1
|
Zhao M, Ding Y, Qin Y, Xiao Z, Xi B, Ren X, Zhao J, Wang Q. Effects of selenate on greenhouse gas release and microbial community variations during swine manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123523. [PMID: 39632302 DOI: 10.1016/j.jenvman.2024.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Co-composting of livestock manure and selenate is an effective means to produce selenium-rich organic fertilizer. However the effect of selenate on greenhouse gas emission during composting is still unknown. To probe the influences of selenate on greenhouse gas and microbial community changes during swine manure composting. Various dose of selenate were added to the fresh swine manure and wheat straw for 80 days aerobic composting, sequentially labeled as T1 (control) to T6 (0, 1, 2, 3, 4 and 5 mg kg-1). Results indicated that selenate generally increased the nitrous oxide (N2O) and ammonia (NH3) emissions while presented varying impacts on methane (CH4) emissions. Compared with the control, adding 2 and 5 mg kg-1 selenate reduced the CH4 emission by 39.60% and 13.75%, respectively, while other concentrations presented opposite results. Meanwhile, adding 2 mg kg-1 selenate could reduce the global warming potential and improve the compost maturity. According to the microbial results, adding 2 mg kg-1 selenate enhanced the richness and variety of the microbes and might influence Proteobacteria, Chloroflexi, Actinobacteria and Methylococcaceae_unclassified to decrease the global warming potential.
Collapse
Affiliation(s)
- Mengxiang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yilang Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Ziling Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Bin Xi
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100000, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Jiarui Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
2
|
Fang C, Su Y, Zhan M, Zhuo Q, Yang S, Huang G. Investigating the inhibitory mechanism of methanogenesis during composting under the combined influence of amoxicillin and copper pollution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123013. [PMID: 39442394 DOI: 10.1016/j.jenvman.2024.123013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/11/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
This study investigated the effects of different levels of combined amoxicillin and copper (Cu) pollution on the methanogenesis of microbial communities during aerobic composting of dairy manure. Three groups were established: the control group (CK), a low-level combined pollution group (L), and a high-level combined pollution group (H). As the level of pollution increased, carbohydrate metabolism decreased during the thermophilic phase of composting, while signal translation increased. Compared with the initial phase, functional genes related to the acetoclastic pathway decreased significantly in abundance during the thermophilic phase, and cdh had the lowest relative abundance among acetoclastic pathway with a decrease of 81.52%, 81.88%, and 84.73% in groups CK, L, and H, respectively. The cumulative methane emissions in group H decreased by 31.56% and 9.23%, respectively, compared with those from groups CK and L. These results contribute to understanding the effects of combined amoxicillin and Cu pollution on methane emissions during composting.
Collapse
Affiliation(s)
- Chen Fang
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Muqing Zhan
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Qianting Zhuo
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Sanwei Yang
- College of Agriculture, Guizhou University, Guizhou Province, Guiyang, 550025, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Wu X, Zhao X, Wu W, Hou J, Zhang W, Tang DKH, Zhang X, Yang G, Zhang Z, Yao Y, Li R. Biotic and abiotic effects of manganese salt and apple branch biochar co-application on humification in the co-composting of hog manure and sawdust. CHEMICAL ENGINEERING JOURNAL 2024; 482:149077. [DOI: 10.1016/j.cej.2024.149077] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Zhou Y, Zhao H, Lu Z, Ren X, Zhang Z, Wang Q. Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 387:129556. [PMID: 37517712 DOI: 10.1016/j.biortech.2023.129556] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
This study aimed to investigate the effects of biochar derived from different sources (wheat straw, sawdust and pig manure) on greenhouse gas and microplastics (MPs) mitigation during sewage sludge composting. Compared to the control, all biochar significantly reduced the N2O by 28.91-41.23%, while having no apparent effect on CH4. Sawdust biochar and pig manure biochar significantly reduced the NH3 by 12.53-23.53%. Adding biochar decreased the global warming potential during composting, especially pig manure biochar (177.48 g/kg CO2-eq.). The concentration of MPs significantly increased in the control (43736.86 particles/kg) compared to the initial mixtures, while the addition of biochar promoted the oxidation and degradation of MPs (15896.06-23225.11 particles/kg), with sawdust biochar and manure biochar were more effective. Additionally, biochar significantly reduced the abundance of small-sized (10-100 μm) MPs compared to the control. Moreover, biochar might regulate specific microbes (e.g., Thermobifida, Bacillus and Ureibacillus) to mitigate greenhouse gas emissions and MPs degradation.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Haoran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zonghui Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
5
|
Wang Z, Ding Y, Li Y, Zhao M, Ren X, Zhang Z, Wang Q. Deciphering the influence pathway of selenium on antibiotic resistance genes during goat manure composting. CHEMICAL ENGINEERING JOURNAL 2023; 475:146141. [DOI: 10.1016/j.cej.2023.146141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
6
|
Ren X, Jiao M, Zhang Z, Syed A, Bahkali AH. The efficient solution to decline the greenhouses emission and enrich the bacterial community during pig manure composting: Regulating the particle size of cornstalk. BIORESOURCE TECHNOLOGY 2023; 387:129596. [PMID: 37541547 DOI: 10.1016/j.biortech.2023.129596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
In present study, four lengths of chopped cornstalks were amended with pig manure respectively for 100 days aerobic fermentation, which aimed to evaluate the impact of different length of agricultural solid wastes on gaseous emission and dominating bacterial community succession and connection. The result revealed that the maximum ammonia volatilization was observed in 5 cm of straw samples attributed to the prominent mineralization, which was opposite to the emission of CH4 and N2O. As for global warming potential, the minimum value was detected in 5 cm of straw samples, which decreased by 5.03-24.75% compared with other samples. Additionally, the strongest correlation and complexity of bacterial community could be detected in 5 cm of straw treatment, representing the most vigorous bacterial metabolic ability could be recorded by optimizing the microbial habitat. Therefore, in order to decline the greenhouse effect in livestock manure composting, the 5 cm of corn straw was recommended.
Collapse
Affiliation(s)
- Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Li M, Li S, Meng Q, Chen S, Wang J, Guo X, Ding F, Shi L. Feedstock optimization with rice husk chicken manure and mature compost during chicken manure composting: Quality and gaseous emissions. BIORESOURCE TECHNOLOGY 2023; 387:129694. [PMID: 37598802 DOI: 10.1016/j.biortech.2023.129694] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
This study investigated the impact of mature compost input on compost quality, greenhouse gases (GHGs, i.e. methane and nitrous oxide) and ammonia emissions during chicken manure and rice husk chicken manure co-composting. The experiment used different volumes of mature compost: 10% (T1), 20% (T2), and 30% (T3) to replace rice husk chicken manure. Results showed that mature compost enhanced compost maturity by promoting the activities of Bacillus, Caldicoprobacter, Thermobifida, Pseudogracilibacillus, Brachybacterium, and Sinibacillus. Compared to CK, T1, T2, and T3 reduced NH3 emission by 32.07%, 33.64%, and 56.12%, and mitigated 14.97%, 16.57%, and 26.18% of total nitrogen loss, respectively. Additionally, T2 and T3 reduced CH4 emission by 40.98% and 62.24%, respectively. The N2O emissions were positive correlation with Lactobacillus, Pseudogracilibacillus and ammonium nitrogen (p < 0.05), while T2 reducing total greenhouse effects. Therefore, replacing rice husk chicken manure with 20% mature compost is an efficient and promising approach for composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China; SDAU Fertilizer Science & Technology Co. Ltd, Tai'an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co. Ltd, Tai'an 271608, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co. Ltd, Tai'an 271608, China
| | - Jianxin Wang
- Daiyue District Agricultural and Rural Bureau, Tai'an 271000, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co. Ltd, Tai'an 271608, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co. Ltd, Tai'an 271608, China.
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
8
|
Jiao M, Ren X, Zhan X, Hu C, Wang J, Syed A, Bahkali AH, Zhang Z. Exploring gaseous emissions and pivotal enzymatic activity during co-composting of branch and pig manure: The effect of particle size of bulking agents. BIORESOURCE TECHNOLOGY 2023; 382:129199. [PMID: 37201868 DOI: 10.1016/j.biortech.2023.129199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/20/2023]
Abstract
The purpose of current study was to probe the effect of various length of branch on gaseous emissions and vital enzymatic activity. Four lengths (< 2 cm, 2 cm, 5 cm, and > 5 cm) of clipped branch were mingled with collected pig manure for 100 days aerobic fermentation. The consequence demonstrated that the amendment of 2 cm of branch showed conducive to decline the greenhouse gas emissions, which the CH4 emissions decreased by 1.62-40.10%, and the N2O emissions decreased by 21.91-34.04% contrasted with other treatments. Furthermore, the peak degree of enzymatic activities was also observed in 2 cm of branch treatment by the optimizing living condition for microbes. In view of microbiological indicators, the most abundant and complex bacterial community could be monitor in 2 cm of branch composting pile, which verified the microbial facilitation. Summing up, the strategy of 2 cm branch amendment would be recommended.
Collapse
Affiliation(s)
- Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
9
|
Bao M, Cui H, Lv Y, Wang L, Ou Y, Hussain N. Greenhouse gas emission during swine manure aerobic composting: Insight from the dissolved organic matter associated microbial community succession. BIORESOURCE TECHNOLOGY 2023; 373:128729. [PMID: 36774985 DOI: 10.1016/j.biortech.2023.128729] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Greenhouse gas emissions during aerobic composting is unavoidable, but good practices can minimize emission. Therefore, to explore the key factors influencing the release of greenhouse gas emissions during composting, the inaction of organic matter conversion, greenhouse gas emissions and bacterial community structure during co-composting with different ratio (pig manure and corn straw) over a 6-week period was studied. The excitation-emission matrix fluorescence spectroscopy with the parallel factor was used to identify that dissolved organic matter associated microbial community succession mainly influenced greenhouse gas emissions. Protein-like fractions of dissolved organic matter were more likely to decompose and promote CH4 and CO2 emissions, while the humic-like fractions of dissolved organic matter positively affected N2O emissions. The largest of greenhouse gas emissions was appeared in MR2 with 12.7 kg CO2-eq, and the MR3 and MR4 reduced greenhouse gas emissions by 26.8 % and 11.4 %, respectively.
Collapse
Affiliation(s)
- Meiwen Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yan Lv
- Soil and Fertilizer Station of Jilin Province, Changchun 130033, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Naseer Hussain
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600048, India
| |
Collapse
|
10
|
Li M, Li S, Chen S, Meng Q, Wang Y, Yang W, Shi L, Ding F, Zhu J, Ma R, Guo X. Measures for Controlling Gaseous Emissions during Composting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3587. [PMID: 36834281 PMCID: PMC9964147 DOI: 10.3390/ijerph20043587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Yu Wang
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Wujie Yang
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Jun Zhu
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Ronghui Ma
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| |
Collapse
|
11
|
Shan G, Li W, Liu J, Zhu L, Hu X, Yang W, Tan W, Xi B. Nitrogen loss, nitrogen functional genes, and humification as affected by hydrochar addition during chicken manure composting. BIORESOURCE TECHNOLOGY 2023; 369:128512. [PMID: 36538962 DOI: 10.1016/j.biortech.2022.128512] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of hydrochar addition on nitrogen (N) transformation, N functional genes, and humification during chicken manure composting. The addition of 10 % hydrochar reduced cumulative ammonia (NH3) and nitrous oxide emissions by 55.24 % and 45.30 %, respectively, and N losses by 32.07 %. Further, it increased the relative abundance of amoA while decreasing that of nirK, nirS, and nosZ in compost. Hydrochar reduces NH3 emissions during composting owing to its acid-carbon properties that lower the pH of the composting pile and promote ammonia oxidation. Moreover, hydrochar addition enhances the humification of the composting pile and significantly increases the content of humic substances. Moreover, after hydrochar addition, the germination index of the compost product reached >80 % 10 days earlier. The results demonstrate that hydrochar is a suitable composting additive for reducing N loss and shortening the composting time.
Collapse
Affiliation(s)
- Guangchun Shan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lin Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhao Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Yang
- China Land Surveying and Planning Institute, Beijing 100035, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
12
|
Yu J, Gu J, Wang X, Lei L, Guo H, Song Z, Sun W. Exploring the mechanism associated with methane emissions during composting: Inoculation with lignocellulose-degrading microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116421. [PMID: 36308953 DOI: 10.1016/j.jenvman.2022.116421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Inoculation with microorganisms is an effective strategy for improving traditional composting processes. This study explored the effects of inoculation with lignocellulose-degrading microorganisms (LDM) on the degradation of organic matter (OM), methane (CH4) emissions, and the microbial community (bacteria and methanogens) during composting. The results showed that LDM accelerated the degradation of OM (including the lignocellulose fraction) and increased the CH4 releases in the later thermophilic and cooling stages during composting. At the ending of composting, LDM increased the CH4 emissions by 38.6% compared with the control. Moreover, LDM significantly increased the abundances of members of the bacterial and methanogenic community during the later thermophilic period (P < 0.05). In addition, LDM promoted the growth and activity of major bacterial genera (e.g., Ureibacillus) with the ability to degrade macromolecular OM, as well as affecting key methanogens (e.g., Methanocorpusculum) in the composting system. Network analysis and variance partitioning analysis indicated that OM and temperature were the main factors that affected the bacterial and methanogen community structures. Structural equation modeling demonstrated that the higher CH4 emissions under LDM were related to the growth of methanogens, which was facilitated by the anaerobic environment produced by large amounts of CO2. Thus, aerobic conditions should be improved during the end of the thermophilic and cooling composting period when inoculating with lignocellulose-degrading microorganisms in order to reduce CH4 emissions.
Collapse
Affiliation(s)
- Jing Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Engineering Research Center of Utilization of Agricultural Waste Resources, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liusheng Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; School of the Environment, Nanjing University, Nanjing, 210046, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Wang Z, Zhao M, Xie J, Wang Z, Tsui TH, Ren X, Zhang Z, Wang Q. Insight into the fraction variations of selenium and their effects on humification during composting. BIORESOURCE TECHNOLOGY 2022; 364:128050. [PMID: 36184014 DOI: 10.1016/j.biortech.2022.128050] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the variation of selenium fractions and their effects on humification during composting. Selenite and selenate were added to a mixture of goat manure and wheat straw for composting. The results demonstrated that the bioavailable Se in the selenite added treatment (9.3-13.8%) was lower than in the selenate added treatment (18.1-47.3%). Meanwhile, the HA/FA of selenite and selenate added treatments were higher than in control, indicating that the selenium addition (especially selenite) promoted the humification of composting. Importantly, selenite enriched the abundance of Tepidimicrobium and Virgibacillus which were responsible to improve humification performance. Selenate increased the abundance of Thermobifida and Cellvibrio which facilitated the composting humification. The genes encoding CAZymes involved in the degradation of organic materials were also analyzed, and selenium could contribute to the synthesis of humus. KEGG pathway analysis revealed that the selenite addition promoted amino acids and carbohydrate metabolism compared to the control.
Collapse
Affiliation(s)
- Zhaoyu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mengxiang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jianwen Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhen Wang
- College of Ecology and Environment, Ningxia University, Yinchuan, Ningxia 750021, China
| | - To-Hung Tsui
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Breeding Base for State Key Lab of Land Degradation and Ecological Restoration in Northwestern China / Key Lab of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, China.
| |
Collapse
|