1
|
Wang J, Su X, Zhang C, Han Z, Wang M. Biodegradation of Benzo(a)pyrene in Contaminated Soil: Plant and Microorganism Contributions from Isotope Tracing. TOXICS 2025; 13:405. [PMID: 40423484 DOI: 10.3390/toxics13050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/28/2025]
Abstract
Biological degradation effectively removes benzo(a)pyrene (BaP) from contaminated soil; however, knowledge regarding the contributions of plant absorption, microbial degradation, and volatilization to BaP removal remains limited. In this study, the BaP removal pathway in contaminated soil was investigated. The structural evolution of the microbial community in contaminated soil was revealed using a comparative experimental study. BaP, as a representative of high-molecular-weight polycyclic aromatic hydrocarbons, was removed from freshly contaminated soil by microbial degradation, plant absorption, and volatilization in proportions of 20.955%, 12.771%, and 0.005%, respectively. The proportions of BaP removed by microbial degradation, plant absorption, and volatilization in aged contaminated soil were 29.471%, 16.453%, and 0.004%. Microbial degradation was the most responsible mechanism for BaP removal. Moreover, a higher number of BaP degrading bacteria occurred in the aged contaminated soil. At the genus level, Pseudomonas and Sphingomonas were detected in both types of soils, being the key bacterial species involved in BaP degradation.
Collapse
Affiliation(s)
- Jianlong Wang
- Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing 100044, China
| | - Xiaobing Su
- Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing 100044, China
| | - Changhe Zhang
- Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
- China Academy of Building Research, Beijing 100013, China
| | - Zhimeng Han
- Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Meiqi Wang
- Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Jia J, Zhang B, Li A, Wang W, Xiao B, Gao X, Yuan H, Han Y, Zhao X, Naidu R. Optimized bacterial consortium-based strategies for bioremediation of PAHs-contaminated soils: insights into microbial communities, and functional responses. ENVIRONMENTAL RESEARCH 2025; 279:121718. [PMID: 40306457 DOI: 10.1016/j.envres.2025.121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025]
Abstract
Microbial technologies hold great promise for in situ remediation of polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. However, the selection of enhancement measures and corresponding remediation strategies remains insufficiently understood. In this study, a series of enhancement treatments, including bacterial consortium inoculation (comprising Achromobacter denitrificans BP1, Rhodococcus aetherivorans BW2, and Lysinibacillus sp. BS3), nutrient addition, and bio-ventilation, were implemented to develop effective in situ remediation strategies for PAHs-contaminated soil. Over a 60-day incubation, the enhancement treatments achieved phenanthrene (PHE) degradation efficiencies of 68.0-94.7 % and benzo[a]pyrene (BaP) degradation efficiencies of 12.9-82.4 %. Degradation rates across soil layers followed the pattern: upper layer > lower layer > middle layer. Enhancement treatments significantly boosted soil dehydrogenase (DH) and fluorescein diacetate (FDAH) activities. Among these, the sequential consortium inoculation with nutrient addition treatment (T6) demonstrated the highest degradation efficacy. In the treatment T6, the relative abundance of consortium genera was significantly increased, playing critical roles in PAHs degradation. The connectivity and stability of the soil bacterial network were enhanced, providing greater resilience to pollutants. Quantitative PCR analysis showed that the enhancement strategy increased RHDα-GN gene abundance by 1.98-fold at the initial and maintained a positive correlation with PAHs residues throughout the process (p < 0.05), and the phe gene exhibited a continuous upward trend during remediation, ultimately reaching 1.61-1.96 times its initial abundance. Overall, this study provides a strong candidate of integrated enhancement strategies to advance in situ bioremediation of PAH-contaminated sites.
Collapse
Affiliation(s)
- Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China.
| | - Ben Zhang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Aoran Li
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Weiran Wang
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Bing Xiao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xiaolong Gao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Haokun Yuan
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Yuxin Han
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Xiwang Zhao
- School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, PR China
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia; Crc for Contamination Assessment and Remediation of the Environment (crcCARE), The University of Newcastle, University Drive, Callaghan Campus, NSW, 2308, Australia
| |
Collapse
|
3
|
Meng F, Wang Y, Wei Y. Advancements in Biochar for Soil Remediation of Heavy Metals and/or Organic Pollutants. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1524. [PMID: 40271705 PMCID: PMC11990842 DOI: 10.3390/ma18071524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
The rapid industrialization and economic growth have exacerbated the contamination of soils with both heavy metals and organic pollutants. These persistent contaminants pose substantial threats to ecosystem integrity and human health due to their long-term environmental persistence and potential for bioaccumulation. Biochar, with its high specific surface area, well-developed pore structure, and abundant surface functional groups, has emerged as a promising material for remediating soils contaminated by heavy metals and organic pollutants. While some research has explored the role of biochar in soil remediation, several aspects remain under investigation. Fully harnessing the potential of biochar for soil contamination remediation is of critical importance. This review provides an overview of the preparation methods and physicochemical properties of biochar, discusses its application in soils contaminated by organic compounds and/or heavy metals, and examines the mechanisms underlying its interaction with pollutants. Additionally, it summarizes the toxicity assessments of biochar during soil remediation and outlines future research directions, offering scientific insights and references for the practical deployment of biochar in soil pollution remediation.
Collapse
Affiliation(s)
- Fanyue Meng
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yanming Wang
- Design Institute 5, Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China;
| | - Yuexing Wei
- College of Environment and Ecology, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China
| |
Collapse
|
4
|
Li J, Yu M, Liu W, Zheng Z, Liu J, Shi R, Zeb A, Wang Q, Wang J. Effects of compound immobilized bacteria on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136941. [PMID: 39709818 DOI: 10.1016/j.jhazmat.2024.136941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Immobilized microorganism technology is expected to enhance microbial activity and stability and is considered an effective technique for removing soil polycyclic aromatic hydrocarbons (PAHs). However, there are limited high-efficiency and stable bacterial preparations available. In this study, alkali-modified biochar (Na@CBC700) was used as the adsorption carrier, sodium alginate (SA) and polyvinyl alcohol (PVA) as embedding agents, and CaCl2 as the cross-linking agent to prepare immobilized Acinetobacter (CoIMB) through a composite immobilization method. The CoIMB preparation was optimized using response surface methodology and applied to PAH-contaminated soil remediation. Results indicated that CoIMB exhibited improved mechanical strength and microbial activity, achieving degradation rates of 2-5 rings PAHs up to 82.41 %, averaging 1.5 times higher than CK. High dose CoIMB treatment enhanced soil microbial community diversity, enriching Acinetobacter, and increased the abundance of functional genes related to fatty acid metabolism and energy metabolism (K00249, K01897, K00059). This composite immobilized bacterial particle provides a novel, broad-spectrum, and cost-effective solution for remediating organic pollutants in soil environments.
Collapse
Affiliation(s)
- Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
5
|
Zhu N, Sun S, Guo X, Luo W, Zhuang Y, Lei T, Leng F, Chen J, Wang Y. Integration of physiology, genomics and microbiomics analyses reveal the biodegradation mechanism of petroleum hydrocarbons by Medicago sativa L. and growth-promoting bacterium Rhodococcus erythropolis KB1. BIORESOURCE TECHNOLOGY 2025; 415:131659. [PMID: 39426428 DOI: 10.1016/j.biortech.2024.131659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Despite the effectiveness of microbial-phytoremediation for remediating total petroleum hydrocarbons (TPH)-contaminated soil, the underlying mechanisms remain elusive. This study investigated the whole-genome and biological activity of Rhodococcus erythropolis KB1, revealing its plant growth promotion (PGP), TPH degradation, and stress resistance capabilities. Phytoremediation (using alfalfa) and plant-microbial remediation (using alfalfa and KB1) were employed to degrade TPH. The highest TPH degradation rate, reaching 95%, was observed with plant-microbial remediation. This is attributed to KB1's ability to promote alfalfa growth, induce the release of signaling molecules to activate plant antioxidant enzymes, actively recruit TPH-degrading bacteria (e.g., Sphingomonas, Pseudomonas, C1-B045), and increase soil nitrogen and phosphorus levels, thereby accelerating TPH degradation by both plants and microorganisms. This study demonstrates that R. erythropolis KB1 holds great potential for enhancing the remediation of TPH-contaminated soil through its multifaceted mechanisms, particularly in plant-microbial remediation strategies, providing valuable theoretical support for the application of this technology.
Collapse
Affiliation(s)
- Ning Zhu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Shangchen Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; Lanzhou Rescources and enviroment VOC-TECH University, Lanzhou 730050, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wen Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yan Zhuang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Tianzhu Lei
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730050, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
6
|
Ndour PMS, Langrand J, Fontaine J, Lounès-Hadj Sahraoui A. Exploring the significance of different amendments to improve phytoremediation efficiency: focus on soil ecosystem services. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:485-513. [PMID: 39730919 DOI: 10.1007/s11356-024-35660-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/23/2024] [Indexed: 12/29/2024]
Abstract
Phytoremediation is recognized as an environmentally, economically and socially efficient phytotechnology for the reclamation of polluted soils. To improve its efficiency, several strategies can be used including the optimization of agronomic practices, selection of high-performance plant species but also the application of amendments. Despite evidences of the benefits provided by different types of amendments on pollution control through several phytoremediation pathways, their contribution to other soil ecosystem functions supporting different ecosystem services remains sparsely documented. This current review aims at (i) updating the state of the art about the contribution of organic, mineral and microbial amendments in improving phytostabilization, phytoextraction of inorganic and phytodegradation of organic pollutants and (ii) reviewing their potential beneficial effects on soil microbiota, nutrient cycling, plant growth and carbon sequestration. We found that the benefits of amendment application during phytoremediation go beyond limiting the dispersion of pollutants as they enable a more rapid recovery of soil functions leading to wider environmental, social and economic gains. Effects of amendments on plant growth are amendment-specific, and their effect on carbon balance needs more investigation. We also pointed out some research questions that should be investigated to improve amendment-assisted phytoremediation strategies and discussed some perspectives to help phytomanagement projects to improve their economic sustainability.
Collapse
Affiliation(s)
- Papa Mamadou Sitor Ndour
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France.
| | - Julien Langrand
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Joel Fontaine
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale Et Interactions Sur Le Vivant (UCEIV), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais Cedex, UR4492, France
| |
Collapse
|
7
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
8
|
Chen Y, Wang F, Gao J, He X, Liu Q, Liu L. Enhancing bioremediation of petroleum-contaminated soil by sophorolipids-modified biochar: Combined metagenomic and metabolomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175772. [PMID: 39191326 DOI: 10.1016/j.scitotenv.2024.175772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
In this study, sophorolipids (SLs)-modified biochar (BC-SLs) was used to enhance the bioremediation of petroleum hydrocarbons (PHs) contaminated soil. The biodegradation rate of petroleum hydrocarbons (PHs) by BC-SLs and BC treatments were 62.86 % and 52.64 % after 60 days of remediation experiments, respectively, higher than non-biochar treatment group (24.09 %). The metagenomic analysis showed that the abundance of petroleum-degrading bacteria Actinobacteria and Proteobacteria were increased by 3.8 % and 5.3 %, respectively in BC-SLs treatment, and the abundance of functional genes for PHs degradation, such as alkB, nidA and pcaG, were significantly increased by 12.85 %, 30.08 % and 21.01 %, respectively. The metabolomic analysis showed that BC-SLs facilitated the metabolic process of PHs, the microbial metabolism of petroleum hydrocarbons (PHs) became more active. Fatty acid degradation and polycyclic aromatic hydrocarbons (PAHs) degradation were up-regulated, indicating the promoting effect of the BC-SLs for PHs metabolism. The combined metagenomic and metabolomic analysis demonstrated the strong positive correlations between PHs metabolites and PHs-degrading bacteria, such as lauric acid vs. Actinobacteria, benzoic vs. Proteobacteria. The strong positive correlations between PHs metabolites and PHs-degrading genes were also observed, such as o-ehyltoluene vs. nahD, 4-isopropylbenzoic acid vs. etbAa. The modification of biochar with SLs increased the oxygen-containing functional groups on the surface of biochar. Meanwhile, the emulsification and solubilization of SLs promoted the bioavailability of PHs. The effects of BC-SLs on the nitrogen cycle during PHs remediation showed that it facilitated the accumulation of nitrogen-fixing genes, promoted nitrification but inhibited denitrification process. This study confirms that the application of BC-SLs is an effective remediation of PHs contamination and a sustainable method for controlling agricultural waste resources.
Collapse
Affiliation(s)
- Yuhang Chen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fumei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jiaqi Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Xinhua He
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qinglong Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Le Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Wang W, Shi H, Liu X, Mao L, Zhang L, Zhu L, Wu C, Wu W. Enhanced remediation of acetochlor-contaminated soils using phosphate-modified biochar: Impacts on environmental fate, microbial communities, and plant health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177359. [PMID: 39500462 DOI: 10.1016/j.scitotenv.2024.177359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/12/2024]
Abstract
Given that acetochlor (ACT) persists in soil for extended periods, disrupting microbial community structure and causing phytotoxicity to sensitive crops, this study investigated the potential of phosphate-modified biochar (PBC-800) to remediate ACT-contaminated soil. Incorporating 0.5 % PBC-800 into fluvo-aquic, red, and black soils increased their adsorption capacities by 80.4 mg g-1, 76.6 mg g-1, and 76.0 mg g-1, respectively. Even after six months of aging, the Kf values remained 1.6 to 5.1 times higher than in untreated soils. PBC-800 also accelerated ACT degradation across all three soil types, reducing residual ACT levels by 34.3 % to 76.4 % after 60 days, and shortening the degradation half-life by 5 to 7 days. High-throughput sequencing revealed that ACT reduced soil microbial diversity and disrupted community structure, while 0.5 % PBC-800 amendments promoted the growth of degradation-capable genera such as Rhodococcus, Lysobacter, and Gemmatimonas, enhancing microbial ecosystem stability. Furthermore, the amendment of soil with 0.5 % PBC-800 reduced ACT residue concentrations in maize and soybeans by 76.5 % to 82.9 %, and restored plant biomass, leaf chlorophyll content, and mesophyll cell ultrastructure to levels comparable to the control. Therefore, amending ACT-contaminated soil with PBC-800 mitigates ecological and environmental risks, boosts microbial activity, and safeguards plant health.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haojie Shi
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenzhu Wu
- Nanjing Institute of Environmental Sciences, MEE, Nanjing 211299, China.
| |
Collapse
|
10
|
Vadakkan K, Sathishkumar K, Raphael R, Mapranathukaran VO, Mathew J, Jose B. Review on biochar as a sustainable green resource for the rehabilitation of petroleum hydrocarbon-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173679. [PMID: 38844221 DOI: 10.1016/j.scitotenv.2024.173679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Petroleum pollution is one of the primary threats to the environment and public health. Therefore, it is essential to create new strategies and enhance current ones. The process of biological reclamation, which utilizes a biological agent to eliminate harmful substances from polluted soil, has drawn much interest. Biochars are inexpensive, environmentally beneficial carbon compounds extensively employed to remove petroleum hydrocarbons from the environment. Biochar has demonstrated an excellent capability to remediate soil pollutants because of its abundant supply of the required raw materials, sustainability, affordability, high efficacy, substantial specific surface area, and desired physical-chemical surface characteristics. This paper reviews biochar's methods, effectiveness, and possible toxic effects on the natural environment, amended biochar, and their integration with other remediating materials towards sustainable remediation of petroleum-polluted soil environments. Efforts are being undertaken to enhance the effectiveness of biochar in the hydrocarbon-based rehabilitation approach by altering its characteristics. Additionally, the adsorption, biodegradability, chemical breakdown, and regenerative facets of biochar amendment and combined usage culminated in augmenting the remedial effectiveness. Lastly, several shortcomings of the prevailing methods and prospective directions were provided to overcome the constraints in tailored biochar studies for long-term performance stability and ecological sustainability towards restoring petroleum hydrocarbon adultered soil environments.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| | - Rini Raphael
- Department of Zoology, Carmel College (Autonomous), Mala, Kerala 680732, India
| | | | - Jennees Mathew
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala 683589, India
| | - Beena Jose
- Department of Chemistry, Vimala College (Autonomous), Thrissur 680009, Kerala, India
| |
Collapse
|
11
|
Fakhr MA, Abu-Elsaoud AM, Alharbi K, Zia-Ur-Rehman M, Usman M, Soliman MH. Investigating the combined effects of β-sitosterol and biochar on nutritional value and drought tolerance in Phaseolus vulgaris under drought stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24023. [PMID: 39222467 DOI: 10.1071/fp24023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Climate change-induced drought stress decreases crop productivity, but the application of β-sitosterol (BS) and biochar (BC) boosts crop growth and yield. A pot experiment was conducted to examine the effects of the alone and combined application of BS and BC on the growth and yield of Phaseolus vulgaris under drought stress. The synergistic application of BS and BC increased plant height (46.9cm), shoot dry weight (6.9g/pot), and root dry weight (2.5g/pot) of P. vulgaris plants under drought stress. The trend of applied treatments for photosynthetic rate remained as BC (15%)
Collapse
Affiliation(s)
- Marwa A Fakhr
- Botany Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt; and Green Materials Technology Department, Environment and Natural Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Abdelghafar M Abu-Elsaoud
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; and Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Kingdom of Saudi Arabia
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab 38000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Punjab 38000, Pakistan
| | - Mona H Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; and Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
13
|
Lin Z, Wu W, Yang C, Yang G, Wu W, Wei T, Huang F, Li H, Ren L, Liang Y, Zhang D, Li Z, Zhen Z. Mechanisms of biochar assisted di-2-ethylhexyl phthalate (DEHP) biodegradation in tomato rhizosphere by metabolic and metagenomic analysis. CHEMOSPHERE 2024; 353:141520. [PMID: 38395368 DOI: 10.1016/j.chemosphere.2024.141520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
The intensive accumulation of di-2-ethylhexyl phthalate (DEHP) in agricultural soils has resulted in severe environmental pollution that endangers ecosystem and human health. Biochar is an eco-friendly material that can help in accelerating organic pollutant degradation; nevertheless, its roles in enhancing DEHP removal in rhizosphere remain unclear. This work investigated the impacts of biochar dosage (0%-2.0%) on DEHP degradation performance in tomato rhizosphere by comprehensively exploring the change in DEHP metabolites, bacterial communities and DEHP-degrading genes. Our results showed a significant increase of rhizosphere pH, organic matter and humus by biochar amendment, which achieved a satisfactorily higher DEHP removal efficiency, maximally 77.53% in treatments with 1.0% of biochar. Biochar addition also remarkably changed rhizosphere bacterial communities by enriching some potential DEHP degraders of Nocardioides, Sphingomonas, Bradyrhizobium and Rhodanobacter. The abundance of genes encoding key enzymes (hydrolase, esterase and cytochrome P450) and DEHP-degrading genes (pht3, pht4, pht5, benC-xylZ and benD-xylL) were increased after biochar amendment, leading to the change in DEHP degradation metabolism, primarily from benzoic acid pathway to protocatechuic acid pathway. Our findings evidenced that biochar amendment could accelerate DEHP degradation by altering rhizosphere soil physicochemical variables, bacterial community composition and metabolic genes, providing clues for the mechanisms of biochar-assisted DEHP degradation in organic contaminated farmland soils.
Collapse
Affiliation(s)
- Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, PR China
| | - Weijian Wu
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Fengcheng Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Huijun Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Yanqiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Zhe Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, PR China.
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
14
|
Shang X, Wu S, Liu Y, Zhang K, Guo M, Zhou Y, Zhu J, Li X, Miao R. Rice husk and its derived biochar assist phytoremediation of heavy metals and PAHs co-contaminated soils but differently affect bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133684. [PMID: 38310844 DOI: 10.1016/j.jhazmat.2024.133684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
In order to evaluate the feasibility of rice husk and rice husk biochar on assisting phytoremediation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) co-contaminated soils, a 150-day pot experiment planted with alfalfa was designed. Rice husk and its derived biochar were applied to remediate a PAHs, Zn, and Cr co-contaminated soil. The effects of rice husk and biochar on the removal and bioavailability of PAHs and HMs, PAH-ring hydroxylating dioxygenase gene abundance and bacterial community structure in rhizosphere soils were investigated. Results suggested that rice husk biochar had better performance on the removal of PAHs and immobilization of HMs than those of rice husk in co-contaminated rhizosphere soil. The abundance of PAH-degraders, which increased with the culture time, was positively correlated with PAHs removal. Rice husk biochar decreased the richness and diversity of bacterial community, enhanced the growth of Steroidobacter, Bacillus, and Sphingomonas in rhizosphere soils. However, Steroidobacter, Dongia and Acidibacter were stimulated in rice husk amended soils. According to the correlation analysis, Steroidobacter and Mycobacterium may play an important role in PAHs removal and HMs absorption. The combination of rice husk biochar and alfalfa would be a promising method to remediate PAHs and HMs co-contaminated soil.
Collapse
Affiliation(s)
- Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Sirui Wu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yuli Liu
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Keke Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuhui Li
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, Henan Engineering Research Centre for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng 475004 China.
| | - Renhui Miao
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Guo M, Shang X, Ma Y, Zhang K, Zhang L, Zhou Y, Gong Z, Miao R. Biochars assisted phytoremediation of polycyclic aromatic hydrocarbons contaminated agricultural soil: Dynamic responses of functional genes and microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123476. [PMID: 38311160 DOI: 10.1016/j.envpol.2024.123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
A biochar-intensified phytoremediation experiment was designed to investigate the dynamic effects of different biochars on polycyclic aromatic hydrocarbon (PAH) removal in ryegrass rhizosphere contaminated soil. Maize and wheat straw biochar pyrolyzed at 300 °C and 500 °C were amended into PAH-contaminated soil, and then ryegrass (Lolium multiflorum L.) was planted for 90 days. Spearman's correlations among PAH removal, enzyme activity, abundance of PAH-ring hydroxylating dioxygenase (PAH-RHDα), and fungal and bacterial community structure were analyzed to elucidate the microbial degradation mechanisms during the combined remediation process. The results showed that 500 °C wheat straw biochar had higher surface area and more nutrients, and significantly accelerated the phytoremediation of PAHs (62.5 %), especially for high molecular weight PAH in contaminated soil. The activities of urease and dehydrogenase and the abundance of total and PAH-degrading bacteria, which improved with time by biochar and ryegrass, had a positive correlation with the removal rate of PAHs. Biochar enhanced the abundance of gram-negative (GN) PAH-RHDα genes. The GN PAH-degraders, Sphingomonas, bacteriap25, Haliangium, and Dongia may play vital roles in PAH degradation in biochar-amended rhizosphere soils. Principal coordinate analysis indicated that biochar led to significant differences in fungal community structures before 30 days, while the diversity of the bacterial community composition depended on planting ryegrass after 60 days. These findings imply that the structural reshaping of microbial communities results from incubation time and the selection of biochar and ryegrass in PAH-contaminated soils. Applying 500 °C wheat straw biochar could enhance the rhizoremediation of PAH-contaminated soil and benefit the soil microbial ecology.
Collapse
Affiliation(s)
- Meixia Guo
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Xingtian Shang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yulong Ma
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Keke Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Ling Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Zongqiang Gong
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Renhui Miao
- Henan Dabieshan National Observation and Research Field Station of Forest Ecosystem, International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
16
|
Zhou Z, Xia L, Wang X, Wu C, Liu J, Li J, Lu Z, Song S, Zhu J, Montes ML, Benzaazoua M. Coal slime as a good modifier for the restoration of copper tailings with improved soil properties and microbial function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109266-109282. [PMID: 37759064 DOI: 10.1007/s11356-023-30008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
In recent years, the solid wastes from the coal industry have been widely used as soil amendments. Nevertheless, the impact of utilizing coal slime for copper tailing restoration in terms of plant growth, physicochemical characteristics of the tailing soil, and microbial succession remains uncertain.Herein, the coal slime was employed as a modifier into copper tailings. Their effect on the growth and physiological response of Ryegrass, and the soil physicochemical properties as well as the bacterial community structure were investigated. The results indicated that after a 30-day of restoration, the addition of coal slime at a ratio of 40% enhanced plant growth, with a 21.69% rise in chlorophyll content, and a 62.44% increase in peroxidase activity. The addition of 40% coal slime also increased the content of nutrient elements in copper tailings. Following a 20-day period of restoration, the concentrations of available copper and available zinc in the modified tailings decreased by 39.6% and 48.51%, respectively, with 40% of coal slime added. In the meantime, there was an observed augmentation in the species diversity of the bacterial community in the modified tailings. The alterations in both community structure and function were primarily influenced by variations in pH value, available nitrogen, phosphorus, potassium, and available copper. The addition of 40% coal slime makes the physicochemical properties and microbial community evolution of copper tailings reach a balance point. The utilization of coal slime has the potential to enhance the physicochemical characteristics of tailings and promote the proliferation of microbial communities, hence facilitating the soil evolution of two distinct solid waste materials. Consequently, the application of coal slime in the restoration of heavy metal tailings is a viable approach, offering both cost-effectiveness and efficacy as an enhancer.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China.
| | - Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Chenyu Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiazhi Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
- Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
| | - Zijing Lu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- Hubei Sanxin Gold Copper Limited Company, Huangshi, Hubei, China
| | | | - Mostafa Benzaazoua
- Mohammed VI Polytechnic University (UM6P), Geology and Sustainable Mining, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| |
Collapse
|
17
|
Chojnacka K, Moustakas K, Mikulewicz M. The combined rhizoremediation by a triad: plant-microorganism-functional materials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90500-90521. [PMID: 37477813 PMCID: PMC10439854 DOI: 10.1007/s11356-023-28755-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
The article describes new strategies for the remediation of soils contaminated with organic and inorganic pollutants. The aim of this study is to investigate the synergistic effects of combining plant-microorganism-functional materials for a more effective reduction of soil contamination with toxic chemicals. The innovative triad involves functional materials as a habitat for microorganisms, which helps to control the release of pollutants into the soil solution from the adsorbed form. This, in turn, reduces the toxic effect on microorganisms and plants. Microorganisms play a complex role, consisting of partial biodegradation of pollutants, stimulation of plant growth, and support for nutrient supply. Plants synthesize root exudates that facilitate microorganisms in biodegrading organic pollutants and stimulate their growth. The plant takes up pollutants through the root system, which can be further supported by endophytic microorganisms. The cooperation of the three players produces a synergistic effect that enhances the effectiveness of rhizodegradation supported by functional materials, which is more effective than using microorganisms, phytoremediation, or functional materials alone. The combination of physicochemical methods (functional materials) and microbiological methods (bacteria and fungi, rhizosphere, symbiotic and non-symbiotic) supported by plants (hyperaccumulators) is a promising approach for reducing chemicals from soil. Key examples of the synergistic effects of combining plant-microorganism-functional materials have been provided in this article.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - Konstantinos Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, 15780, Athens, Greece
| | - Marcin Mikulewicz
- Department of Dentofacial Orthopaedics and Orthodontics, Division of Facial Abnormalities, Medical University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
18
|
Zhao J, Wang Y, Guan D, Fu Z, Zhang Q, Guo L, Sun Y, Zhang Q, Wang D. Calcium hypochlorite-coupled aged refuse promotes hydrogen production from sludge anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 370:128534. [PMID: 36574889 DOI: 10.1016/j.biortech.2022.128534] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This work investigated the effect of calcium hypochlorite (CH) coupled aged refuse (AR) treatment on the enhanced hydrogen generation from sludge anaerobic dark fermentation (SADF). The enhanced mechanism was systematically revealed through sludge disintegration, organic matter biotransformation, and microbial community characteristics, etc. The experimental data showed that CH coupled AR increased the hydrogen yield to 18.1 mL/g, significantly higher than that in the AR or CH group alone. Mechanistic analysis showed that CH-coupled AR significantly promoted sludge disintegration and hydrolysis processes, providing sufficient material for hydrogen-producing bacteria. Microbiological analysis showed that CH-coupled AR increased the relative abundance of responsible hydrogen-producing microorganisms. In addition, CH-coupled AR was very effective in reducing phosphate content in the fermentation liquid and fecal coliforms in the digestate, thus facilitating the subsequent treatment of fermentation broth and digestate. CH coupled AR is an alternative strategy to increase hydrogen production from sludge.
Collapse
Affiliation(s)
- Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yuxin Wang
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Dezheng Guan
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Zhou Fu
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qi Zhang
- Qingdao Jiebao Ecological Technology Co., Ltd, Qingdao 266113, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Recycling Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Qiuzhuo Zhang
- School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Dike CC, Hakeem IG, Rani A, Surapaneni A, Khudur L, Shah K, Ball AS. The co-application of biochar with bioremediation for the removal of petroleum hydrocarbons from contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157753. [PMID: 35931161 DOI: 10.1016/j.scitotenv.2022.157753] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Soil pollution from petroleum hydrocarbon is a global environmental problem that could contribute to the non-actualisation of the United Nations Sustainable Development Goals. Several techniques have been used to remediate petroleum hydrocarbon-contaminated soils; however, there are technical and economical limitations to existing methods. As such, the development of new approaches and the improvement of existing techniques are imperative. Biochar, a low-cost carbonaceous product of the thermal decomposition of waste biomass has gained relevance in soil remediation. Biochar has been applied to remediate hydrocarbon-contaminated soils, with positive and negative results reported. Consequently, attempts have been made to improve the performance of biochar in the hydrocarbon-based remediation process through the co-application of biochar with other bioremediation techniques as well as modifying biochar properties before use. Despite the progress made in this domain, there is a lack of a detailed single review consolidating the critical findings, new developments, and challenges in biochar-based remediation of petroleum hydrocarbon-contaminated soil. This review assessed the potential of biochar co-application with other well-known bioremediation techniques such as bioaugmentation, phytoremediation, and biostimulation. Additionally, the benefits of modification in enhancing biochar suitability for bioremediation were examined. It was concluded that biochar co-application generally resulted in higher hydrocarbon removal than sole biochar treatment, with up to a 4-fold higher removal observed in some cases. However, most of the biochar co-applied treatments did not result in hydrocarbon removal that was greater than the additive effects of individual treatment. Overall, compared to their complementary treatments, biochar co-application with bioaugmentation was more beneficial in hydrocarbon removal than biochar co-application with either phytoremediation or biostimulation. Future studies should integrate the ecotoxicological and cost implications of biochar co-application for a viable remediation process. Lastly, improving the synergistic interactions of co-treatment on hydrocarbon removal is critical to capturing the full potential of biochar-based remediation.
Collapse
Affiliation(s)
- Charles Chinyere Dike
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Ibrahim Gbolahan Hakeem
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Alka Rani
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Aravind Surapaneni
- South East Water, 101 Wells Street, Frankston, Victoria 3199, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Leadin Khudur
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| | - Andrew S Ball
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia; ARC Training Centre for the Transformation of Australia's Biosolids Resource, RMIT University, Bundoora, Victoria 3083, Australia
| |
Collapse
|