1
|
Dong L, Li X, Zhang Y, Liu B, Zhang X, Yang L. Urinary microplastic contaminants in primary school children: Associations with behavioral development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 295:118097. [PMID: 40179802 DOI: 10.1016/j.ecoenv.2025.118097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/15/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Behavioral problems in children have been increasingly linked to environmental exposures. Microplastics (MPs), prevalent in urban environments, are emerging contaminants with potential neurodevelopmental effects. This study examines the relationship between urinary MPs and behavioral outcomes among primary school children in Shenyang, China. This study was conducted involving 1000 children aged 6-9 years from 40 schools across Shenyang. Urinary MPs, including polyamide (PA), polypropylene (PP), and polyvinyl chloride (PVC), were quantified using optical microscopy. Behavioral outcomes were assessed using the Strengths and Difficulties Questionnaire (SDQ). Mixed-effect negative binomial models evaluated associations between MPs and SDQ scores, adjusting for relevant covariates. The median urinary total microplastic concentration was 9 particles/100 mL. Increased particle counts of urinary MPs were positively associated with higher scores for emotional problems, conduct problems, hyperactivity, and peer problems. Total microplastic levels were linked to increased emotional symptoms (estimate: 0.128, 95 % CI: 0.065-0.198, p < 0.001), conduct problems (estimate: 0.231, 95 % CI: 0.140-0.323, p < 0.001), and hyperactivity (estimate: 0.168, 95 % CI: 0.101-0.235, p < 0.001). Peer relationship issues were also elevated with higher urinary microplastic levels (estimate: 0.206, 95 % CI: 0.133-0.271, p < 0.001). Conversely, prosocial behaviors declined with increased microplastic concentrations (estimate: -0.125, 95 % CI: -0.192 to -0.052, p = 0.001). Stratified analyses indicated no significant differences in these associations between boys and girls. Overall, urinary microplastic concentrations were significantly associated with adverse behavioral outcomes in children, highlighting the potential neurodevelopmental risks of microplastic exposure.
Collapse
Affiliation(s)
- Lingling Dong
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Bingying Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital of China Medical University, Liaoning Province, China.
| | - Xinzhong Zhang
- Third Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China.
| | - Lina Yang
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
2
|
Zhang Y, Bao WW, Ji W, Zhao Y, Jiang N, Chen J, Guo Y, Chen G, Guo Y, Dong G, Chen Y. Ozone concentration, physical activity, and emotional and behavioral problems in children and adolescents. ENVIRONMENTAL RESEARCH 2025; 267:120697. [PMID: 39732417 DOI: 10.1016/j.envres.2024.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND No prior study has examined the mutual association of long-term outdoor ozone (O3) concentration and physical activity (PA) with emotional and behavioral problems (EBPs) in children and adolescents. This study aims to investigate the association between long-term outdoor O3 concentration and the risk of EBPs in children and adolescents and further explore whether increased PA levels modify this association. METHODS Data were obtained from the 2020 wave follow-up examination of an ongoing prospective cohort study (COHERENCE project) in Guangzhou, China. A total of 419,033 children aged 6-17-year-old were included. Annual average outdoor O3 concentrations were obtained from the China High Air Pollutants (CHAP) dataset based on participants' residential addresses. PA levels were identified using the International Physical Activity Questionnaire Short Form (IPAQ). EBPs were assessed by the Chinese Parent-Report Strengths and Difficulties Questionnaire (SDQ-P). RESULTS Each interquartile range (IQR) increase in outdoor O3 concentration was associated with an increased odds ratio (OR) for abnormal emotional problems (OR: 1.024, 95% CI: 1.010-1.038), conduct problems (OR: 1.015, 95% CI: 1.002-1.029), peer relationship problems (OR: 1.029, 95% CI: 1.006-1.052), prosocial behavior (OR: 1.023, 95% CI: 1.012-1.034), total difficulties (OR: 1.024, 95% CI: 1.010-1.038), and internalizing behavior (OR: 1.039, 95% CI: 1.026-1.053), in fully adjusted models. The highest OR for abnormal EBPs was observed in children with low PA levels, in combination with high O3 concentration. CONCLUSION This study identified that long-term outdoor O3 concentration is associated with an increased risk of EBPs in children and adolescents, with higher PA levels attenuating these risks.
Collapse
Affiliation(s)
- Yushan Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Wen Bao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weidong Ji
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Zhao
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute for Global Health, ISGlobal, Barcelona, Spain; Pompeu Fabra (UPF), Barcelona, Spain
| | - Nan Jiang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China; Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiaqi Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yinhuan Guo
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Guanghui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yajun Chen
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Hahad O, Kuntic M, Al-Kindi S, Kuntic I, Gilan D, Petrowski K, Daiber A, Münzel T. Noise and mental health: evidence, mechanisms, and consequences. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025; 35:16-23. [PMID: 38279032 PMCID: PMC11876073 DOI: 10.1038/s41370-024-00642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The recognition of noise exposure as a prominent environmental determinant of public health has grown substantially. While recent years have yielded a wealth of evidence linking environmental noise exposure primarily to cardiovascular ailments, our understanding of the detrimental effects of noise on the brain and mental health outcomes remains limited. Despite being a nascent research area, an increasing body of compelling research and conclusive findings confirms that exposure to noise, particularly from sources such as traffic, can potentially impact the central nervous system. These harms of noise increase the susceptibility to mental health conditions such as depression, anxiety, suicide, and behavioral problems in children and adolescents. From a mechanistic perspective, several investigations propose direct adverse phenotypic changes in brain tissue by noise (e.g. neuroinflammation, cerebral oxidative stress), in addition to feedback signaling by remote organ damage, dysregulated immune cells, and impaired circadian rhythms, which may collectively contribute to noise-dependent impairment of mental health. This concise review linking noise exposure to mental health outcomes seeks to fill research gaps by assessing current findings from studies involving both humans and animals.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany.
| | - Marin Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention and Wellness, DeBakey Heart and Vascular Center, Houston Methodist, Houston, TX, USA
| | - Ivana Kuntic
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Donya Gilan
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Katja Petrowski
- Medical Psychology & Medical Sociology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology-Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), partner site Rhine-Main, Mainz, Germany
| |
Collapse
|
4
|
Zeng Y, W J M Stevens G, Helbich M. Longitudinal associations of neighbourhood environmental exposures with mental health problems during adolescence: Findings from the TRAILS study. ENVIRONMENT INTERNATIONAL 2023; 179:108142. [PMID: 37603991 DOI: 10.1016/j.envint.2023.108142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Cross-sectional studies have found associations between neighbourhood environments and adolescent mental health, but the few longitudinal studies mainly focused on single exposure-based analyses and rarely assessed the mental health associations with environmental changes. OBJECTIVES We assessed longitudinal within- and between-person associations of multiple neighbourhood time-varying physical and social environmental exposures with externalising and internalising problems throughout adolescence. METHODS We used four waves of TRAILS (Tracking Adolescents' Individual Lives Survey) data on self-reported externalising and internalising problems at ages 11, 13, 16, and 19 among 2,135 adolescents in the Netherlands. We measured residence-based time-varying environmental exposures, including green space, air pollution (fine particulate matter (PM2.5)), noise, deprivation, and social fragmentation. We fitted random-effect within-between regression models to assess the environment-mental health associations. RESULTS At the within-person level, an interquartile range (IQR) increase in PM2.5 was associated with a 0.056 IQR (95% CI: 0.014, 0.099) increase in externalising problems, while an IQR social fragmentation increase was associated with a 0.010 IQR (95% CI: -0.020, -0.001) decrease in externalising problems. Stratification revealed that the association with PM2.5 was significant only for movers, whereas the association with social fragmentation remained only for non-movers. At the between-person level, an IQR higher noise was associated with a 0.100 IQR (95% CI: 0.031, 0.169) more externalising problems, while higher deprivation (β = 0.080; 95% CI: 0.022, 0.138) and lower fragmentation (β = -0.073; 95% CI: -0.128, -0.018) were associated with more internalising problems. We also observed positive between-person associations between PM2.5, noise, and internalising problems, but both associations were unstable due to the high PM2.5-noise correlation. Further, we observed a non-linear between-person PM2.5-externalising problems association turning positive when PM2.5 > 15 µg/m3. Null associations were found for green space. CONCLUSION Our findings suggested that air pollution, noise, and neighbourhood deprivation are risk factors for adolescent mental health. Not only exposure levels but also exposure changes matter for adolescent mental health.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | - Gonneke W J M Stevens
- Department of Interdisciplinary Social Science, Faculty of Social and Behavioural Sciences, Utrecht University, Padualaan 14, 3584 CH Utrecht, the Netherlands.
| | - Marco Helbich
- Department of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| |
Collapse
|
5
|
Zhang HZ, Wang DS, Wu SH, Huang GF, Chen DH, Ma HM, Zhang YT, Guo LH, Lin LZ, Gui ZH, Liu RQ, Hu LW, Yang JW, Zhang WJ, Dong GH. The association between childhood adiposity in northeast China and anthropogenic heat flux: A new insight into the comprehensive impact of human activities. Int J Hyg Environ Health 2023; 254:114258. [PMID: 37703624 DOI: 10.1016/j.ijheh.2023.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/13/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Anthropogenic heat has been reported to have significant health impacts, but research on its association with childhood adiposity is still lacking. In this study, we matched the 2008-2012 average anthropogenic heat flux, as simulated by a grid estimation model using inventory methods, with questionnaire and measurement data of 49,938 children randomly recruited from seven cities in Northeast China in 2012. After adjusting for social demographic and behavioral factors, we used generalized linear mixed-effect models to assess the association between anthropogenic heat flux and adiposity among children. We also examined the effect modification of various social demographic and behavioral confounders. We found that each 10 W/m2 increase in total anthropogenic heat flux and that from the industry source was associated with an increase of 5.82% (95% CI = 0.84%-11.05%) and 6.62% (95% CI = 0.87%-12.70%) in the odds of childhood adiposity. Similarly, the excess rate of adiposity among children were 5.26% (95% CI = -1.33%-12.29%) and 8.51% (95% CI = 2.24%-15.17%) per 1 W/m2 increase in the anthropogenic heat flux from transportation and buildings, and was 7.94% (95% CI = 2.28%-13.91%) per 0.001 W/m2 increase in the anthropogenic heat flux from human metabolism. We also found generally greater effect estimates among female children and children who were exposed to passive smoking during pregnancy, born by caesarean section, non-breastfed/mixed-fed, or lived within 20 m adjacent to the main road. The potential deleterious effect of anthropogenic heat exposure on adiposity among children may make it a new but major threat to be targeted by future mitigation strategies.
Collapse
Affiliation(s)
- Hong-Zhi Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dao-Sen Wang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Si-Han Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guo-Feng Huang
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Duo-Hong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, 510308, China
| | - Hui-Min Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yun-Ting Zhang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Hao Guo
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhao-Huan Gui
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie-Wen Yang
- Guangzhou Social Welfare Institution, Guangzhou, 510520, China.
| | - Wang-Jian Zhang
- Department of Biostatistics, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Ghaffarpasand O, Almojarkesh A, Morris S, Stephens E, Chalabi A, Almojarkesh U, Almojarkesh Z, Pope FD. Traffic Noise Assessment Using Intelligent Acoustic Sensors (Traffic Ear) and Vehicle Telematics Data. SENSORS (BASEL, SWITZERLAND) 2023; 23:6964. [PMID: 37571749 PMCID: PMC10422506 DOI: 10.3390/s23156964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Here, we introduce Traffic Ear, an acoustic sensor pack that determines the engine noise of each passing vehicle without interrupting traffic flow. The device consists of an array of microphones combined with a computer vision camera. The class and speed of passing vehicles were estimated using sound wave analysis, image processing, and machine learning algorithms. We compared the traffic composition estimated with the Traffic Ear sensor with that recorded using an automatic number plate recognition (ANPR) camera and found a high level of agreement between the two approaches for determining the vehicle type and fuel, with uncertainties of 1-4%. We also developed a new bottom-up assessment approach that used the noise analysis provided by the Traffic Ear sensor along with the extensively detailed urban mobility maps that were produced using the geospatial and temporal mapping of urban mobility (GeoSTMUM) approach. It was applied to vehicles travelling on roads in the West Midlands region of the UK. The results showed that the reduction in traffic engine noise over the whole of the study road was over 8% during rush hours, while the weekday-weekend effect had a deterioration effect of almost half. Traffic noise factors (dB/m) on a per-vehicle basis were almost always higher on motorways compared the other roads studied.
Collapse
Affiliation(s)
- Omid Ghaffarpasand
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Sophie Morris
- Sandwell Metropolitan Borough Council, Sandwell B69 3DE, UK
| | | | - Alaa Chalabi
- Innovation Factory Limited, Birmingham B7 4BP, UK; (A.A.)
| | | | | | - Francis D. Pope
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Baird A, Candy B, Flouri E, Tyler N, Hassiotis A. The Association between Physical Environment and Externalising Problems in Typically Developing and Neurodiverse Children and Young People: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2549. [PMID: 36767909 PMCID: PMC9916018 DOI: 10.3390/ijerph20032549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The physical environment is of critical importance to child development. Understanding how exposure to physical environmental domains such as greenspace, urbanicity, air pollution or noise affects aggressive behaviours in typical and neurodiverse children is of particular importance given the significant long-term impact of those problems. In this narrative review, we investigated the evidence for domains of the physical environment that may ameliorate or contribute to the display of aggressive behaviours. We have considered a broad range of study designs that include typically developing and neurodiverse children and young people aged 0-18 years. We used the GRADE system to appraise the evidence. Searches were performed in eight databases in July 2020 and updated in June 2022. Additional articles were further identified by hand-searching reference lists of included papers. The protocol for the review was preregistered with PROSPERO. Results: We retrieved 7174 studies of which 67 are included in this review. The studies reported on green space, environmental noise and music, air pollution, meteorological effects, spatial density, urban or rural setting, and interior home elements (e.g., damp/sensory aspects/colour). They all used well validated parent and child reported measures of aggressive behaviour. Most of the studies were rated as having low or unclear risk of bias. As expected, noise, air pollution, urbanicity, spatial density, colour and humidity appeared to increase the display of aggressive behaviours. There was a dearth of studies on the role of the physical environment in neurodiverse children. The studies were heterogeneous and measured a range of aggressive behaviours from symptoms to full syndromes. Greenspace exposure was the most common domain studied but certainty of evidence for the association between environmental exposures and aggression problems in the child or young person was low across all domains. We found a large knowledge gap in the literature concerning neurodiverse children, which suggests that future studies should focus on these children, who are also more likely to experience adverse early life experiences including living in more deprived environments as well as being highly vulnerable to the onset of mental ill health. Such research should also aim to dis-aggregate the underlying aetiological mechanisms for environmental influences on aggression, the results of which may point to pathways for public health interventions and policy development to address inequities that can be relevant to ill health in neurodiverse young people.
Collapse
Affiliation(s)
- Alister Baird
- Division of Psychiatry, University College London, London W1T 7BN, UK
| | - Bridget Candy
- Division of Psychiatry, University College London, London W1T 7BN, UK
| | - Eirini Flouri
- Institute of Education, Psychology and Human Development, University College London, London WC1H 0AL, UK
| | - Nick Tyler
- Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering Science, University College London, London WC1E 6DE, UK
| | - Angela Hassiotis
- Division of Psychiatry, University College London, London W1T 7BN, UK
| |
Collapse
|