liver damage and 117 cases with liver damage) and 218 participants not exposed to arsenic (155 cases without liver damage and 63 cases with liver damage) as subjects to investigate the correlation between peripheral blood mtDNAcn and arsenic-induced liver damage, as well as the ability of peripheral blood mtDNAcn to identify and assess the risk of arsenic-induced liver damage. Peripheral blood mtDNAcn in patients with arsenic-induced liver damage is significantly decreased and negatively correlated with serum ALT, AST, and GGT levels. The decrease of peripheral blood mtDNAcn was associated with an increased risk of arsenic-induced liver damage. The receiver operating characteristic (ROC) curve analysis indicated that peripheral blood mtDNAcn could specifically identify patients with liver damage in the arsenicosis group. The decision tree C5.0 model was established to identify arsenicosis in all patients with liver damage. Peripheral blood mtDNAcn was included in the model and played the most important role in the identification of arsenic-induced liver damage. This study provided a basis for the identification and evaluation of arsenic-induced liver damage by peripheral blood mtDNAcn, indicating that peripheral blood mtDNAcn is expected to be a potential biomarker of arsenic-induced liver damage, and provides clues for exploring the mechanism of arsenic-induced liver damage from mitochondria damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Lu Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
17
|
Qiu F, Zhang H, Wang X, Jia Z, He Y, Wu Y, Li Z, Zheng T, Xia W, Xu S, Li Y. Altered cord blood mitochondrial DNA content and prenatal exposure to arsenic metabolites in low-arsenic areas. RESEARCH SQUARE 2023:rs.3.rs-3414865. [PMID: 37961501 PMCID: PMC10635372 DOI: 10.21203/rs.3.rs-3414865/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
While mitochondria are susceptible to environmental detriments, little is known about potential associations between arsenic metabolites and mitochondria DNA copy number (mtDNAcn). We attempted to examine whether arsenic metabolism in different trimesters was related to cord blood mtDNAcn alteration. We included 819 mother-newborn pairs embedded in an in-progress birth cohort survey performed from April 2014 to October 2016 in Wuhan, China. We determined maternal urinary arsenic species concentrations in different trimesters using HPLC-ICPMS. We decided on cord blood mtDNAcn using quantitative real-time polymerase chain reaction. In covariate-adjusted models, each two-fold increment of dimethylated arsenic (DMA) and total arsenic (TAs) in the 3rd trimester were related to 8.43% (95% CI: 1.13%, 16.26%) and 12.15% (95% CI:4.35%, 20.53%) increases in mtDNAcn, respectively. The dose-response trend with statistical significance was observed across tertiles of DMA and TAs in the 3rd trimester with mtDNAcn. These findings may prove the relationships between arsenic species and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feng Qiu
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Xin Wang
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhenxian Jia
- Huazhong University of Science and Technology Tongji Medical College
| | - Yujie He
- Huazhong University of Science and Technology Tongji Medical College
| | - Yi Wu
- Huazhong University of Science and Technology Tongji Medical College
| | - Zhangpeng Li
- Huazhong University of Science and Technology Tongji Medical College
| | | | - Wei Xia
- Huazhong University of Science and Technology Tongji Medical College
| | - Shunqing Xu
- Huazhong University of Science and Technology Tongji Medical College
| | - Yuanyuan Li
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College
| |
Collapse
|
18
|
Wang Y, Cheng W, Wang X, He T, Liu J, Chen S, Zhang J. Integrated metabolomics and network pharmacology revealing the mechanism of arsenic-induced hepatotoxicity in mice. Food Chem Toxicol 2023:113913. [PMID: 37348806 DOI: 10.1016/j.fct.2023.113913] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Endemic arsenic (As) poisoning is a severe biogeochemical disease that endangers human health. Epidemiological investigations and animal experiments have confirmed the damaging effects of As on the liver, but there is an urgent need to investigate the underlying mechanisms. This study adopted a metabolomic approach using UHPLC-QE/MS to identify the different metabolites and metabolic mechanisms associated with As-induced hepatotoxicity in mice. A network pharmacology approach was applied to predict the potential target of As-induced hepatotoxicity. The predicted targets of differential metabolites were subjected to a deep matching for elucidating the integration mechanisms. The results demonstrate that the levels of ALT and AST in plasma significantly increased in mice after As exposure. In addition, the liver tissue showed disorganized liver lobules, lax cytoplasm and inflammatory cell infiltration. Metabolomic analysis revealed that As exposure caused disturbance to 40 and 75 potential differential metabolites in plasma and liver, respectively. Further investigation led to discovering five vital metabolic pathways, including phenylalanine, tyrosine, and tryptophan biosynthesis and nicotinate and nicotinamide metabolism pathways. These pathways may responded to As-induced hepatotoxicity primarily through lipid metabolism, apoptosis, and deoxyribonucleic acid damage. The network pharmacology suggested that As could induce hepatotoxicity in mice by acting on targets including Hsp90aa1, Akt2, Egfr, and Tnf, which regulate PI3K Akt, HIF-1, MAPK, and TNF signaling pathways. Finally, the integrated metabolomics and network pharmacology revealed eight key targets associated with As-induced hepatoxicity, namely DNMT1, MAOB, PARP1, MAOA, EPHX2, ANPEP, XDH, and ADA. The results also suggest that nicotinic acid and nicotinamide metabolisms may be involved in As-induced hepatotoxicity. This research identified the metabolites, targets, and mechanisms of As-induced hepatotoxicity, offering meaningful insights and establishing the groundwork for developing antidotes for widespread As poisoning.
Collapse
Affiliation(s)
- Yazhi Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaoning Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000, China
| | - Shuangshuang Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
19
|
Zhang M, Zhang Z, Lou Q, Zhang X, Yin F, Yin Y, Xu H, Zhang Y, Fan C, Gao Y, Yang Y. SIRT1/P53 pathway is involved in the Arsenic induced aerobic glycolysis in hepatocytes L-02 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27570-5. [PMID: 37195614 DOI: 10.1007/s11356-023-27570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023]
Abstract
Arsenic is a known human carcinogen. Low doses of arsenic can induce cell proliferation, but the mechanism remains elusive. Aerobic glycolysis, also known as the Warburg effect, is one of the characteristics of tumour cells and rapidly proliferating cells. P53 is a tumour suppressor gene that has been shown to be a negative regulator of aerobic glycolysis. SIRT1 is a deacetylase that inhibits the function of P53. In this study, we found that P53 was involved in low dose of arsenic-induced aerobic glycolysis through regulating HK2 expression in L-02 cells. Moreover, SIRT1 not only inhibited P53 expression but also decreased the acetylation level of P53-K382 in arsenic-treated L-02 cells. Meanwhile, SIRT1 influenced the expression of HK2 and LDHA, which then promoted arsenic-induced glycolysis in L-02 cells. Therefore, our study demonstrated that the SIRT1/P53 pathway is involved in arsenic-induced glycolysis, thereby promoting cell proliferation, which provides theoretical basis for enriching the mechanism of arsenic carcinogenesis.
Collapse
Affiliation(s)
- Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yunyi Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Haili Xu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Ying Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Chenlu Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China.
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
20
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|