1
|
Poulin BA, Tate MT, Janssen SE, Aiken GR, Krabbenhoft DP. A comprehensive sulfate and DOM framework to assess methylmercury formation and risk in subtropical wetlands. Nat Commun 2025; 16:4253. [PMID: 40335456 PMCID: PMC12058987 DOI: 10.1038/s41467-025-59581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Wetlands play a vital role in contaminant cycling and uptake. Understanding how sulfate (SO42‒) influences the conversion of inorganic mercury (Hg(II)) to toxic methylmercury (MeHg) is critical for predicting wetland responses to land use and climate change. Here, we sampled surface and pore waters across SO42‒ gradients in three freshwater Everglades wetlands to assess linkages between SO42‒, MeHg, dissolved organic matter (DOM), and inorganic sulfide (S(‒II)). Increasing SO42‒ concentrations increase S(‒II) and DOM concentrations and DOM aromaticity. MeHg concentration show a unimodal response to surface water SO42‒, which reflect high Hg(II) methylation at low-to-intermediate SO42‒concentration (2-12 mg/L) and low Hg(II) methylation at higher SO42‒concentrations ( > 12 mg/L). MeHg concentrations in surface waters correlate positively with MeHg concentrations in prey fish. The coherent biogeochemical relationships between SO42‒ and MeHg concentrations and biologic uptake improve MeHg risk assessment for aquatic food webs and are globally relevant due to anthropogenic and climate-driven increases in SO42‒.
Collapse
Affiliation(s)
- Brett A Poulin
- Department of Environmental Toxicology, University of California Davis, Davis, CA, USA.
| | - Michael T Tate
- U.S. Geological Survey, Mercury Research Laboratory, Madison, WI, USA
| | - Sarah E Janssen
- U.S. Geological Survey, Mercury Research Laboratory, Madison, WI, USA
| | - George R Aiken
- U.S. Geological Survey, Water Mission Area, Boulder, CO, USA
| | | |
Collapse
|
2
|
Mock AJ, Virzi T, Reed TA, Rothenberg SE, Rodríguez-Jorquera I, Trexler JC, Frederick P. Mercury exposure in an endangered songbird: influence of marsh hydrology and evidence for early breeding impairment. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:480-495. [PMID: 39804557 DOI: 10.1007/s10646-025-02851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 03/16/2025]
Abstract
Songbird reproductive success can decline from consuming mercury-contaminated aquatic insects, but assessments of hydrologic conditions influencing songbird mercury exposure are lacking. We monitored breast feather total mercury (THg) concentrations and reproductive success in the U.S. federally listed endangered Cape Sable Seaside Sparrow (CSSS: Ammospiza maritima mirabilis) over three breeding seasons in the Florida Everglades. We used model comparison to explore the influence of annual hydrologic variation on adult CSSS THg concentrations, and tested mercury effects on individual reproductive success (individuals' mate status, apparent nest success, and total productivity) that were scaled to estimates on population productivity using a demographic model. We identified four hydrologic models that explained annual variation in adult THg concentrations, with the top model showing a negative association between THg concentrations and drought length of the previous breeding season and a positive association between THg concentrations and dry-season water recession rate (model adjusted R2 = 0.82). Adult male mating probability declined by 63% across the range of THg concentrations observed. We found no mercury effect on CSSS nest success or total productivity. However, demographic modeling suggested the reduced mating could produce a 60% decrease in population productivity compared to a scenario with no THg impact. Our results suggest that CSSS mercury exposure is influenced by local hydrologic conditions that can increase early breeding failure (lack of breeding initiation) and potentially limit population productivity. This study is the first to describe CSSS mercury exposure and its potential reproductive costs at the individual and population levels.
Collapse
Affiliation(s)
- Alan J Mock
- Department of Biological Sciences and Institute of the Environment, Florida International University, North Miami, FL, USA.
| | | | - Tera A Reed
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Joel C Trexler
- Coastal and Marine Laboratory, Florida State University, St. Teresa, FL, USA
| | - Peter Frederick
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Tepper K, King J, Manuneedhi Cholan P, Pfitzner C, Morsch M, Apte SC, Maselko M. Methylmercury demethylation and volatilization by animals expressing microbial enzymes. Nat Commun 2025; 16:1117. [PMID: 39939605 PMCID: PMC11821883 DOI: 10.1038/s41467-025-56145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025] Open
Abstract
Mercury is a highly toxic trace metal that readily biomagnifies in food webs where it is inaccessible to current bioremediation methods. Animals could potentially be engineered to detoxify mercury within their food webs to clean up impacted ecosystems. We demonstrate that invertebrate (Drosophila melanogaster) and vertebrate (Danio rerio) animal models can express organomercurial lyase (MerB) and mercuric reductase (MerA) from Escherichia coli to demethylate methylmercury and remove it from their biomass as volatile elemental mercury. The engineered animals accumulated less than half as much mercury relative to their wild-type counterparts, and a higher proportion of mercury in their tissue was in the form of less bioavailable inorganic mercury. Furthermore, the engineered animals could tolerate higher exposures to methylmercury compared to controls. These findings demonstrate the potential of using engineered animals for bioremediation and may be applied to reduce the burden of methylmercury in impacted ecosystems by disrupting its biomagnification or to treat contaminated organic waste streams.
Collapse
Affiliation(s)
- Kate Tepper
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- EntoZyme PTY LTD, Sydney, NSW, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia
| | - Josh King
- CSIRO Environment, Black Mountain, Canberra, ACT, Australia
| | - Pradeep Manuneedhi Cholan
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Chandran Pfitzner
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia
- EntoZyme PTY LTD, Sydney, NSW, Australia
| | - Marco Morsch
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| | - Simon C Apte
- CSIRO Environment, Black Mountain, Canberra, ACT, Australia
| | - Maciej Maselko
- Applied BioSciences, Macquarie University, Sydney, NSW, Australia.
- EntoZyme PTY LTD, Sydney, NSW, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Kotalik CJ, Willacker JJ, Wesner JS, Johnson BL, Flanagan Pritz CM, Nelson SJ, Walters DM, Eagles-Smith CA. Ecosystem Drivers of Freshwater Mercury Bioaccumulation Are Context-Dependent: Insights from Continental-Scale Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1780-1789. [PMID: 39812405 PMCID: PMC11780732 DOI: 10.1021/acs.est.4c07280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025]
Abstract
Significant variation in mercury (Hg) bioaccumulation is observed across the diversity of freshwater ecosystems in North America. While there is support for the major drivers of Hg bioaccumulation, the relative influence of different external factors can vary widely among waterbodies, which makes predicting Hg risk across large spatial scales particularly challenging. We modeled Hg bioaccumulation by coupling Hg concentrations in more than 21,000 dragonflies collected across the United States from 2008 to 2021 with a suite of chemical (e.g., dissolved organic carbon (DOC), pH, sulfate) and landscape (e.g., soil characteristics, land cover) variables representing external drivers of Hg methylation, transport, and uptake. Model predictions explained 85% of the variation in dragonfly Hg concentrations across the United States. Certain predictor variables were more important than others (e.g., DOC, pH, and percent wetland), and they varied among waterbodies. Variation in Hg bioaccumulation was explained by including habitat and ecosystem type in a hierarchical modeling framework, which confirms the context-dependency of external factors in explaining Hg bioaccumulation across disparate freshwater ecosystems. This continent-scale model provides valuable insights into the processes underlying landscape-scale patterns in Hg exposure risk and demonstrates that drivers of Hg methylation and bioaccumulation are habitat- and ecosystem-dependent.
Collapse
Affiliation(s)
- Christopher J. Kotalik
- U.S.
Geological Survey, Columbia Environmental
Research Center, 4200
E New Haven Rd, Columbia, Missouri 65201, United
States
| | - James J. Willacker
- U.S.
Geological Survey, Forest and Rangeland
Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon 97331, United States
| | - Jeff S. Wesner
- Department
of Biology, University of South Dakota, 414 E. Clark St. Vermillion, South Dakota 57069, United States
| | - Branden L. Johnson
- U.S.
Geological Survey, Forest and Rangeland
Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon 97331, United States
| | - Colleen M. Flanagan Pritz
- National
Park Service, Air Resources Division, National Resource, Stewardship and Science Directorate, Lakewood, Colorado 80228, United States
| | - Sarah J. Nelson
- Appalachian
Mountain Club, Gorham, New Hampshire 03581, United States
| | - David M. Walters
- U.S.
Geological Survey, Columbia Environmental
Research Center, 4200
E New Haven Rd, Columbia, Missouri 65201, United
States
| | - Collin A. Eagles-Smith
- U.S.
Geological Survey, Forest and Rangeland
Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon 97331, United States
| |
Collapse
|
5
|
Janssen SE, Kotalik CJ, Willacker JJ, Tate MT, Pritz CMF, Nelson SJ, Krabbenhoft DP, Walters DM, Eagles-Smith CA. Geographic Drivers of Mercury Entry into Aquatic Food Webs Revealed by Mercury Stable Isotopes in Dragonfly Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39012137 PMCID: PMC11295128 DOI: 10.1021/acs.est.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 07/17/2024]
Abstract
Atmospheric mercury (Hg) emissions and subsequent transport and deposition are major concerns within protected lands, including national parks, where Hg can bioaccumulate to levels detrimental to human and wildlife health. Despite this risk to biological resources, there is limited understanding of the relative importance of different Hg sources and delivery pathways within the protected regions. Here, we used Hg stable isotope measurements within a single aquatic bioindicator, dragonfly larvae, to determine if these tracers can resolve spatial patterns in Hg sources, delivery mechanisms, and aquatic cycling at a national scale. Mercury isotope values in dragonfly tissues varied among habitat types (e.g., lentic, lotic, and wetland) and geographic location. Photochemical-derived isotope fractionation was habitat-dependent and influenced by factors that impact light penetration directly or indirectly, including dissolved organic matter, canopy cover, and total phosphorus. Strong patterns for Δ200Hg emerged in the western United States, highlighting the relative importance of wet deposition sources in arid regions in contrast to dry deposition delivery in forested regions. This work demonstrates the efficacy of dragonfly larvae as biosentinels for Hg isotope studies due to their ubiquity across freshwater ecosystems and ability to track variation in Hg sources and processing attributed to small-scale habitat and large-scale regional patterns.
Collapse
Affiliation(s)
- Sarah E. Janssen
- US
Geological Survey Upper Midwest Water Science Center, One Gifford Pinchot Drive,, Madison, Wisconsin 53726, United States
| | - Christopher J. Kotalik
- US
Geological Survey Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, Missouri 65201, United States
| | - James J. Willacker
- U.S.
Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200SW Jefferson Way, Corvallis, Oregon 97331, United States
| | - Michael T. Tate
- US
Geological Survey Upper Midwest Water Science Center, One Gifford Pinchot Drive,, Madison, Wisconsin 53726, United States
| | - Colleen M. Flanagan Pritz
- National
Park Service, Air Resources Division,
P.O. Box 25287, Denver, Colorado 80225, United States
| | - Sarah J. Nelson
- Appalachian
Mountain Club, 361 Route
16, Gorham, New Hampshire 03581, United States
| | - David P. Krabbenhoft
- US
Geological Survey Upper Midwest Water Science Center, One Gifford Pinchot Drive,, Madison, Wisconsin 53726, United States
| | - David M. Walters
- US
Geological Survey Columbia Environmental Research Center, 4200 New Haven Rd, Columbia, Missouri 65201, United States
| | - Collin A. Eagles-Smith
- U.S.
Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200SW Jefferson Way, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Nelson SJ, Willacker J, Eagles-Smith C, Flanagan Pritz C, Chen CY, Klemmer A, Krabbenhoft DP. Habitat and dissolved organic carbon modulate variation in the biogeochemical drivers of mercury bioaccumulation in dragonfly larvae at the national scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169396. [PMID: 38114036 DOI: 10.1016/j.scitotenv.2023.169396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
We paired mercury (Hg) concentrations in dragonfly larvae with water chemistry in 29 U.S. national parks to highlight how ecological and biogeochemical context (habitat, dissolved organic carbon [DOC]) influence drivers of Hg bioaccumulation. Although prior studies have defined influences of biogeochemical variables on Hg production and bioaccumulation, it has been challenging to determine their influence across diverse habitats, regions, or biogeochemical conditions within a single study. We compared global (i.e., all sites), habitat-specific, and DOC-class models to illuminate how these controls on biotic Hg vary. Although the suite of important biogeochemical factors across all sites (e.g., aqueous Hg, DOC, sulfate [SO42-], and pH) was consistent with general findings in the literature, contrasting the restricted models revealed more nuanced controls on biosentinel Hg. Comparing habitats, aqueous (filtered) total mercury (THg) and SO42- were important in lentic systems whereas aqueous (filtered) methylmercury (MeHg), DOC, pH, and SO42- were important in lotic and wetland systems. The ability to identify important variables varied among habitats, with less certainty in lentic (model weight (W) = 0.05) than lotic (W = 0.11) or wetland habitats (W = 0.23), suggesting that biogeochemical drivers of bioaccumulation are more variable, or obscured by other aspects of Hg cycling, in these habitats. Results revealed a contrast in the importance of aqueous MeHg versus aqueous THg between DOC-classes: in low-DOC sites (<8.5 mg/L), availability of upstream inputs of MeHg appeared more important for bioaccumulation; in high-DOC sites (>8.5 mg/L) THg was more important, suggesting a link to in-situ controls on bioavailability of Hg for MeHg production. Mercury bioaccumulation (indicated by bioaccumulation factor) was more efficient in low DOC-class sites, likely due to reduced partitioning of aqueous MeHg to DOC. Together, findings highlight substantial variation in the drivers of Hg bioaccumulation and suggest consideration of these factors in natural resource management and decision-making.
Collapse
Affiliation(s)
- Sarah J Nelson
- Appalachian Mountain Club, Gorham, NH 03581, USA; University of Maine, School of Forest Resources, Orono, ME 04469, USA.
| | - James Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Colleen Flanagan Pritz
- National Park Service, Air Resources Division, Natural Resource, Stewardship and Science Directorate, Lakewood, CO 80228, USA
| | | | - Amanda Klemmer
- School of Biology and Ecology, University of Maine, 5722 Deering Hall, Orono, ME 04469, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Dr., Madison, WI 53726, USA
| |
Collapse
|
7
|
Willacker J, Eagles-Smith CA, Chandler JA, Naymik J, Myers R, Krabbenhoft DP. Reservoir Stratification Modulates the Influence of Impoundments on Fish Mercury Concentrations along an Arid Land River System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21313-21326. [PMID: 38051342 PMCID: PMC10734268 DOI: 10.1021/acs.est.3c04646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023]
Abstract
Impoundment is among the most common hydrologic alterations with impacts on aquatic ecosystems that can include effects on mercury (Hg) cycling. However, landscape-scale differences in Hg bioaccumulation between reservoirs and other habitats are not well characterized nor are the processes driving these differences. We examined total Hg (THg) concentrations of Smallmouth Bass (Micropterus dolomieu) collected from reservoir, tailrace, and free-flowing reaches along an 863 km segment of the Snake River, USA, a semiarid river with 22 impoundments along its course. Across three size-classes (putative 1-year-old, first reproductive, and harvestable sized fish), THg concentrations in reservoirs and tailraces averaged 76% higher than those in free-flowing segments. Among reservoirs, THg concentrations were highest in reservoirs with inconsistent stratification patterns, 47% higher than annually stratified, and 144% higher than unstratified reservoirs. Fish THg concentrations in tailraces immediately downstream of stratified reservoirs were higher than those below unstratified (38-130%) or inconsistently stratified (32-79%) reservoirs. Stratification regimes influenced the exceedance of fish and human health benchmarks, with 52-80% of fish from stratifying reservoirs and downstream tailraces exceeding a human consumption benchmark, compared to 6-17% where stratification did not occur. These findings suggest that impoundment and stratification play important roles in determining the patterns of Hg exposure risk across the landscape.
Collapse
Affiliation(s)
- James
J. Willacker
- U.S.
Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon 97331, United States
| | - Collin A. Eagles-Smith
- U.S.
Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, Oregon 97331, United States
| | - James A. Chandler
- Idaho
Power Company, 1221 West Idaho Street, Boise, Idaho 83702, United States
| | - Jesse Naymik
- Idaho
Power Company, 1221 West Idaho Street, Boise, Idaho 83702, United States
| | - Ralph Myers
- Idaho
Power Company, 1221 West Idaho Street, Boise, Idaho 83702, United States
| | - David P. Krabbenhoft
- U.S.
Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, Wisconsin 53562, United States
| |
Collapse
|
8
|
Lemaire J. Using Crocodylians for monitoring mercury in the tropics. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:977-993. [PMID: 37815690 PMCID: PMC10622360 DOI: 10.1007/s10646-023-02703-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
Mercury contamination is a widespread phenomenon that impacts ecosystems worldwide. Artisanal Small Scale Gold Mining (ASGM) activities are responsible for more than a third of atmospheric Hg emission. Due to Hg toxicity and its broad and elevated prevalence in the environment resulting from ASGM activities in the tropics, its biomonitoring is essential to better understand the availability of its methylmercury (MeHg) form in the environment. The Minamata Convention was ratified with the objective to "protect human health and the environment from anthropogenic emissions and releases of mercury compounds". Biomagnification of MeHg occurs through the trophic food web, where it biomagnifies and bioaccumulates in top predators. To monitor environmental MeHg contamination, studies have evaluated the use of living organisms; however, reptiles are among the least documented vertebrates regarding MeHg exposure. In this review we evaluate the use of crocodylians for Hg biomonitoring in tropical ecosystems. We found that out of the 28 crocodiles species, only 10 have been evaluated regarding Hg contamination. The remaining challenges when using this taxon for Hg biomonitoring are inconsistencies in the applied methodology (e.g., wet versus dry weight, tissues used, quantification method). However, due to their life history traits, crocodylians are particularly relevant for monitoring MeHg contamination in regions where ASGM activities occur. In conclusion and given their ecological and socio-economic importance, crocodylians are at great risk of MeHg contamination and are excellent bioindicators for tropical ecosystems.
Collapse
Affiliation(s)
- Jérémy Lemaire
- Department of Behavioral and Cognitive Biology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| |
Collapse
|