1
|
Ding Y, Zheng JT, Du S, Wu D, Hu F, Zhu D. Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138681. [PMID: 40412325 DOI: 10.1016/j.jhazmat.2025.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/08/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems.
Collapse
Affiliation(s)
- Ying Ding
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Jin-Ting Zheng
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Shuai Du
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Di Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Dong Zhu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| |
Collapse
|
2
|
Sun D, Shi X, Shen Y, Liu Y, Luo S, Jin Y, Zhai W, Liu L, Deng Z, Sun C, Liu D, Yang X, Xie Y, Krüger-Haker H, Wu C, Schwarz S, Shen J, Chen Y, Ma S, Wang Y. Comparative efficacy of anaerobic digestion systems in removing antimicrobial resistance genes from swine wastewater. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136868. [PMID: 39708598 DOI: 10.1016/j.jhazmat.2024.136868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Swine farm wastewater is a major reservoir of antimicrobial resistance genes (ARGs). Anaerobic digestion (AD), widely implemented in farms, has been extensively studied for ARG removal. However, a comparative study on ARG removal efficiency across the four principal AD systems - up-flow anaerobic sludge blanket (UASB), continuous stirred tank reactor (CSTR), buried biogas digester (BBD), and septic tank (SPT) - is lacking. Herein, we employed metagenomic sequencing, ultra-performance liquid chromatography-tandem mass spectrometry, as well as atomic absorption spectrometry/atomic fluorescence spectrophotometry, and revealed that UASB and CSTR achieved higher removal efficiencies for both ARGs (67% and 57%) and antibiotic residues (100% and 90%) compared to BBD and SPT. Acinetobacter, Escherichia, Pseudomonas and Streptococcus were the primary ARG hosts, comprising over 65% of the total abundance in influent samples. UASB and CSTR systems demonstrated superior removal efficiencies for both mobile genetic elements (MGEs) and antibiotic residues, both of which had essential impacts on ARG profiles. In addition, heavy metals might contribute to variation in ARGs through horizontal gene transfer. Collectively, the variation in microbial communities and better removal of both MGEs and antibiotic residues contribute to the remarkable ARG removal efficiency of UASB and CSTR, therefore, advocating for the widespread adoption of these two AD systems in swine farms.
Collapse
Affiliation(s)
- Da Sun
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaomin Shi
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yingbo Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weishuai Zhai
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhaoju Deng
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dejun Liu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Yang
- Hainan Animal Disease Control Center, Haikou 571100, China
| | - Youzhi Xie
- Hainan Animal Disease Control Center, Haikou 571100, China
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Congming Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Stefan Schwarz
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Institute of Microbiology and Epizootics, Center for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany; Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Jianzhong Shen
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Shizhen Ma
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yang Wang
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Bertrans-Tubau L, Martínez-Campos S, Lopez-Doval J, Abril M, Ponsá S, Salvadó V, Hidalgo M, Pico-Tomàs A, Balcazar JL, Proia L. Nature-based bioreactors: Tackling antibiotic resistance in urban wastewater treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100445. [PMID: 39055482 PMCID: PMC11269294 DOI: 10.1016/j.ese.2024.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The overuse and misuse of antibiotics have accelerated the selection of antibiotic-resistant bacteria, significantly impacting human, animal, and environmental health. As aquatic environments are vulnerable to antibiotic resistance, suitable management practices should be adopted to tackle this phenomenon. Here we show an effective, nature-based solution for reducing antibiotic resistance from actual wastewater. We utilize a bioreactor that relies on benthic (biofilms) and planktonic microbial communities to treat secondary effluent from a small urban wastewater treatment plant (<10,000 population equivalent). This treated effluent is eventually released into the local aquatic ecosystem. We observe high removal efficiency for genes that provide resistance to commonly used antibiotic families, as well as for mobile genetic elements that could potentially aid in their spread. Importantly, we notice a buildup of sulfonamide (sul1 and sul2) and tetracycline (tet(C), tet(G), and tetR) resistance genes specifically in biofilms. This advancement marks the initial step in considering this bioreactor as a nature-based, cost-effective tertiary treatment option for small UWWTPs facing antibiotic resistance challenges.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Sergio Martínez-Campos
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Julio Lopez-Doval
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| | - Victoria Salvadó
- Chemistry Department, University of Girona. Campus Montilivi, 17005, Girona, Spain
| | - Manuela Hidalgo
- Chemistry Department, University of Girona. Campus Montilivi, 17005, Girona, Spain
| | - Anna Pico-Tomàs
- Catalan Institute Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Spain
| | - Jose Luis Balcazar
- Catalan Institute Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Spain
- University of Girona, 17004, Girona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic- Central University of Catalunya (BETA- UVIC- UCC), Carretera de Roda 70, 08500, Vic, Barcelona, Spain
| |
Collapse
|
4
|
Jin H, Jia Q, Jin X, Zhu X, Wang MG, Sun RY, Cui C. Identification of novel Tet(X6)-Tet(X2) recombinant variant in Elizabethkingia meningoseptica from a bullfrog farm and downstream river in China. Front Microbiol 2024; 15:1453801. [PMID: 39144213 PMCID: PMC11322121 DOI: 10.3389/fmicb.2024.1453801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction The dissemination of strains producing tetracyclines monooxygenase Tet(X) from breeding farms to the natural environment poses a potential threat to public health. Methods Antimicrobial susceptibility testing and WGS were performed to identify resistance phenotypes and genotypes. Cloning experiments, sequence alignment, and homology modeling were used to characterize the function and formation mechanisms of the recombinant variant. The mobilization potential of Tet(X) was assessed by collinearity analysis, conjugation experiments, and phylogenetic analysis. Results Three tet(X)-producing Elizabethkingia meningoseptica strains were isolated from bullfrog breeding ponds, the sewage outlet, and downstream river in Zhejiang Province, China. These strains carry a novel Tet(X) variant, differing from Tet(X6) by seven residues, and possess the ability to degrade tetracyclines. Interestingly, the novel Tet(X) is a recombinant variant formed by homologous recombination of Tet(X6) and the C-terminal of Tet(X2). Further analysis revealed that Tet(X6) formed several Tet(X) variants, including Tet(X5), through homologous recombination. The novel tet(X) gene is located on a circularizable integrative and conjugative element (ICEEmeChn3), with ISwz1 participating in the recombination of its multi-drug resistance region, potentially facilitating the mobilization and recombination of tet(X) in early hosts. These three strains were clonally transmitted and shared a close genetic relationship (SNP < 62) with a clinically-sourced strain isolated from the same province. Discussion To our knowledge, this is the first report of homologous recombination between Tet(X) variants with differing activities. These clonal strains provide evidence of the transmission of tet(X)-positive strains from aquaculture sewage to the natural environment, highlighting the need to strengthen the monitoring and management of this emerging farming model.
Collapse
Affiliation(s)
- Haobo Jin
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| | - Qing Jia
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| | - Xi Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xinlong Zhu
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| | - Min-Ge Wang
- Phage Research Center, Liaocheng University, Liaocheng, Shandong, China
| | - Ruan-Yang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaoyue Cui
- Laboratory Animal Centre, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
5
|
Yu Z, Liu Z, Sun L, Dong C, Jin Y, Hu B, Cheng D. Mobile genetic elements mediate the cross-media transmission of antibiotic resistance genes from pig farms and their risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172115. [PMID: 38569972 DOI: 10.1016/j.scitotenv.2024.172115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Manure composting in traditional small-scale pig farms leads to the migration and diffusion of antibiotics and antibiotics resistance genes (ARGs) along the chain of transmission to the surrounding environment, increasing the risk of environmental resistance. Understanding the transmission patterns, driving factors, and health risks of ARGs on small-scale pig farms is important for effective control of ARGs transmission. This study was conducted on a small pig farm and its surrounding environment. The cross-media transmission of ARGs and their risks in the farming habitat were investigated using Metagenomic annotation and qPCR quantitative detection. The results indicate that ARGs in farms spread with manure pile-soil-channel sediment-mudflat sediment. Pig farm manure contributed 22.49 % of the mudflat sediment ARGs. Mobile genetic elements mediate the spread of ARGs across different media. Among them, tnpA and IS26 have the highest degree. Transmission of high-risk ARGs sul1 and tetM resulted in a 50 % and 116 % increase in host risk for sediment, respectively. This study provides a basis for farm manure management and control of the ARGs spread.
Collapse
Affiliation(s)
- Zhendi Yu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Zishu Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lingtao Sun
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chifei Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yan Jin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Baolan Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Dongqing Cheng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
6
|
Li X, Chen T, Ren Q, Lu J, Cao S, Liu C, Li Y. Phages in sludge from the A/O wastewater treatment process play an important role in the transmission of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172111. [PMID: 38565354 DOI: 10.1016/j.scitotenv.2024.172111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Phages can influence the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) through transduction, but their profiles and effects on the transmission of ARGs are unclear, especially in complex swine sludge. In this study, we investigated the characterization of phage and ARG profiles in sludge generated from anoxic/oxic (A/O) wastewater treatment processes on swine farms using metagenomes and viromes. The results demonstrated that 205-221 subtypes of ARGs could be identified in swine sludge, among which sul1, tet(M), and floR were the dominant ARGs, indicating that sludge is an important reservoir of ARGs, especially in sludge (S) tanks. The greater abundance of mobile genetic elements (MGEs) in the S tank could significantly contribute to the greater abundance of ARGs there compared to the anoxic (A) and oxic (O) tanks (P < 0.05). However, when we compared the abundances of ARGs and MGEs in the A and O tanks, we observed opposite significant differences (P < 0.05), suggesting that MGEs are not the only factor influencing the abundance of ARGs. The high proportion of lysogenic phages in sludge from the S tank can also have a major impact on the ARG profile. Siphoviridae, Myoviridae, and Podoviridae were the dominant phage families in sludge, and a network diagram of bacteria-ARG-phages revealed that dominant phages and bacteria acted simultaneously as potential hosts for ARGs, which may have led to phage-mediated HGT of ARGs. Therefore, the risk of phage-mediated HGT of ARGs cannot be overlooked.
Collapse
Affiliation(s)
- Xiaoting Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Tao Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qinghai Ren
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Shengliang Cao
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
7
|
Chen T, Mo C, Yuan Y, Li S, Wu Y, Liao X, Yang Y. Short-, long-read metagenome and virome reveal the profile of phage-mediated ARGs in anoxic-oxic processes for swine wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133789. [PMID: 38394893 DOI: 10.1016/j.jhazmat.2024.133789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Phages are among the most widely spread viruses, but their profiles and the antibiotic resistance genes (ARGs) they carry in swine wastewater remain underexplored. The present study investigated the distribution characteristics of phages and their ARG risk in anoxic/oxic (A/O) wastewater treatment processes of swine farms using short- and long-read metagenome and virome. The results demonstrated that the virome could extract more phage sequences than the total metagenome; thus, it was more suited for studying phages in wastewater settings. Intriguingly, phages had significantly lower abundance of ARG than ARGs harbored by total microorganisms (P < 0.01). Eleven ARGs co-occurred with phages and bacteria (R > 0.6 and P < 0.05), with Siphoviridae being the phage co-occurring with the most ARGs (5). Horizontal gene transfer (HGT) events were observed between Proteobacteria and the major phyla except for Bacteroidota. Furthermore, there were prophage sequences and ARGs on the same contig in bacterial MAGs. These data strongly demonstrate that phages promote horizontal transfer of ARG between bacterial hosts in A/O processes for swine wastewater treatment. Therefore, the risk of phage-mediated horizontal transfer of ARGs cannot be overlooked despite the low abundance of phage ARGs (pARG).
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Chunhao Mo
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yilin Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Yinbao Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xindi Liao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yiwen Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
8
|
Zheng S, Han B, Wang Y, Ding Y, Zhao R, Yang F. Occurrence and dissemination of antibiotic resistance genes in the Yellow River basin: focused on family farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16328-16341. [PMID: 38316741 DOI: 10.1007/s11356-024-32290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
As an emerging contaminant, antibiotic resistance genes (ARGs) have attracted growing attention, owing to their widespread dissemination and potential risk in the farming environment. However, ARG pollution from family livestock farms in the Yellow River basin, one of the main irrigation water sources in the North China Plain, remains unclear. Herein, we targeted 21 typical family farms to assess the occurrence patterns of ARGs in livestock waste and its influence on ARGs in receiving environment by real-time quantitative PCR (qPCR). Results showed that common ARGs were highly prevalent in family livestock waste, and tet-ARGs and sul-ARGs were the most abundant in these family farms. Most ARG levels in fresh feces of different animals varied, as the trend of chicken farms (broilers > laying hens) > swine farms (piglets > fattening pigs > boars and sows) > cattle farms (dairy cattle > beef cattle). The effect of natural composting on removing ARGs for chicken manure was better than that for cattle manure, while lagoon storage was not effective in removing ARGs from family livestock wastewater. More troublesomely, considerable amounts of ARGs were discharged with manure application, further leading to the ARG increase in farmland soil (up to 58-119 times), which would exert adverse impacts on human health and ecological safety.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang, 261061, China
| | - Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People's Hospital, Weifang, 261041, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Ran Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
9
|
Zhang RM, Lian XL, Shi LW, Jiang L, Chen SS, Haung WQ, Wu JE, Wu FJ, Sun J, Liao XP, Chong YX, Liu YH, Jiang C. Dynamic human exposure to airborne bacteria-associated antibiotic resistomes revealed by longitudinal personal monitoring data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166799. [PMID: 37673270 DOI: 10.1016/j.scitotenv.2023.166799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Airborne antibiotic-resistant bacteria (ARB) can critically impact human health. We performed resistome profiling of 283 personal airborne exposure samples from 15 participants spanning 890 days and 66 locations. We found a greater diversity and abundance of airborne bacteria community and antibiotic resistomes in spring than in winter, and temperature contributed largely to the difference. A total of 1123 bacterial genera were detected, with 16 genera dominating. Of which, 7/16 were annotated as major antibiotic resistance gene (ARG) hosts. The participants were exposed to a highly dynamic collection of ARGs, including 322 subtypes conferring resistance to 18 antibiotic classes dominated by multidrug, macrolide-lincosamide-streptogramin, β-lactam, and fosfomycin. Unlike the overall community-level bacteria exposure, an extremely high abundance of specific ARG subtypes, including lunA and qacG, were found in some samples. Staphylococcus was the predominant genus in the bacterial community, serving as a primary bacterial host for the ARGs. The annotation of ARG-carrying contigs indicated that humans and companion animals were major reservoirs for ARG-carrying Staphylococcus. This study contextualized airborne antibiotic resistomes in the precision medicine framework through longitudinal personal monitoring, which can have broad implications for human health.
Collapse
Affiliation(s)
- Rong-Min Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xin-Lei Lian
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Li-Wei Shi
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Liuyiqi Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shan-Shan Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qing Haung
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jia-En Wu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Fei-Jing Wu
- School of Life Sciences, South China Normal University, Guangzhou 510642, China
| | - Jian Sun
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Ping Liao
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yun-Xiao Chong
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, China; Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Yan Q, Xu Y, Zhong Z, Xu Y, Lin X, Cao Z, Feng G. Insights into antibiotic resistance-related changes in microbial communities, resistome and mobilome in paddy irrigated with reclaimed wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165672. [PMID: 37478933 DOI: 10.1016/j.scitotenv.2023.165672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
Reclaimed wastewater (reclaimed wastewater, RWW) from municipal wastewater treatment plants for paddy irrigation is a well-established practice to alleviate water scarcity. However, the reuse may result in the persistent exposure of the paddy to residual antibiotics in RWW. Continuous presence of even low-level antibiotics can exert selective pressure on microbiota, resulting in the proliferation and dissemination of antibiotic resistance genes (ARGs) in paddy. In this study, metagenomic analysis was applied to firstly deciphered the effects of residual antibiotics on microbiome and resistome in constructed mesocosm-scale paddy soils. The diversity and abundance of ARG have remarkably risen with the increasing antibiotic concentration in RWW. Network analysis revealed that 28 genera belonging to six phyla were considered as the potential ARG hosts, and their abundances were enhanced with increasing antibiotic concentrations. A partial least-squares path model indicated that the microbial community was the principal direct driver of the ARG abundance and the resistome alteration in paddy soil under long-term RWW irrigation. Microbes may acquire ARGs via horizontal gene transfer. IntI1 could play an essential role in the propagation and spread of ARGs. Functional analysis suggested that enhanced SOS response and T4SSs (Type IV secretion systems) modules could stimulate horizontal transfer potential and promote the ARG abundance. The obtained results provide a scientific decision for assessing the ecological risk of RWW application.
Collapse
Affiliation(s)
- Qing Yan
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China.
| | - Yufeng Xu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zhengzheng Zhong
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Yuan Xu
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Xiaoyan Lin
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Zhaoyun Cao
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Guozhong Feng
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China.
| |
Collapse
|
11
|
Agarwal V, Yue Y, Zhang X, Feng X, Tao Y, Wang J. Spatial and temporal distribution of endotoxins, antibiotic resistance genes and mobile genetic elements in the air of a dairy farm in Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122404. [PMID: 37625772 DOI: 10.1016/j.envpol.2023.122404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Antimicrobial resistance (AMR) is a serious issue that is continuously growing and spreading, leading to a dwindling number of effective treatments for infections that were easily treatable with antibiotics in the past. Animal farms are a major hotspot for AMR, where antimicrobials are often overused, misused, and abused, in addition to overcrowding of animals. In this study, we investigated the risk of AMR transmission from a farm to nearby residential areas by examining the overall occurrence of endotoxins, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the air of a cattle farm. We assessed various factors, including the season and year, day and nighttime, and different locations within the farm building and its vicinity. The most abundant ARGs detected were tetW, aadA1, and sul2, genes that encode for resistances towards antibiotics commonly used in veterinary medicine. While there was a clear concentration gradient for endotoxin from the middle of the farm building to the outside areas, the abundance of ARGs and MGEs was relatively uniform among all locations within the farm and its vicinity. This suggests that endotoxins preferentially accumulated in the coarse particle fraction, which deposited quickly, as opposed to the ARGs and MGEs, which might concentrate in the fine particle fraction and remain longer in the aerosol phase. The occurrence of the same genes found in the air samples and in the manure indicated that ARGs and MGEs in the air mostly originated from the cows, continuously being released from the manure to the air. Although our atmospheric dispersion model indicated a relatively low risk for nearby residential areas, farm workers might be at greater risk of getting infected with resistant bacteria and experiencing overall respiratory tract issues due to continuous exposure to elevated concentrations of endotoxins, ARGs and MGEs in the air of the farm.
Collapse
Affiliation(s)
- V Agarwal
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Yue
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Zhang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - X Feng
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - Y Tao
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
| | - J Wang
- Institute of Environmental Engineering, ETH Zurich, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland.
| |
Collapse
|
12
|
Gu Q, Lin T, Wei X, Zhang Y, Wu S, Yang X, Zhao H, Wang C, Wang J, Ding Y, Zhang J, Wu Q. Prevalence of antimicrobial resistance in a full-scale drinking water treatment plant. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118396. [PMID: 37331316 DOI: 10.1016/j.jenvman.2023.118396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/27/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Antibiotic resistance in drinking water has received increasing attention in recent years. In this study, the occurrence and abundance of antibiotic resistance genes (ARGs) in a drinking water treatment plant (DWTP) was comprehensively investigated using metagenomics. Bioinformatics analysis showed that 381 ARG subtypes belonging to 15 ARG types were detected, and bacitracin had the highest abundance (from 0.26 × 10-2 to 0.86 copies/cell), followed by multidrug (from 0.57 × 10-1 to 0.47 copies/cell) and sulfonamide (from 0.83 × 10-2 to 0.35 copies/cell). Additionally, 933 ARG-carrying contigs (ACCs) were obtained from the metagenomic data, among which 153 contigs were annotated as pathogens. The most abundant putative ARG host was Staphylococcus (7.9%), which most frequently carried multidrug ARGs (43.2%). Additionally, 38 high-quality metagenome-assembled genomes (MAGs) were recovered, one of which was identified as Staphylococcus aureus (Bin.624) and harboured the largest number of ARGs (n = 16). Using the cultivation technique, 60 isolates were obtained from DWTP samples, and Staphylococcus spp. (n = 11) were found to be dominant in all isolates, followed by Bacillus spp. (n = 17). Antimicrobial susceptibility testing showed that most Staphylococcus spp. were multidrug resistant (MDR). These results deepen our understanding of the distribution profiles of ARGs and antibiotic resistant bacteria (ARB) in DWTPs for potential health risk evaluation. Our study also highlights the need for new and efficient water purification technologies that can be introduced and applied in DWTPs.
Collapse
Affiliation(s)
- Qihui Gu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Tao Lin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, PR China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Hui Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Chufang Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China; Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, 510070, PR China.
| |
Collapse
|
13
|
Han B, Yang F, Shen S, Mu M, Zhang K. Effects of soil habitat changes on antibiotic resistance genes and related microbiomes in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165109. [PMID: 37385504 DOI: 10.1016/j.scitotenv.2023.165109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023]
Abstract
The changes of paddy soil habitat profoundly affect the structure and function of soil microorganisms, but how this process drives the growth and spread of manure- derived antibiotic resistance genes (ARGs) after entering the soil is unclear. Herein, this study explored the environmental fate and behavior of various ARGs in the paddy soil during rice growth period. Results showed that most ARG abundances in flooded soil was lower than that in non-flooded soil during rice growth (decreased by 33.4 %). And soil dry-wet alternation altered microbial community structure in paddy field (P < 0.05), showing that Actinobacteria and Firmicutes increased in proportion under non-flooded conditions, and Chloroflexi, Proteobacteria and Acidobacteria evolved into the dominant groups in flooded soil. Meanwhile, the correlation between ARGs and bacterial communities was stronger than that with mobile genetic elements (MGEs) in both flooded and non-flooded paddy soils. Furthermore, soil properties, especially oxidation reduction potential (ORP), were proved to be an essential factor in regulating the variability of ARGs in the whole rice growth stage by structural equation model, with a direct influence (λ = 0.38, P < 0.05), following by similar effects of bacterial communities and MGEs (λ = 0.36, P < 0.05; λ = 0.29, P < 0.05). This study demonstrated that soil dry-wet alternation effectively reduced the proliferation and dissemination of most ARGs in paddy fields, providing a novel agronomic measure for pollution control of antibiotic resistance in farmland ecosystem.
Collapse
Affiliation(s)
- Bingjun Han
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China.
| | - Shizhou Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China
| | - Meirui Mu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, China; Dali, Yunnan, Agro-Ecosystem, National Observation and Research Station, Dali, China.
| |
Collapse
|
14
|
Sabar MA, Van Huy T, Sugie Y, Wada H, Zhao B, Matsuura N, Ihara M, Watanabe T, Tanaka H, Honda R. Antimicrobial resistome and mobilome in the urban river affected by combined sewer overflows and wastewater treatment effluent. JOURNAL OF WATER AND HEALTH 2023; 21:1032-1050. [PMID: 37632379 PMCID: wh_2023_073 DOI: 10.2166/wh.2023.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
The dissemination of antimicrobial resistance in the environment is an emerging global health problem. Wastewater treatment effluent and combined sewer overflows (CSOs) are major sources of antimicrobial resistance in urban rivers. This study aimed to clarify the effect of municipal wastewater treatment effluent and CSO on antimicrobial resistance genes (ARGs), mobile gene elements, and the microbial community in an urban river. The ARG abundance per 16S-based microbial population in the target river was 0.37-0.54 and 0.030-0.097 during the CSO event and dry weather, respectively. During the CSO event, the antimicrobial resistome in the river shifted toward a higher abundance of ARGs to clinically important drug classes, including macrolide, fluoroquinolone, and β-lactam, whereas ARGs to sulfonamide and multidrug by efflux pump were relatively abundant in dry weather. The abundance of intI1 and tnpA genes were highly associated with the total ARG abundance, suggesting their potential application as an indicator for estimating resistome contamination. Increase of prophage during the CSO event suggested that impact of CSO has a greater potential for horizontal gene transfer (HGT) via transduction. Consequently, CSO not only increases the abundance of ARGs to clinically important antimicrobials but also possibly enhances potential of HGT in urban rivers.
Collapse
Affiliation(s)
- Muhammad Adnan Sabar
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan E-mail:
| | - Than Van Huy
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yoshinori Sugie
- Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Hiroyuki Wada
- Graduate School of Engineering, Kyoto University, Kyoto 615-8530, Japan
| | - Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu 520-0811, Japan; College of Environment, Hohai University, Nanjing 210098, China
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu 520-0811, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku 780-8072, Japan
| | - Toru Watanabe
- Department of Food, Life and Environmental Sciences, Yamagata University, Tsuruoka 997-8555, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu 520-0811, Japan
| | - Ryo Honda
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu 520-0811, Japan; Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
15
|
Liu L, Teng Y, Chen H, Hu J. Characteristics of resistome and bacterial community structure in constructed wetland during dormant period: A fullscale study from Annan wetland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114347. [PMID: 36455350 DOI: 10.1016/j.ecoenv.2022.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a green technology, constructed wetlands (CWs) can provide a low-cost solution for wastewater treatment. Either as a standalone treatment or integrated with conventional treatment, nutrients, antibiotic resistant bacteria (ARB)/antibiotic resistance genes (ARGs) can be removed by CW efficiently. While, few studies have focused on characteristics of resistome and bacterial community (BC) structure in CW during dormant period. Therefore, in this study, Annan CW (a full-scale hybrid CW) was selected to characterize resistome and BC during dormant period. The profiles of bacteria / ARGs were monitored in combination of shotgun sequencing and metagenomic assembly analysis. And multidrug ARGs are the most abundant in Annan CW, and surface flow wetland had the relatively high ARG diversity and abundance compared with subsurface flow wetland and the front pond. The most dominant phylum in CW is Proteobacteria, while the other dominant phylum in three parts have different order. COD, TP, TN, ARGs, and mobile genetic genes (MGEs) were removed by subsurface flow CW with better performance, but virulent factors (VFs) were removed by surface flow CW with better performance. Based on the spatiotemporal distribution of ARGs, the internal mechanism of ARGs dynamic variation was explored by the redundancy analysis (RDA) and variation partitioning analysis (VPA). BCs, MGEs and environmental factors (EFs) were responsible for 45.6 %, 28.3 % and 15.4 % of the ARGs variations. Among these factors, BCs and MGEs were the major co-drivers impacting the ARG profile, and EFs indirectly influence the ARG profile. This study illustrates the specific functions of ARG risk elimination in different CW components, promotes a better understanding of the efficiency of CWs for the reduction of ARG and ARB, contributing to improve the removal performance of constructed wetlands. And provide management advice to further optimize the operation of CWs during dormant period.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|