1
|
Chen J, Cheng H, Yan Y, Zhu J, Zhang M, Xie S, Xu J, Wang H. Primary producers in freshwater ecosystem respond differently to multiple environmental stressors: A mesocosm study. ENVIRONMENTAL RESEARCH 2025; 272:121145. [PMID: 39988044 DOI: 10.1016/j.envres.2025.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
Primary producers play key roles in maintaining a clear-water phase and promoting biodiversity in shallow aquatic ecosystems. Environmental stressors from anthropogenic activities, such as eutrophication and pesticide pollution, individually and in combination, can drive these ecosystems into a turbid state, potentially leading to a regime shift. In this 111-day study, we used 40 mesocosms (200 L) to simulate shallow lakes dominated by two typical macrophytes: the bottom-dwelling densely Vallisneria denseserrulata and the floating Spirodela polyrrhiza, along with associated food web components. We tested the interactive effects of nutrient loading, glyphosate-based herbicides, and imidacloprid insecticides on the growth of aquatic plants, phytoplankton, and periphyton. Our results indicate that meso-eutrophication, glyphosate and imidacloprid directly or indirectly affected aquatic primary producers, with the type of interaction (synergistic, antagonistic and additive) related to the form of the primary producer. Meso-eutrophication alone increased the biomass of all organisms except submerged plants, glyphosate alone decreased the biomass of all organisms except phytoplankton, with particularly strong effects on aquatic plants, and imidacloprid alone affected only aquatic animals. While combinations of multiple stressors generally increased algal biomass and decreased macrophyte biomass, submerged macrophytes consistently helped control algal blooms. These results demonstrate the risk of algal blooms in shallow lakes within agricultural landscapes and emphasize the crucial role of macrophytes in preventing algal blooms and maintaining healthy lake ecosystems.
Collapse
Affiliation(s)
- Jianlin Chen
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Haowu Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yifeng Yan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Jiangqiu Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430072, PR China
| | - Songguang Xie
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China
| | - Jun Xu
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Huan Wang
- School of Ecology, School of Marine Biology and Fisheries, Hainan University, Haikou, 570228, PR China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
2
|
Yang H, Cao Y, Zhang W, Pacheco JP, Liu T, Zheng Y, Jeppesen E, Wang L. Prokaryotic and eukaryotic periphyton responses to warming, nutrient enrichment and small omnivorous fish: A shallow lake mesocosms experiment. ENVIRONMENTAL RESEARCH 2025; 269:120942. [PMID: 39870344 DOI: 10.1016/j.envres.2025.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Global change stressors, including climate warming, eutrophication, and small-sized omnivorous fish, may exert interactive effects on the food webs and functioning of shallow lakes. Periphyton plays a central role in the primary production and nutrient cycling of shallow lakes but constitutes a complex community composed of eukaryotes and prokaryotes that may exhibit different responses to multiple environmental stressors with implications for the projections of the effects of global change on shallow lakes. We analyzed the effects of warming, nutrient enrichment, small omnivorous fish and their interactions on eukaryotic and prokaryotic periphyton structures in shallow lake mesocosms. We performed 16S and 18S rRNA high-throughput sequencing to elucidate the effect of the abovementioned stressors. We found that warming promoted periphytic alpha diversity and network complexity, with multi-tolerant genera becoming dominating (e.g. Spirosomaceae and Azospirillaceae). Contrastingly, nutrient enrichment led to reduced prokaryotic diversity and network complexity and stability, with weak disruption of the eukaryotic structure. Small omnivorous fish were major drivers of changes eukaryotic periphyton, facilitating diversity and network complexity, and increasing prokaryotic and eukaryotic biomarker diversity. Omnivorous fish reduced the grazing pressure on periphyton mainly through selective grazing on zooplankton, contributing to periphytic structural stability and functional diversity, especially the proliferation of prokaryotic biomarkers. Nutrient enrichment counteracted the positive effects of warming on periphyton, while concerted action with omnivorous fish led to high TN and TP concentrations and accelerated the negative development of periphytic alpha diversity and network structure. The co-occurrence of the three environmental pressures ultimately resulted in a disruption of periphytic biodiversity and community structure and weakened connectivity with the environment. Our study provided new insights into the understanding of the response of prokaryotic and eukaryotic community structure and ecological functions of freshwater periphyton to global environmental change.
Collapse
Affiliation(s)
- Han Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yu Cao
- Research Center of Aquatic Plant, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Wei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Juan Pablo Pacheco
- Department of Ecology and Environmental Management, CURE - University of the Republic, Maldonado, 20000, Uruguay; Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark
| | - Tong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaqi Zheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, 8000, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, 100049, China; Limnology Laboratory and EKOSAM, Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Liqing Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources of the Ministry of Education, Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
3
|
Zhang Y, Sun J, Lu Y. Farmland change at different altitudes: A global analysis of climate and anthropogenic influences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178855. [PMID: 39983490 DOI: 10.1016/j.scitotenv.2025.178855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
With intensifying climate change and anthropogenic activities, the spatial distribution and productivity of global farmland are undergoing significant shifts. Comprehensive understanding of these changes across different altitudinal gradients remains limited. This study aims to analyze regions of significant farmland change from 1981 to 2015, focusing on how climate change and anthropogenic activities influence these changes across different altitudes. The study utilizes Ordinary Least Squares regression and Mann-Kendall tests to identify significant farmland changes. Residual analysis is used to pinpoint areas where climate change is the predominant factor, while partial correlation analysis explores the climatic factors influencing farmland across various altitudes. Significant changes in global farmland are primarily concentrated within the 0-200 m altitude range, with significantly greening areas outweighing browning areas across most months and altitudinal ranges. Below 1200 m, anthropogenic activities have a greater impact on farmland changes, whereas above 1200 m, climate change exerts a more pronounced influence. Specific climatic factors such as temperature, precipitation, sunshine duration, and soil moisture show significant variations in their effects on farmland changes across different altitudes and months. This study offers a scientific basis for developing agricultural management and climate adaptation policies.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Management, Chengdu University of Information Technology, Chengdu 610225, China.
| | - Juying Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Yafeng Lu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Zhang P, Zhang H, Wang S, Woodward G, O'Gorman EJ, Jackson MC, Hansson LA, Hilt S, Frenken T, Wang H, Zhou L, Wang T, Zhang M, Xu J. Multiple Stressors Simplify Freshwater Food Webs. GLOBAL CHANGE BIOLOGY 2025; 31:e70114. [PMID: 40040532 DOI: 10.1111/gcb.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025]
Abstract
Globally, freshwater ecosystems are threatened by multiple stressors, yet our knowledge of how they interact to affect food web structure remains scant. To address this knowledge gap, we conducted a large-scale mesocosm experiment to quantify the single and combined effects of three common anthropogenic stressors: warming, increased nutrient loading, and insecticide pollution, on the network structure of shallow lake food webs. We identified both antagonistic and synergistic interactive effects depending on whether the stressors affected negative or positive feedback loops, respectively. Overall, multiple stressors simplified the food web, elongated energy transfer pathways, and shifted biomass distribution from benthic to more pelagic pathways. This increased the risk of a regime shift from a clear-water state dominated by submerged macrophytes to a turbid state dominated by phytoplankton. Our novel results highlight how multiple anthropogenic stressors can interactively disrupt food webs, with implications for understanding and managing aquatic ecosystems in a changing world.
Collapse
Affiliation(s)
- Peiyu Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaopeng Wang
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Guy Woodward
- Department of Life Sciences, The Georgina Mace Centre for the Living Planet, Imperial College London, Ascot, UK
| | - Eoin J O'Gorman
- School of Life Sciences, University of Essex, Colchester, UK
| | | | | | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Thijs Frenken
- Cluster Nature & Society, HAS green academy, 's-Hertogenbosch, the Netherlands
| | - Huan Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Libin Zhou
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Tao Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jun Xu
- Key Laboratory of Lake and Watershed Science for Water Security, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Xiangxi River Ecosystem Research Station in the Three Gorges Reservoir Region, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Chen W, Wang J, Zhang Z, Li Y, Ji Y, Li X, Dai X, Huang Y. Number of global change factors alters the relative roles of abundant and rare microbes in driving soil multifunctionality resistance. Curr Biol 2025; 35:373-382.e4. [PMID: 39740662 DOI: 10.1016/j.cub.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 01/02/2025]
Abstract
There is increasing evidence that ecosystems are affected by multiple global change factors,1,2,3 impeding the sustainability of multiple soil functions.4 Biodiversity can buffer ecosystem functions against environmental changes, a concept largely supported by insurance and portfolio theories.5,6 However, the role of soil biodiversity, especially the diversity of abundant and rare microbial taxa, in regulating soil multifunctionality resistance under an increasing number of global change factors remains poorly explored. Here, we assessed the effects of the diversity of abundant and rare microbial taxa on soil multifunctionality resistance under different numbers of global change factors using 650 microcosms. The increasing number of global change factors reduced the effects of the diversity of abundant and rare microbial taxa on soil multifunctionality resistance and shifted their relative importance. The diversity of abundant taxa showed stronger positive effects on soil multifunctionality resistance under one or two global change factors. However, the diversity of rare taxa had stronger effects under multiple co-acting global change factors. The resistance of abundant and rare microbial taxa was significantly associated with their respective diversity effects on soil multifunctionality resistance. These effects were represented by standardized slopes that evaluated the relationships between microbial diversity and multifunctionality resistance under varying numbers of global change factors. Our findings indicate a shift in the relative importance of the diversity of abundant and rare microbial taxa in regulating soil multifunctionality resistance with an increasing number of global change factors, providing new insights into the relationship between soil biodiversity and ecosystem stability under environmental disturbances.
Collapse
Affiliation(s)
- Wenqing Chen
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China.
| | - Jianyu Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhangxing Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongbiao Ji
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinwen Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinzhe Dai
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yichen Huang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Gebler D, Segurado P, Ferreira MT, Aguiar FC. Predicting freshwater biological quality using macrophytes: A comparison of empirical modelling approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65092-65108. [PMID: 39567452 PMCID: PMC11624229 DOI: 10.1007/s11356-024-35497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Difficulties have hampered bioassessment in southern European rivers due to limited reference data and the unclear impact of multiple interacting stressors on plant communities. Predictive modelling may help overcome this limitation by aggregating different pressures affecting aquatic organisms and showing the most influential factors. We assembled a dataset of 292 Mediterranean sampling locations on perennial rivers and streams (mainland Portugal) with macrophyte and environmental data. We compared models based on multiple linear regression (MLR), boosted regression trees (BRT) and artificial neural networks (ANNs). Secondarily, we investigated the relationship between two macrophyte indices grounded in distinct conceptual premises (the Riparian Vegetation Index - RVI, and the Macrophyte Biological Index for Rivers - IBMR) and a set of environmental variables, including climatic conditions, geographical characteristics, land use, water chemistry and habitat quality of rivers. The quality of models for the IBMR was superior to those for the RVI in all cases, which indicates a better ecological linkage of IBMR with the stressor and abiotic variables. The IBMR using ANN outperformed the BRT models, for which the r-Pearson correlation coefficients were 0.877 and 0.801, and the normalised root mean square errors were 10.0 and 11.3, respectively. Variable importance analysis revealed that longitude and geology, hydrological/climatic conditions, water body size and land use had the highest impact on the IBMR model predictions. Despite the differences in the quality of the models, all showed similar importance to individual input variables, although in a different order. Despite some difficulties in model training for ANNs, our findings suggest that BRT and ANNs can be used to assess ecological quality, and for decision-making on the environmental management of rivers.
Collapse
Affiliation(s)
- Daniel Gebler
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637, Poznan, Poland.
| | - Pedro Segurado
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria Teresa Ferreira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Francisca C Aguiar
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
7
|
Amador P, Soria J, Moratalla-López J, Rico A. Looking beyond the surface: Understanding the role of multiple stressors on the eutrophication status of the Albufera Lake (Valencia, Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177247. [PMID: 39481562 DOI: 10.1016/j.scitotenv.2024.177247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Aquatic ecosystems face significant impacts from human-related stressors, demanding a deep understanding of their dynamics and interactions for effective management and restoration. The Albufera Lake (Valencia, Spain) presents a complex scenario of multiple interacting stressors affecting its eutrophic status. In this study, we compiled a 50-year dataset and used Generalized Additive Models (GAMs) to analyse the dynamics of the main stressors affecting the ecological status of the Albufera Lake. Then, we assessed their individual and combined effects on eutrophication using chlorophyll-a concentration as a proxy and provided recommendations to enhance water quality. Overall, we found a decrease in annual water inflow and a clear effect of rice cultivation on the seasonal patterns of the Lake's residence time. Our analysis also shows an increase of average water temperature of 2 °C for the last 50 years, and an increase in the frequency and severity of heat waves. In contrast, we found a slightly negative long-term trend in conductivity, despite the occurrence of seasonal peaks in summer. Regarding nutrients, we identified a clear reduction of total phosphorus (from 1.08 mg/L in 1987 to 0.20 mg/L in 2022), while nitrate concentrations have been rather stable. Our results also point at an increase of toxic pressure exerted by organic and inorganic contaminants during the last years, with seasonal toxicity peaks occurring during rice field drainage periods. The main stressors affecting the chlorophyll-a levels were found to be temperature, water scarcity, and nitrate concentration as well as the interactions between temperature and conductivity, conductivity and nitrate, conductivity and water scarcity, and nitrate and total phosphorus. We found that stressor interactions are highly dynamic and result in synergistic and antagonistic effects that vary according to different stressor levels. Finally, our GAM framework points to two potential scenarios: increasing freshwater inflows or deregulating hydrology to allow seawater exchange, which are key for improving the ecological status of the Albufera Lake in the short-term.
Collapse
Affiliation(s)
- Pablo Amador
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Juan Soria
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Jesús Moratalla-López
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Andreu Rico
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
8
|
Wu F, Liu Z, Wang J, Wang X, Zhang C, Ai S, Li J, Wang X. Research on aquatic microcosm: Bibliometric analysis, toxicity comparison and model prediction. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134078. [PMID: 38518699 DOI: 10.1016/j.jhazmat.2024.134078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/03/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Recently, aquatic microcosms have attracted considerable attention because they can be used to simulate natural aquatic ecosystems. First, to evaluate the development of trends, hotspots, and national cooperation networks in the field, bibliometric analysis was performed based on 1841 articles on aquatic microcosm (1962-2022). The results of the bibliometric analysis can be categorized as follows: (1) Aquatic microcosm research can be summarized in two sections, with the first part focusing on the ecological processes and services of aquatic ecosystems, and the second focusing on the toxicity and degradation of pollutants. (2) The United States (number of publications: 541, proportion: 29.5%) and China (248, 13.5%) are the two most active countries. Second, to determine whether there is a difference between single-species and microcosm tests, that is, to perform different-tier assessments, the recommended aquatic safety thresholds in risk assessment [i.e., the community-level no effect concentration (NOECcommunity), hazardous concentrations for 5% of species (HC5) and predicted no effect concentration (PNEC)] were compared based on these tests. There was a significant difference between the NOECcommunity and HC5 (P < 0.05). Moreover, regression models predicting microcosm toxicity values were constructed to provide a reference for ecological systemic risk assessments based on aquatic microcosms.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xusheng Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Cong Zhang
- Offshore Environmental Technology & Services Limited, Beijing 100027, PR China
| | - Shunhao Ai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; The College of Life Science, Nanchang University, Nanchang 330047, PR China
| | - Ji Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xiaonan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
9
|
Song Z, Hautier Y, Wang C. Grassland stability decreases with increasing number of global change factors: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165651. [PMID: 37474043 DOI: 10.1016/j.scitotenv.2023.165651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Experiments manipulating a single global change factor (GCF) have provided increasing evidence that global environmental changes, such as eutrophication, precipitation change, and warming, generally affect the temporal stability of grassland productivity. Whether the combined impact of global changes on grassland stability increases as the number of global changes increases remains unknown. Using a meta-analysis of 673 observations from 143 sites worldwide, including 7 different GCFs, we examined the responses of grassland temporal stability of productivity to increasing numbers of GCFs. We quantified the links between community stability, biotic factors (i.e., species richness, species stability, and species asynchrony), and abiotic factors (i.e., aridity index, experimental duration, and experimental intensity). Although inconsistent responses of community stability were found with different GCF types and combinations, when integrating existing GCFs studies and ignoring the identity of GCFs, we found a general decrease in community stability as the number of GCFs increases, but the main drivers of community stability varied with the numbers of GCFs. Specifically, one GCF mainly reduced species stability through species richness and thus weakened community stability. Two GCFs weakened community stability via independently weakening species stability and species asynchrony. Three GCFs reduce community stability mainly via independently weakening species asynchrony. Moreover, for single factor, the impact of GCFs on community stability was weaker under dryer conditions, but stronger when two or three factors were manipulated. In addition, the negative effect of GCFs on community stability was weaker with increasing experimental duration. Our study reveals that reduced community stability with increasing numbers of GCFs is caused by a shift from reduced species stability to reduced species asynchrony, suggesting that persistent global changes will destabilize grassland productivity by reducing asynchronous dynamics among species in response to natural environmental fluctuations.
Collapse
Affiliation(s)
- Zhaobin Song
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
10
|
López Moreira Mazacotte GA, Polst BH, Gross EM, Schmitt-Jansen M, Hölker F, Hilt S. Microcosm experiment combined with process-based modeling reveals differential response and adaptation of aquatic primary producers to warming and agricultural run-off. FRONTIERS IN PLANT SCIENCE 2023; 14:1120441. [PMID: 37404535 PMCID: PMC10316517 DOI: 10.3389/fpls.2023.1120441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/03/2023] [Indexed: 07/06/2023]
Abstract
Fertilizers, pesticides and global warming are threatening freshwater aquatic ecosystems. Most of these are shallow ponds or slow-flowing streams or ditches dominated by submerged macrophytes, periphyton or phytoplankton. Regime shifts between the dominance of these primary producers can occur along a gradient of nutrient loading, possibly triggered by specific disturbances influencing their competitive interactions. However, phytoplankton dominance is less desirable due to lower biodiversity and poorer ecosystem function and services. In this study, we combined a microcosm experiment with a process-based model to test three hypotheses: 1) agricultural run-off (ARO), consisting of nitrate and a mixture of organic pesticides and copper, differentially affects primary producers and enhances the risk of regime shifts, 2) warming increases the risk of an ARO-induced regime shift to phytoplankton dominance and 3) custom-tailored process-based models support mechanistic understanding of experimental results through scenario comparison. Experimentally exposing primary producers to a gradient of nitrate and pesticides at 22°C and 26°C supported the first two hypotheses. ARO had direct negative effects on macrophytes, while phytoplankton gained from warming and indirect effects of ARO like a reduction in the competitive pressure exerted by other groups. We used the process-based model to test eight different scenarios. The best qualitative fit between modeled and observed responses was reached only when taking community adaptation and organism acclimation into account. Our results highlight the importance of considering such processes when attempting to predict the effects of multiple stressors on natural ecosystems.
Collapse
Affiliation(s)
| | - Bastian H. Polst
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Elisabeth M. Gross
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) UMR 7360 CNRS, Université de Lorraine, Metz, France
- LTSER Zone Atelier Bassin de la Moselle, Metz, France
| | - Mechthild Schmitt-Jansen
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
11
|
Number of simultaneously acting global change factors affects composition, diversity and productivity of grassland plant communities. Nat Commun 2022; 13:7811. [PMID: 36535931 PMCID: PMC9763497 DOI: 10.1038/s41467-022-35473-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Plant communities experience impacts of increasing numbers of global change factors (e.g., warming, eutrophication, pollution). Consequently, unpredictable global change effects could arise. However, information about multi-factor effects on plant communities is scarce. To test plant-community responses to multiple global change factors (GCFs), we subjected sown and transplanted-seedling communities to increasing numbers (0, 1, 2, 4, 6) of co-acting GCFs, and assessed effects of individual factors and increasing numbers of GCFs on community composition and productivity. GCF number reduced species diversity and evenness of both community types, whereas none of the individual factors alone affected these measures. In contrast, GCF number positively affected the productivity of the transplanted-seedling community. Our findings show that simultaneously acting GCFs can affect plant communities in ways differing from those expected from single factor effects, which may be due to biological effects, sampling effects, or both. Consequently, exploring the multifactorial nature of global change is crucial to better understand ecological impacts of global change.
Collapse
|
12
|
Zhang P, Wang T, Zhang H, Wang H, Hilt S, Shi P, Cheng H, Feng M, Pan M, Guo Y, Wang K, Xu X, Chen J, Zhao K, He Y, Zhang M, Xu J. Heat waves rather than continuous warming exacerbate impacts of nutrient loading and herbicides on aquatic ecosystems. ENVIRONMENT INTERNATIONAL 2022; 168:107478. [PMID: 35998413 DOI: 10.1016/j.envint.2022.107478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Submerged macrophytes are vital components in shallow aquatic ecosystems, but their abundances have declined globally. Shading by periphyton and phytoplankton/turbidity plays a major role in this decline, and the competing aquatic primary producers are subject to the complex influence of multiple stressors such as increasing temperatures, nutrient loading and herbicides. Their joint impact has rarely been tested and is difficult to predict due to potentially opposing effects on the different primary producers, their interactions and their grazers. Here, we used 48 mesocosms (2500 L) to simulate shallow lakes dominated by two typical submerged macrophytes, bottom-dwelling Vallisneria denseserrulata and canopy-forming Hydrilla verticillata, and associated food web components. We applied a combination of nutrient loading, continuous warming, heat waves and glyphosate-based herbicides to test how these stressors interactively impact the growth of submerged macrophytes, phytoplankton and periphyton as competing primary producers. Warming or heat waves alone did not affect phytoplankton and periphyton abundance, but negatively influenced the biomass of V. denseserrulata. Nutrient loading alone increased phytoplankton biomass and water turbidity and thus negatively affected submerged macrophyte biomass, particularly for V. denseserrulata, by shading. Glyphosate alone did not affect biomass of each primary producer under ambient temperatures. However, heat waves facilitated phytoplankton growth under combined nutrient loading and glyphosate treatments more than continuous warming. As a consequence, H. verticillata biomass was lowest under these conditions indicating the potential of multiple stressors for macrophyte decline. Our study demonstrated that multiple stressors interactively alter the biomass of primary producers and their interactions and can eventually lead to a loss of macrophyte communities and shift to phytoplankton dominance. These results show the risks in shallow lakes and ponds in agricultural landscapes and underline the need for multiple stressor studies as a base for their future management.
Collapse
Affiliation(s)
- Peiyu Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tao Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Zhang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Sabine Hilt
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Penglan Shi
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Haowu Cheng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Mingjun Feng
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Meng Pan
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Yulun Guo
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kang Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoqi Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianlin Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangshun Zhao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yuhan He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Min Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|