1
|
Hu S, He Q, Liu Y, Cheng C. Denitrifying anaerobic methane oxidation activity and microbial mechanisms in Riparian zone soils of the Yulin River, a tributary of the Three Gorges Reservoir. WATER RESEARCH 2025; 271:122865. [PMID: 39644837 DOI: 10.1016/j.watres.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
Riparian zones are recognized as major sources of greenhouse gas emissions, particularly methane (CH4). Denitrifying anaerobic methane oxidation (DAMO) has garnered growing attention due to its significant contribution to mitigating CH4 emissions in wetland environments. Nonetheless, the specific role and microbial mechanisms of DAMO in controlling CH4 release within riparian zones are still not well comprehended. This study employed isotopic labeling experiments to measure the nitrate-dependent anaerobic methane oxidation (NaDAMO) and nitrite-dependent anaerobic methane oxidation (NiDAMO) potential of soil samples from riparian zones that were collected during different hydrological cycles. Moreover, soil physicochemical properties, DAMO activity, and microbial abundance were integrated to analyze the key factors and mechanisms influencing DAMO in riparian zone soils. The isotope tracer results showed that NaDAMO activities (1.41-11.93 nmol 13CO2 g-1day-1) were significantly higher than NiDAMO activities (0.66-9.19 nmol 13CO2 g-1day-1) in the riparian zone (p < 0.05). NiDAMO activities were more strongly influenced by hydrological variations compared to NaDAMO activities, exhibiting higher levels during the discharge period (2.78-9.19 nmol 13CO2 g-1day-1) compared to the impoundment period (0.66-4.10 nmol 13CO2 g-1day-1). The qPCR analysis showed that the gene copies of NaDAMO archaeal mcrA (107 copies g-1) were approximately ten times greater than those of NiDAMO bacterial pmoA (106 copies g-1) in the majority of the sampling sites. Correlation analyses revealed that NiDAMO activity was influenced by soil pH (p < 0.05), while NaDAMO microbes were influenced by temperature, organic carbon, and ammonia nitrogen concentrations (p < 0.05). In summary, this research explored how hydrological changes in the riparian zone influence DAMO activities and their underlying mechanisms, providing a theoretical basis for mitigating CH4 emissions in riparian zones of reservoir regions.
Collapse
Affiliation(s)
- Shushan Hu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qiang He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yunan Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Cheng Cheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
2
|
Yang C, Yang Y, Cheng H, Shen L. Role and environmental regulation of iron-driven anaerobic methane oxidation in riverine sediment. ENVIRONMENTAL RESEARCH 2024; 262:119800. [PMID: 39147185 DOI: 10.1016/j.envres.2024.119800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Iron is an abundant element in the environment and acts as a thermodynamically favorable electron acceptor driving the anaerobic oxidation of methane (AOM). Presently, the role and environmental regulation of iron-driven AOM in rivers, an important source of methane emission, are nearly unknown. Here, we provided direct evidence for iron-driven AOM activity in sediment of a mountainous river (Wuxijiang River, China) through 13C-labeled isotopic experiment. The potential rate of iron-driven AOM ranged between 0.40 and 1.84 nmol 13CO2 g (sediment) d-1, which contributed 36% on average to total AOM activity when combined the potential nitrate- and nitrite-driven AOM rates measured previously. There were significant variations in iron-driven AOM rates among different reaches (upper, middle, and lower) and between seasons (summer and winter). Sediment temperature, pH, and nitrate content were closely associated with the dynamic of AOM activity. Our results indicate that iron-driven AOM has great potential for reducing methane emissions from riverine ecosystems, and suggest the necessity of taking both spatial and temporal scales into account to evaluate the quantitative role of this AOM process.
Collapse
Affiliation(s)
- Chenggong Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Yuling Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Haixiang Cheng
- College of Chemistry and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Lidong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
3
|
Xia L, Wang Y, Yao P, Ryu H, Dong Z, Tan C, Deng S, Liao H, Gao Y. The Effects of Model Insoluble Copper Compounds in a Sedimentary Environment on Denitrifying Anaerobic Methane Oxidation (DAMO) Enrichment. Microorganisms 2024; 12:2259. [PMID: 39597648 PMCID: PMC11596795 DOI: 10.3390/microorganisms12112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
The contribution of denitrifying anaerobic methane oxidation (DAMO) as a methane sink across different habitats, especially those affected by anthropogenic activities, remains unclear. Mining and industrial and domestic use of metals/metal-containing compounds can all cause metal contamination in freshwater ecosystems. Precipitation of metal ions often limits their toxicity to local microorganisms, yet microbial activity may also cause the redissolution of various precipitates. In contrast to most other studies that apply soluble metal compounds, this study investigated the responses of enriched DAMO culture to model insoluble copper compounds, malachite and covellite, in simulated sedimentary environments. Copper ≤ 0.22 µm from covellite appeared to cause immediate inhibition in 10 h. Long-term tests (54 days) showed that apparent methane consumption was less impacted by various levels of malachite and covellite than soluble copper. However, the medium-/high-level malachite and covellite caused a 46.6-77.4% decline in denitrification and also induced significant death of the representative DAMO microorganisms. Some enriched species, such as Methylobacter tundripaludum, may have conducted DAMO or they may have oxidized methane aerobically using oxygen released by DAMO bacteria. Quantitative polymerase chain reaction analysis suggests that Candidatus Methanoperedens spp. were less affected by covellite as compared to malachite while Candidatus Methylomirabilis spp. responded similarly to the two compounds. Under the stress induced by copper, DAMO archaea, Planctomycetes spp. or Phenylobacterium spp. synthesized PHA/PHB-like compounds, rendering incomplete methane oxidation. Overall, the findings suggest that while DAMO activity may persist in ecosystems previously exposed to copper pollution, long-term methane abatement capability may be impaired due to a shift of the microbial community or the inhibition of representative DAMO microorganisms.
Collapse
Affiliation(s)
- Longfei Xia
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Shaanxi Provincial Land Engineering Construction Group, Xi’an 710075, China
| | - Yong Wang
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Peiru Yao
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA;
| | - Zhengzhong Dong
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Chen Tan
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Shihai Deng
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| | - Hongjian Liao
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
| | - Yaohuan Gao
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China; (L.X.); (Y.W.); (P.Y.); (Z.D.); (C.T.); (S.D.); (H.L.)
- Institute of Global Environmental Change, Xi’an Jiaotong University, 19-3027 iHarbour Campus, Xi’an 710115, China
| |
Collapse
|
4
|
He Z, Shen J, Zhu Y, Gao J, Zhang D, Pan X. Active anaerobic methane oxidation in the groundwater table fluctuation zone of rice paddies. WATER RESEARCH 2024; 258:121802. [PMID: 38796914 DOI: 10.1016/j.watres.2024.121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Rice paddies are globally important sources of methane emissions and also active regions for methane consumption. However, the impact of fluctuating groundwater levels on methane cycling has received limited attention. In this study, we delved into the activity and microbial mechanisms underlying anaerobic oxidation of methane (AOM) in paddy fields. A comprehensive approach was employed, including 13C stable isotope assays, inhibition experiments, real-time quantitative reverse transcription PCR, metagenomic sequencing, and binning technology. Geochemical profiles revealed the abundant coexistence of both methane and electron acceptors in the groundwater table fluctuation (GTF) zone, at a depth of 40-60 cm. Notably, the GTF zone exhibited the highest rate of AOM, potentially linked to the reduction of iron oxides and nitrate. Within this zone, Candidatus Methanoperedens (belonging to the ANME-2d group) dominated the Archaea population, accounting for a remarkable 85.4 %. Furthermore, our results from inhibition experiments, RT-qPCR, and metagenome-assembled genome (MAG) analysis highlighted the active role of Ca. Methanoperedens GTF50 in the GTF zone. This microorganism could independently mediate AOM process through the intriguing "reverse methanogenesis" pathway. Considering the similarity in geochemical conditions across different paddy fields, it is likely that Ca. Methanoperedens-mediated AOM is prevalent in the GTF zones.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingxun Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Ren Z, Li Y, Yin J, Zhao Z, Hu N, Zhao M, Wang Y, Wang L, Wu L. Regulation of nitrite-dependent anaerobic methane oxidation bacteria by available phosphorus and microbial communities in lake sediments of cold and arid regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172065. [PMID: 38556008 DOI: 10.1016/j.scitotenv.2024.172065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
As global anthropogenic nitrogen inputs continue to rise, nitrite-dependent anaerobic methane oxidation (N-DAMO) plays an increasingly significant role in CH4 consumption in lake sediments. However, there is a dearth of knowledge regarding the effects of anthropogenic activities on N-DAMO bacteria in lakes in the cold and arid regions. Sediment samples were collected from five sampling areas in Lake Ulansuhai at varying depth ranges (0-20, 20-40, and 40-60 cm). The ecological characterization and niche differentiation of N-DAMO bacteria were investigated using bioinformatics and molecular biology techniques. Quantitative PCR confirmed the presence of N-DAMO bacteria in Lake Ulansuhai sediments, with 16S rRNA gene abundances ranging from 1.72 × 104 to 5.75 × 105 copies·g-1 dry sediment. The highest abundance was observed at the farmland drainage outlet with high available phosphorus (AP). Anthropogenic disturbances led to a significant increase in the abundance of N-DAMO bacteria, though their diversity remained unaffected. The heterogeneous community of N-DAMO bacteria was affected by interactions among various environmental characteristics, with AP and oxidation-reduction potential identified as the key drivers in this study. The Mantel test indicated that the N-DAMO bacterial abundance was more readily influenced by the presence of the denitrification genes (nirS and nirK). Network analysis revealed that the community structure of N-DAMO bacteria generated numerous links (especially positive links) with microbial taxa involved in carbon and nitrogen cycles, such as methanogens and nitrifying bacteria. In summary, N-DAMO bacteria exhibited sensitivity to both environmental and microbial factors under various human disturbances. This study provides valuable insights into the distribution patterns of N-DAMO bacteria and their roles in nitrogen and carbon cycling within lake ecosystems.
Collapse
Affiliation(s)
- Zixuan Ren
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yingnan Li
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiahui Yin
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ziwen Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Nan Hu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Manping Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yongman Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Linhui Wu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Inner Mongolia Key Laboratory of Environmental Pollution Prevention and Waste Resource Recycle, Hohhot 010021, China.
| |
Collapse
|
6
|
Li R, Xi B, Wang X, Li Y, Yuan Y, Tan W. Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications. WATER RESEARCH 2024; 255:121498. [PMID: 38522398 DOI: 10.1016/j.watres.2024.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaowei Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
7
|
Zhang M, Huang W, Zhang L, Feng Z, Zuo Y, Xie Z, Xing W. Nitrite-dependent anaerobic methane oxidation (N-DAMO) in global aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171081. [PMID: 38387583 DOI: 10.1016/j.scitotenv.2024.171081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The vast majority of processes in the carbon and nitrogen cycles are driven by microorganisms. The nitrite-dependent anaerobic oxidation of methane (N-DAMO) process links carbon and nitrogen cycles, offering a novel approach for the simultaneous reduction of methane emissions and nitrite pollution. However, there is currently no comprehensive summary of the current status of the N-DAMO process in natural aquatic environments. Therefore, our study aims to fill this knowledge gap by conducting a comprehensive review of the global research trends in N-DAMO processes in various aquatic environments (excluding artificial bioreactors). Our review mainly focused on molecular identification, global study sites, and their interactions with other elemental cycling processes. Furthermore, we performed a data integration analysis to unveil the effects of key environmental factors on the abundance of N-DAMO bacteria and the rate of N-DAMO process. By combining the findings from the literature review and data integration analysis, we proposed future research perspectives on N-DAMO processes in global aquatic environments. Our overarching goal is to advance the understanding of the N-DAMO process and its role in synergistically reducing carbon emissions and removing nitrogen. By doing so, we aim to make a significant contribution to the timely achievement of China's carbon peak and carbon neutrality targets.
Collapse
Affiliation(s)
- Miao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Wenmin Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China
| | - Lei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yanxia Zuo
- Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoming Xie
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garde, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan 430074, China.
| |
Collapse
|
8
|
An Z, Chen F, Zheng Y, Zhou J, Liu B, Qi L, Lin Z, Yao C, Wang B, Wang Y, Li X, Yin G, Dong H, Liang X, Liu M, Hou L. Role of n-DAMO in Mitigating Methane Emissions from Intertidal Wetlands Is Regulated by Saltmarsh Vegetations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1152-1163. [PMID: 38166438 DOI: 10.1021/acs.est.3c07882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Coastal wetlands are hotspots for methane (CH4) production, reducing their potential for global warming mitigation. Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in bridging carbon and nitrogen cycles, contributing significantly to CH4 consumption. However, the role of n-DAMO in reducing CH4 emissions in coastal wetlands is poorly understood. Here, the ecological functions of the n-DAMO process in different saltmarsh vegetation habitats as well as bare mudflats were quantified, and the underlying microbial mechanisms were explored. Results showed that n-DAMO rates were significantly higher in vegetated habitats (Scirpus mariqueter and Spartina alterniflora) than those in bare mudflats (P < 0.05), leading to an enhanced contribution to CH4 consumption. Compared with other habitats, the contribution of n-DAMO to the total anaerobic CH4 oxidation was significantly lower in the Phragmites australis wetland (15.0%), where the anaerobic CH4 oxidation was primarily driven by ferric iron (Fe3+). Genetic and statistical analyses suggested that the different roles of n-DAMO in various saltmarsh wetlands may be related to divergent n-DAMO microbial communities as well as environmental parameters such as sediment pH and total organic carbon. This study provides an important scientific basis for a more accurate estimation of the role of coastal wetlands in mitigating climate change.
Collapse
Affiliation(s)
- Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Feiyang Chen
- Research Center for Monitoring and Environmental Sciences, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Authority, Ministry of Ecology and Environment, Shanghai 200125, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Bolin Liu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Zhuke Lin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Cheng Yao
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Bin Wang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yixuan Wang
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
- Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
He Z, Shen J, Zhu Y, Feng J, Pan X. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil. CHEMOSPHERE 2023; 329:138623. [PMID: 37030346 DOI: 10.1016/j.chemosphere.2023.138623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Iron oxides and sulfate are usually abundant in paddy soil, but their role in reducing methane emissions is little known. In this work, paddy soil was anaerobically cultivated with ferrihydrite and sulfate for 380 days. An activity assay, inhibition experiment, and microbial analysis were conducted to evaluate the microbial activity, possible pathways, and community structure, respectively. The results showed that anaerobic oxidation of methane (AOM) was active in the paddy soil. The AOM activity was much higher with ferrihydrite than sulfate, and an extra 10% of AOM activity was stimulated when ferrihydrite and sulfate coexisted. The microbial community was highly similar to the duplicates but totally different with different electron acceptors. The microbial abundance and diversity decreased due to the oligotrophic condition, but mcrA-carrying archaea increased 2-3 times after 380 days. Both the microbial community and the inhibition experiment implied that there was an intersection between iron and sulfur cycles. A "cryptic sulfur cycle" might link the two cycles, in which sulfate was quickly regenerated by iron oxides, and it might contribute 33% of AOM in the tested paddy soil. Complex links between methane, iron, and sulfur geochemical cycles occur in paddy soil, which may be significant in reducing methane emissions from rice fields.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaquan Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yinghong Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jieni Feng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
10
|
Yang WT, Shen LD, Bai YN. Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems. ENVIRONMENTAL RESEARCH 2023; 219:115174. [PMID: 36584837 DOI: 10.1016/j.envres.2022.115174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands are recognized as important sources of atmospheric methane (CH4). Currently, increasing evidence shows the potential importance of the anaerobic oxidation of methane (AOM) mediated by NC10 bacteria and a novel cluster of anaerobic methanotrophic archaea (ANME)-ANME-2d in mitigating CH4 emissions from different ecosystems. To better understand the role of NC10 bacteria and ANME-2d archaea in CH4 emission reduction, the current review systematically summarizes different AOM processes and the functional microorganisms involved in freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands. NC10 bacteria are widely present in these ecosystems, and the nitrite-dependent AOM is identified as an important CH4 sink and induces nitrogen loss. Nitrite- and nitrate-dependent AOM co-occur in the environment, and they are mainly affected by soil/sediment inorganic nitrogen and organic carbon contents. Furthermore, salinity is another key factor regulating the two AOM processes in coastal wetlands. In addition, ANME-2d archaea have the great potential to couple AOM to the reduction of iron (III), manganese (IV), sulfate, and even humics in different ecosystems. However, the study on the environmental distribution of ANME-2d archaea and their role in CH4 mitigation in environments is insufficient. In this study, we propose several directions for future research on the different AOM processes and respective functional microorganisms.
Collapse
Affiliation(s)
- Wang-Ting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Li-Dong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Ya-Nan Bai
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
11
|
Wang Y, Chen X, Guo B, Liu C, Liu J, Qiu G, Fu Q, Li H. Alleviation of aqueous nitrogen loss from paddy fields by growth and decomposition of duckweed (Lemna minor L.) after fertilization. CHEMOSPHERE 2023; 311:137073. [PMID: 36332733 DOI: 10.1016/j.chemosphere.2022.137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Runoff loss of nitrogen from paddy fields has received increasing attention in recent years. Duckweed is an aquatic plant frequently found in paddy fields. In this study, the effects of duckweed (Lemna minor L.) in floodwater on aqueous nitrogen losses from paddy fields were systematically investigated. Results demonstrated that the growth of duckweed decreased total nitrogen concentrations in floodwater and nitrogen runoff loss from paddy fields by 16.7%-18.3% and 11.2%-13.6%, respectively. Moreover, compared with NO3-, NH4+ was preferentially removed by duckweed. 15N isotope tracer experiments revealed that the growth and decomposition of duckweed acted as a "buffer" against the nitrogen variation in floodwater after fertilization. During the growth of duckweed, leaves were found to be the principal organ to assimilate NH4+ and release NO3- by using non-invasive micro-test technology. Duckweed degradation increased the content of hydrophobic acids and marine humic-like substances in floodwater, which promoted the migration of nitrogen from floodwater to soil. Redundancy analysis and structural equation models further illustrated that pH and temperature variation in floodwater caused by duckweed played a greater role in aqueous nitrogen loss reduction than the nitrogen accumulation in duckweed. This study suggested that the growth of duckweed in paddy fields was an effective supplementary method for controlling aqueous nitrogen loss during agricultural production.
Collapse
Affiliation(s)
- Yuan Wang
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaodong Chen
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Guo
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chen Liu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junli Liu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gaoyang Qiu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qinglin Fu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
12
|
Cheng H, Yang Y, Shen L, Liu Y, Zhan X, Hu Z, Huang H, Jin J, Ren B, He Y, Jin Y, Su Z. Spatial variations of activity and community structure of nitrite-dependent anaerobic methanotrophs in river sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158288. [PMID: 36030855 DOI: 10.1016/j.scitotenv.2022.158288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Rivers are an important site for methane emissions and reactive nitrogen removal. The process of nitrite-dependent anaerobic methane oxidation (n-damo) links the global carbon cycle and the nitrogen cycle, but its role in methane mitigation and nitrogen removal in rivers is poorly known. In the present study, we investigated the activity, abundance, and community composition of n-damo bacteria in sediment of the upper, middle, and lower reaches of Wuxijiang River (Zhejiang Province, China). The 13CH4 stable isotope experiments showed that the methane oxidation activity of n-damo was 0.11-1.88 nmol CO2 g-1 (dry sediment) d-1, and the activity measured from the middle reaches was significantly higher than that from the remaining regions. It was estimated that 3.27 g CH4 m-2 year-1 and 8.72 g N m-2 year-1 could be consumed via n-damo. Quantitative PCR confirmed the presence of n-damo bacteria, and their 16S rRNA gene abundance varied between 5.45 × 105 and 5.86 × 106 copies g-1 dry sediment. Similarly, the abundance of n-damo bacteria was significantly higher in the middle reaches. High-throughput sequencing showed a high n-damo bacterial diversity, with totally 152 operational taxonomic units being detected at 97 % sequence similarity cut-off. In addition, the n-damo bacterial community composition also varied spatially. The inorganic nitrogen (NH4+, NO2-, NO3-) level was found to be the key environmental factor controlling the n-damo activity and bacterial community composition. Overall, our results showed the spatial variations and environmental regulation of the activity and community structure of n-damo bacteria in river sediment, which expanded our understanding of the quantitative importance of n-damo in both methane oxidation and reactive nitrogen removal in riverine systems.
Collapse
Affiliation(s)
- Haixiang Cheng
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, China
| | - Yuling Yang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Lidong Shen
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yan Liu
- Wuxi River Drinking Water Source Protection and Management Center, Quzhou 324000, China
| | - Xugang Zhan
- Quzhou Bureau of Ecology and Environment, Quzhou 324000, China
| | - Zhengfeng Hu
- Eco-environmental Science Research & Design Institute of Zhejiang Province, Hangzhou 310007, China
| | - Hechen Huang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jinghao Jin
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bingjie Ren
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yefan He
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yuhan Jin
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhenfa Su
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|