1
|
Finger Higgens RA, Hoover DL, Knight AC, Schlaepfer DR, Duniway MC. Flexible Phenology of a C 4 Grass Linked to Resiliency to Seasonal and Multiyear Drought Events in the American Southwest. Ecol Evol 2025; 15:e71435. [PMID: 40370350 PMCID: PMC12077930 DOI: 10.1002/ece3.71435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025] Open
Abstract
Rising temperatures are predicted to further limit dryland water availability as droughts become more intense and frequent and seasonal precipitation patterns shift. Vegetation drought stress may increase mortality and cause declines and delays in phenological events, thereby impacting species' capacity to persist and recover from extreme drought conditions. We compare phenological responses of two common dryland perennial grass species, Achnatherum hymenoides (C3) and Pleuraphis jamesii (C4), to 4 years of experimentally imposed precipitation drought treatments (cool season, warm season, ambient), followed by 2 years of recovery on the Colorado Plateau, United States of America. Tagged individual grasses from both species were monitored biweekly and assessed for phenological metrics and mortality. The C3 grass exhibited less phenological flexibility to both seasonal and interannual drought conditions and experienced high rates of mortality, thus reducing resiliency. Conversely, the C4 grass showed more phenological plasticity during imposed drought treatments, with treatment effects diminishing in the two-year recovery period during a severe ambient drought. Synthesis: Results suggest that plant photosynthetic strategies may impact plant resistance and resiliency to drought. Here, C3 grass populations may decline, potentially shifting cool dryland ecosystems into a system comprised predominantly of warm-season adapted species.
Collapse
Affiliation(s)
| | - David L. Hoover
- USDA‐ARSRangeland Resources and Systems Research UnitFort CollinsColoradoUSA
| | - Anna C. Knight
- US Geological SurveySouthwest Biological Science CenterMoabUtahUSA
| | - Daniel R. Schlaepfer
- US Geological SurveySouthwest Biological Science CenterFlagstaffArizonaUSA
- Center for Adaptable Western Landscapes, Northern Arizona UniversityFlagstaffArizonaUSA
| | | |
Collapse
|
2
|
Tian R, Li J, Zheng J, Liu L, Han W, Liu Y. The impact of compound drought and heatwave events from 1982 to 2022 on the phenology of Central Asian grasslands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121624. [PMID: 38968888 DOI: 10.1016/j.jenvman.2024.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
In the context of global warming, the occurrence and severity of extreme events like atmospheric drought (AD) and warm spell duration index (WSDI) have increased, causing significant impacts on terrestrial ecosystems in Central Asia's arid regions. Previous research has focused on single extreme events such as AD and WSDI, but the effect of compound hot and dry events (CHWE) on grassland phenology in the arid regions of Central Asia remains unclear. This study utilized structural equation modeling (SEM) and the Pettitt breakpoint test to quantify the direct and indirect responses of grassland phenology (start of season - SOS, length of season - LOS, and end of season - EOS) to AD, WSDI, and CHWE. Furthermore, this research investigated the threshold of grassland phenology response to compound hot and dry events. The research findings indicate a significant increasing trend in AD, WSDI, and CHWE in the arid regions of Central Asia from 1982 to 2022 (0.51 day/year, P < 0.01; 0.25 day/year, P < 0.01; 0.26 day/year, P < 0.01). SOS in the arid regions of Central Asia showed a significant advancement trend, while EOS exhibited a significant advance. LOS demonstrated an increasing trend (-0.23 day/year, P < 0.01; -0.12 day/year, P < 0.01; 0.56 day/year). The temperature primarily governs the variation in SOS. While higher temperatures promote an earlier SOS, they also offset the delaying effect of CHWE on SOS. AD, temperature, and CHWE have negative impacts on EOS, whereas WSDI has a positive effect on EOS. AD exhibits the strongest negative effect on EOS, with an increase in AD leading to an earlier EOS. Temperature and WSDI are positively correlated with LOS, indicating that higher temperatures and increased WSDI contribute to a longer LOS. The threshold values for the response of SOS, EOS, and LOS to CHWE are 16.14, 18.49, and 16.61 days, respectively. When CHWE exceeds these critical thresholds, there are significant changes in the response of SOS, EOS, and LOS to CHWE. These findings deepen our understanding of the mechanisms by which extreme climate events influence grassland phenology dynamics in Central Asia. They can contribute to better protection and management of grassland ecosystems and help in addressing the impacts of global warming and climate change in practice.
Collapse
Affiliation(s)
- Ruikang Tian
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Jianhao Li
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China; Xinjiang Oasis Ecology Key Laboratory, Urumqi, 830046, China.
| | - Liang Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Wanqiang Han
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| | - Yujia Liu
- College of Geography and Remote Sensing Science, Xinjiang University, Urumqi, 830046, China
| |
Collapse
|
3
|
Lu G, Fang M, Zhang S. Spatial Variation in Responses of Plant Spring Phenology to Climate Warming in Grasslands of Inner Mongolia: Drivers and Application. PLANTS (BASEL, SWITZERLAND) 2024; 13:520. [PMID: 38498495 PMCID: PMC10892319 DOI: 10.3390/plants13040520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Plant spring phenology in grasslands distributed in the Northern Hemisphere is highly responsive to climate warming. The growth of plants is intricately influenced by not only air temperature but also precipitation and soil factors, both of which exhibit spatial variation. Given the critical impact of the plant growth season on the livelihood of husbandry communities in grasslands, it becomes imperative to comprehend regional-scale spatial variation in the response of plant spring phenology to climate warming and the effects of precipitation and soil factors on such variation. This understanding is beneficial for region-specific phenology predictions in husbandry communities. In this study, we analyzed the spatial pattern of the correlation coefficient between the start date of the plant growth season (SOS) and the average winter-spring air temperature (WST) of Inner Mongolia grassland from 2003 to 2019. Subsequently, we analyzed the importance of 13 precipitation and soil factors for the correlation between SOS and average WST using a random forest model and analyzed the interactive effect of the important factors on the SOS using linear mixing models (LMMs). Based on these, we established SOS models using data from pastoral areas within different types of grassland. The percentage of areas with a negative correlation between SOS and average WST in meadow and typical grasslands was higher than that in desert grasslands. Results from the random forest model highlighted the significance of snow cover days (SCD), soil organic carbon (SOC), and soil nitrogen content (SNC) as influential factors affecting the correlation between SOS and average WST. Meadow grasslands exhibited significantly higher levels of SCD, SOC, and SNC compared to typical and desert grasslands. The LMMs indicated that the interaction of grassland type and the average WST and SCD can effectively explain the variation in SOS. The multiple linear models that incorporated both average WST and SCD proved to be better than models utilizing WST or SCD alone in predicting SOS. These findings indicate that the spatial patterns of precipitation and soil factors are closely associated with the spatial variation in the response of SOS to climate warming in Inner Mongolia grassland. Moreover, the average WST and SCD, when considered jointly, can be used to predict plant spring phenology in husbandry communities.
Collapse
Affiliation(s)
- Guang Lu
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
| | - Mengchao Fang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
| | - Shuping Zhang
- Key Laboratory of Ecology and Environment in Minority Areas (National Ethnic Affairs Commission), Minzu University of China, Beijing 100081, China
- College of Life and Environment Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
4
|
Bai W, Wang H, Lin S. Magnitude and direction of green-up date in response to drought depend on background climate over Mongolian grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166051. [PMID: 37543330 DOI: 10.1016/j.scitotenv.2023.166051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Increasing drought is one major consequence of ongoing global climate change and is expected to cause significant changes in vegetation phenology, especially for naturally vulnerable ecosystems such as grassland. However, the linkage between the response characteristic of green-up date (GUD) to drought and background climate remains largely unknown. Here, we focused on how the GUD of Mongolian grassland responds to extreme drought events (EDE). We first extracted the GUD from the MODIS Enhanced Vegetation Index data during 2001-2020 and identified the preseason EDE using the standardized precipitation evapotranspiration index data. Subsequently, we quantified the response of GUD to preseason EDE (DGUD) in each pixel as the difference in GUD between drought and normal years. The effect of 12 factors on DGUD was analyzed using the random forest algorithm. The results showed that the GUD under EDE may delay or advance by > 20 days compared to normal years. For the regions with mean annual temperature > -2 °C, the GUD was delayed under EDE due to the dominant role of water restriction on GUD, while the GUD was advanced under EDE in colder areas due to the warmer temperature during drought. However, the magnitude of delay in GUD under drought was greater in regions with less precipitation and more severe droughts. Our results could help to develop appropriate management strategies to mitigate the impacts of drought on grasslands.
Collapse
Affiliation(s)
- Wenrui Bai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huanjiong Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China.
| | - Shaozhi Lin
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, 19A, Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
5
|
Xiong T, Du S, Zhang H, Zhang X. Satellite observed reversal in trends of spring phenology in the middle-high latitudes of the Northern Hemisphere during the global warming hiatus. GLOBAL CHANGE BIOLOGY 2023; 29:2227-2241. [PMID: 36602438 DOI: 10.1111/gcb.16580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 05/28/2023]
Abstract
The start of the growing season (SOS) is essential to track the responses of vegetation to climate change. However, recent findings on whether the SOS in the middle-high latitudes of the Northern Hemisphere (NH) continued to advance or reversed during the global warming hiatus were not consistent. It is necessary to investigate the causes of this controversy and to examine the relationship between the SOS and preseason temperature trends. To this end, we first applied four widely used phenology extraction methods to derive the SOS from the GIMMS NDVI3g dataset and then used the ensemble empirical modal decomposition (EEMD) method to extract the nonlinear trends of the SOS and preseason temperature. Our results clarify, for the first time, that the limitations of the linear assumption-based trend analysis methods are an important but overlooked cause of the discrepancies among existing studies on whether the SOS was advanced or delayed in the NH (>30° N) during the global warming hiatus. We further revealed the range of the mismatches between the SOS and preseason temperature trends at the latitude, altitude and biome levels. Specifically, we discovered that the SOS in the NH (>30° N) obtained by the four phenology extraction methods showed a significant reversal from advance to delay during the global warming hiatus, and the corresponding average rate of change was very small. The area showing increasing preseason temperatures decreased during the global warming hiatus, but it always occupied most of the NH (>30° N). However, delayed SOS trends were dominant in the NH from 50° N to 60° N, above 3000 m and in biomes other than TBMF and BF. Accordingly, using an EEMD-like approach to evaluate the changes in the SOS and preseason temperature is necessary for improving our understanding of the changes in the SOS and their association with climate.
Collapse
Affiliation(s)
- Tao Xiong
- Institute of Remote Sensing and GIS, Peking University, Beijing, China
| | - Shihong Du
- Institute of Remote Sensing and GIS, Peking University, Beijing, China
| | - Hongyan Zhang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China
| | - Xiuyuan Zhang
- Institute of Remote Sensing and GIS, Peking University, Beijing, China
| |
Collapse
|
6
|
Li C, Wang Z, Yan Y, Qu Y, Hou L, Li Y, Chu C, Woodward A, Schikowski T, Saldiva PHN, Liu Q, Zhao Q, Ma W. Association Between Hydrological Conditions and Dengue Fever Incidence in Coastal Southeastern China From 2013 to 2019. JAMA Netw Open 2023; 6:e2249440. [PMID: 36598784 PMCID: PMC9857674 DOI: 10.1001/jamanetworkopen.2022.49440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Dengue fever is a climate-sensitive infectious disease. However, its association with local hydrological conditions and the role of city development remain unclear. OBJECTIVE To quantify the association between hydrological conditions and dengue fever incidence in China and to explore the modification role of city development in this association. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study collected data between January 1, 2013, and December 31, 2019, from 54 cities in 4 coastal provinces in southeast China. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated from ambient temperature and precipitation, with SPEI thresholds of 2 for extreme wet conditions and -2 for extreme dry conditions. The SPEI-dengue fever incidence association was examined over a 6-month lag, and the modification roles of 5 city development dimensions were assessed. Data were analyzed in May 2022. EXPOSURES City-level monthly temperature, precipitation, SPEI, and annual city development indicators from 2013 to 2019. MAIN OUTCOMES AND MEASURES The primary outcome was city-level monthly dengue fever incidence. Spatiotemporal bayesian hierarchal models were used to examine the SPEI-dengue fever incidence association over a 6-month lag period. An interaction term between SPEI and each city development indicator was added into the model to assess the modification role of city development. RESULTS Included in the analysis were 70 006 dengue fever cases reported in 54 cities in 4 provinces in China from 2013 to 2019. Overall, a U-shaped cumulative curve was observed, with wet and dry conditions both associated with increased dengue fever risk. The relative risk [RR] peaked at a 1-month lag for extreme wet conditions (1.27; 95% credible interval [CrI], 1.05-1.53) and at a 6-month lag for extreme dry conditions (1.63; 95% CrI, 1.29-2.05). The RRs of extreme wet and dry conditions were greater in areas with limited economic development, health care resources, and income per capita. Extreme dry conditions were higher and prolonged in areas with more green space per capita (RR, 1.84; 95% CrI, 1.37-2.46). Highly urbanized areas had a higher risk of dengue fever after extreme wet conditions (RR, 1.80; 95% CrI, 1.26-2.56), while less urbanized areas had the highest risk of dengue fever in extreme dry conditions (RR, 1.70; 95% CrI, 1.11-2.60). CONCLUSIONS AND RELEVANCE Results of this study showed that extreme hydrological conditions were associated with increased dengue fever incidence within a 6-month lag period, with different dimensions of city development playing various modification roles in this association. These findings may help in developing climate change adaptation strategies and public health interventions against dengue fever.
Collapse
Affiliation(s)
- Chuanxi Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Zhendong Wang
- Dezhou Center for Disease Control and Prevention, Dezhou, China
| | - Yu Yan
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Yinan Qu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Liangyu Hou
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Yijie Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| | - Cordia Chu
- Centre for Environment and Population Health, School of Medicine, Griffith University, Nathan, Queensland, Australia
| | - Alistair Woodward
- Department of Epidemiology and Biostatistics, School of Population Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tamara Schikowski
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | | | - Qiyong Liu
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Vector Control, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
- Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Wei Ma
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University Climate Change and Health Center, Shandong University, Jinan, China
| |
Collapse
|