1
|
Liu C, Cao Y, Xia Q, Aligayev A, Huang Q. CoNi-MOF laccase-like nanozymes prepared by dielectric barrier discharge plasma for treatment of antibiotic pollution. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138282. [PMID: 40252326 DOI: 10.1016/j.jhazmat.2025.138282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Laccase is a natural green catalyst and utilized in pollution treatment. Nevertheless, its practical application is constrained by limitations including high cost, poor stability, and difficulties in recovery. Herein, with inspiration from catalytic mechanism of natural laccase, we designed and prepared a bimetallic metal-organic framework, namely, CoNi-MOF, using low-temperature plasma (LTP) technology. We employed dielectric barrier discharge (DBD) plasma to prepare CoNi-MOF, and by precisely modulating the N2/O2 gas ratio, we could modulate the distribution concentration of oxygen vacancies in CoNi-MOF. Experimental investigations and density functional theory (DFT) calculations elucidated that the critical role of the oxygen vacancies in enhancing the laccase-like activity, which promoted the activation of molecular oxygen (O2) for generation of reactive oxygen species (ROS). Compared to natural laccase, CoNi-MOF exhibited superior catalytic performance in the degradation of antibiotic tetracycline (TC), along with enhanced resistance to harsh environmental conditions, improved stability, and low biotoxicity. Notably, aeration increased the dissolved oxygen (DO) content, further improving the TC degradation efficiency. As such, this study not only proposes a facile and efficient low-temperature plasma technology for synthesizing high-performance laccase-like nanozymes but also provides a promising and environmentally friendly strategy for the remediation of antibiotic contamination in the environment.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Yi Cao
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qi Xia
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Amil Aligayev
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; NOMATEN Centre of Excellence, National Center for Nuclear Research, 05-400 Swierk/Otwock, Poland
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Wang X, Chen M, Lu Y, Yu P, Zhang C, Huang C, Yang Z, Chen Y, Zhou JC. Inactivation of multidrug-resistant bacteria using cold atmospheric-pressure plasma technology. Front Med (Lausanne) 2025; 12:1522186. [PMID: 40109718 PMCID: PMC11920159 DOI: 10.3389/fmed.2025.1522186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
Objective This study aimed to investigate the impact of cold atmospheric-pressure plasma (CAP) on multidrug-resistant (MDR) bacteria on various surfaces under nosocomial circumstances and the underlying mechanism. Method Four common MDR bacteria (carbapenem-resistant Acinetobacter baumannii, carbapenem-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and carbapenem-resistant Klebsiella pneumoniae) were inoculated on nosocomial surfaces, which were subsequently exposed to CAP. Then the bacteria from surfaces were recovered and diluted. The killing curve was analyzed to evaluate the sterilization effects of CAP. Electron microscopy was used to evaluate the changes in cell morphology. Result In the CAP-producing device, most of the MDR bacteria were nearly inactivated after 2 h of CAP treatment. Under the simulated ward, CAP exerted an inactivating effect on MDR bacteria. Scanning electron microscopy revealed that the surface of MDR bacteria became blurred, the bodies ruptured and adhered to each other after CAP treatment. The cell walls were thinner as revealed by transmission electron microscopy. Conclusion CAP could inactivate the most common MDR bacteria on nosocomial surfaces in simulation ward settings by destroying the structure of pathogens. Our data provided insights into the sterilization of MDR bacteria using CAP and suggested a novel in-hospital disinfection alternative.
Collapse
Affiliation(s)
- Xingxing Wang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Mengzhen Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Peihao Yu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Chen Zhang
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Chao Huang
- Panasonic Home Appliances (China) Co., Ltd., Hangzhou, China
| | - Zhibiao Yang
- Panasonic Home Appliances (China) Co., Ltd., Hangzhou, China
| | - Yan Chen
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Cang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Xu Y, Bassi A. Non-thermal plasma decontamination of microbes: a state of the art. Biotechnol Prog 2025; 41:e3511. [PMID: 39462867 PMCID: PMC12000644 DOI: 10.1002/btpr.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
Microbial decontamination is a critical concern in various sectors, from healthcare to food processing. Traditional decontamination methods, while effective to a degree, present limitations in terms of environmental impact, efficiency, and potential harm to the target material. This review investigates the emerging realm of non-thermal plasma (NTP) as a promising alternative for microbial decontamination, emphasizing its mechanisms, reactor designs and applications. The mechanism decomposed into physical, chemical and biological effects of plasma, are elaborated upon to provide a foundational understanding of the intrinsic principles of plasma decontamination. Except for the generation type of NTP, reactors and other parameters by which NTP achieves microbial decontamination, emphasizing the design considerations and parameters that influence its efficacy. Moreover, the latest applications of NTP in decontaminating air, water, and surfaces, supported by the latest research findings in each domain are explored. Additionally, the perspectives on the future research tendencies of NTP decontamination and disinfection are highlighted with potential avenues for exploration and innovation. Through this comprehensive review, the aim is to underscore the potential of NTP, particularly DBD plasma, as a versatile, efficient, and environmentally friendly method for microbial decontamination.
Collapse
Affiliation(s)
- Yiyi Xu
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| | - Amarjeet Bassi
- Chemical and Biochemical EngineeringWestern UniversityLondonOntarioCanada
| |
Collapse
|
4
|
Lim J, Park S, Ryu S, Park S, Kim MS. Different Inactivation Mechanisms of Staphylococcus aureus and Escherichia coli in Water by Reactive Oxygen and Nitrogen Species Generated from an Argon Plasma Jet. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3276-3285. [PMID: 39907054 DOI: 10.1021/acs.est.4c10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The atmospheric pressure plasma jet (APPJ) is a promising technology for inactivating waterborne pathogens by generating diverse reactive species under ambient conditions. However, uncertainties regarding the bacterial inactivation mechanisms persist due to varying findings in prior research. This study aimed to clarify the inactivation mechanisms of two representative bacteria, Staphylococcus aureus (S. aureus, Gram-positive) and Escherichia coli (E. coli, Gram-negative), using an argon-based APPJ (Ar-APPJ) system in a controlled medium, primarily deionized water. We identified several reactive oxygen and nitrogen species (RONS), including hydrogen peroxide, peroxynitrous acid/peroxynitrite (ONOOH/ONOO-), hydroxyl radical (•OH), and hydroperoxyl radical/superoxide radical, and evaluated their roles in bacterial inactivation. Inactivation experiments and quantification of suspected RONS revealed that ONOOH was the primary lethal agent for S. aureus, while •OH predominantly inactivated E. coli. Assessment of cell membrane integrity and intracellular RONS levels showed that E. coli, with its thinner cell wall, was more vulnerable to surface damage caused by •OH. In contrast, for S. aureus, with its thicker cell wall, intracellular attack by penetrated ONOOH, being significantly more diffusive than •OH, was more effective, as •OH alone could not induce sufficient surface damage. These findings advance our understanding of bacterial inactivation by the Ar-APPJ and provide valuable insights for designing effective water disinfection strategies utilizing this technology.
Collapse
Affiliation(s)
- Junghyun Lim
- Department of Environmental & Energy, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan-si, Jeonbuk State 54004, Republic of Korea
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan-si, Jeonbuk State 54004, Republic of Korea
| | - Seungmin Ryu
- Institute of Plasma Technology, Korea Institute of Fusion Energy, Gunsan-si, Jeonbuk State 54004, Republic of Korea
| | - Sanghoo Park
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon-si 34141, Republic of Korea
| | - Min Sik Kim
- Department of Environmental & Energy, Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State 54896, Republic of Korea
| |
Collapse
|
5
|
Yang Y, Sun Q, Zhang Y, Huang J, Ma W, Yang Q, Tong Z, Zhang J. Antifungal activity and mechanism of Phoebe bournei wood essential oil against two dermatophytes. Front Microbiol 2025; 16:1539918. [PMID: 39990148 PMCID: PMC11842444 DOI: 10.3389/fmicb.2025.1539918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Background Dermatophytes are notorious pathogenic fungi that threaten human health and reduce quality of life. Phoebe bournei (Hemsl.) Yen C. Yang wood essential oil (PWEO) has been found to have excellent antifungal activity, but its mechanism remains unclear. Methodology Determination of minimum inhibitory concentration (MIC) of PWEO on two dermatophytes (Microsporum gypseum and Epidermophyton floccosum) by broth microdilution method. Culture plates containing PWEO in vitro tested PWEO inhibition effect of mycelial growth of dermatophytes and the effect of PWEO on hyphal structure was observed by microscopy; the changes of cell membrane permeability and the degree of lipid peroxidation were reflected by measuring cell physiological indexes. ROS and MMP probe detection of intracellular ROS and MMP change. Finally, WGCNA analysis was used to identify and verify the key genes. Results We found that the main components of PWEO are monoterpenes and sesquiterpenoids. The PWEO had strong antifungal activity, and the MIC of PWEO against both dermatophytes was 3.600 mg/mL. PWEO significantly inhibit mycelial growth, and the inhibitory effect increases significantly with increasing concentration. When the PWEO concentration reaches 1.8mg/mL, mycelial growth is completely inhibited. Microscopic observation showed that PWEO destroy the structure of hyphae. The cell membrane permeability test indicated that the cell membrane of dermatophytes was damaged by PWEO. Cellular malondialdehyde (MDA) content was positively correlated with the concentration of PWEO, suggesting that lipid peroxidation of dermatophytes was caused by PWEO. Fluorescence microscopy images showed excessive production of ROS and disruption of MMP in dermatophytes after PWEO treatment. Physiological experiment of M. gypseum showed significant differences in protein extravasation, extracellular conductivity and intracellular MDA content after three hours of treatment with 0.450 mg/mL PWEO compared with the control. Five hub genes were identified by weighted gene co-expression network analysis (WGCNA), of which Long chain fatty acid CoA ligase 1 (ACSL1) was significantly up-regulated expressed. Meiotically up-regulated 72 (MUG72) and GDP-mannose transporters gene 1 (GMT1) were significantly down-regulated expressed after PWEO treatment, which affected the growth and reproduction of M. gypseum. These results suggest that PWEO can be used as natural antifungal agents for sustainable applications.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Hangzhou, China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Hangzhou, China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Hangzhou, China
| | - Junhua Huang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Hangzhou, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Hangzhou, China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Hangzhou, China
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Bio-technology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Wu L, Wei S, Cheng X, He N, Kang X, Zhou H, Cai Y, Ye Y, Li P, Liang C. Release of ions enhanced the antibacterial performance of laser-generated, uncoated Ag nanoparticles. Colloids Surf B Biointerfaces 2024; 243:114131. [PMID: 39094211 DOI: 10.1016/j.colsurfb.2024.114131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Identifying the antibacterial mechanisms of elemental silver at the nanoscale remains a significant challenge due to the intertwining behaviors between the particles and their released ions. The open question is which of the above factor dominate the antibacterial behaviors when silver nanoparticles (Ag NPs) with different sizes. Considering the high reactivity of Ag NPs, prior research has primarily concentrated on coated particles, which inevitably hinder the release of Ag+ ions due to additional chemical agents. In this study, we synthesized various Ag NPs, both coated and uncoated, using the laser ablation in liquids (LAL) technique. By analyzing both the changes in particle size and Ag+ ions release, the impacts of various Ag NPs on the cellular activity and morphological changes of gram-negative (E. coil) and gram-positive (S. aureus) bacteria were evaluated. Our findings revealed that for uncoated Ag NPs, smaller particles exhibited greater ions release efficiency and enhanced antibacterial efficacy. Specifically, particles approximately 1.5 nm in size released up to 55 % of their Ag+ ions within 4 h, significantly inhibiting bacterial growth. Additionally, larger particles tended to aggregate on the bacterial cell membrane surface, whereas smaller particles were more likely to be internalized by the bacteria. Notably, treatment with smaller Ag NPs led to more pronounced bacterial morphological changes and elevated levels of intracellular reactive oxygen species (ROS). We proposed that the bactericidal activity of Ag NPs stems from the synergistic effect between particle-cell interaction and the ionic silver, which is dependent on the crucial parameter of particle size.
Collapse
Affiliation(s)
- Lingli Wu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Shuxian Wei
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xiaohu Cheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Ningning He
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Xingyu Kang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Hongyu Zhou
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| | - Yixing Ye
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Lu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an 237100, China.
| |
Collapse
|
7
|
Huo J, Zhu B, Ma C, You L, Cheung PCK, Pedisić S, Hileuskaya K. Effects of chemically reactive species generated in plasma treatment on the physico-chemical properties and biological activities of polysaccharides: An overview. Carbohydr Polym 2024; 342:122361. [PMID: 39048220 DOI: 10.1016/j.carbpol.2024.122361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
Plasma technology as an advanced oxidation technology, has gained increasing interest to generate numerous chemically reactive species during the plasma discharge process. Such chemically reactive species can trigger a chain of chemical reactions leading to the degradation of macromolecules including polysaccharides. This review primarily summarizes the generation of various chemically reactive species during plasma treatment and their effects on the physico-chemical properties and biological activities of polysaccharides. During plasma treatment, the type of chemically reactive species that play a major role is related to equipment, working gases and types of polysaccharides. The primary chain structure of polysaccharides did not changed much during the plasma treatment, other physico-chemical properties might be changed, such as molecular weight, solubility, hydrophilicity, rheological properties, gel properties, crystallinity, elemental composition, glycosidic bonding, and surface morphology. Additionally, the biological activities of plasma-treated polysaccharides including antibacterial, antioxidant, immunological, antidiabetic activities, and seed germination promotion activities in agriculture could be improved. Therefore, plasma treatment has the potential application in preparing polysaccharides with enhanced biological activities.
Collapse
Affiliation(s)
- Junhui Huo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China
| | - Biyang Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China.
| | - Cong Ma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China.
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, Guangdong 510640, China.
| | - Peter Chi-Keung Cheung
- Food & Nutritional Sciences Program, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Sandra Pedisić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Prolaz Kasandrića 6, 23000 Zadar, Croatia.
| | - Kseniya Hileuskaya
- Laboratory of Micro- and Nanostructured Systems, Institute of Chemistry of New Materials National Academy of Sciences of Belarus, 36 F. Skaryna str, Minsk 220141, Belarus
| |
Collapse
|
8
|
Ni JB, Ding CJ, Zhang JS, Fang XM, Xiao HW. Insight into the surface discharge cold plasma efficient inactivation of Pseudomonas fluorescens in water based on exogenous reactive oxygen and nitrogen species: Synergistic mechanism and energy benefits. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134984. [PMID: 38943891 DOI: 10.1016/j.jhazmat.2024.134984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
As well known, surface discharge cold plasma has efficient inactivation ability and a variety of RONS are main active particles for inactivation, but their synergistic mechanism is still not clear. Therefore, surface discharge cold plasma system was applied to treat Pseudomonas fluorescens to study bacterial inactivation mechanism and energy benefit. Results showed that energy efficiency was directly proportional to applied voltage and inversely proportional to initial concentration. Cold plasma treatment for 20 min was inactivated by approximately > 4-log10Pseudomonas fluorescens and application of •OH and 1O2 scavengers significantly improved survival rate. In addition, •OH and 1O2 destroyed cell membrane structure and membrane permeability, which promoted diffusion of RONS into cells and affecting energy metabolism and antioxidant capacity, leading to bacterial inactivation. Furthermore, accumulation of intracellular NO and ONOOH was related to infiltration of exogenous RNS, while accumulation of •OH, H2O2, 1O2, O2- was the result of joint action of endogenous and exogenous ROS. Transcriptome analysis revealed that different RONS of cold plasma were responsible for Pseudomonas fluorescens inactivation and related to activation of intracellular antioxidant defense system and regulation of genes expression related to amino acid metabolism and energy metabolism, which promoting cellular process, catalytic activity and other biochemical pathways.
Collapse
Affiliation(s)
- Jia-Bao Ni
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China
| | - Chang-Jiang Ding
- College of Science, Inner Mongolia University of Technology, Hohhot, China
| | - Jing-Shou Zhang
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Xiao-Ming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, 1 Xiangshan Beigou, Beijing 100093, China.
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China.
| |
Collapse
|
9
|
Du MR, Guo YY, Wei HZ, Zhu YP, Liu RR, Ma RN, Shi FK, Guo JS, Zhuang J. The effectiveness of gliding arc discharge plasma in sterilizing artificial seawater contaminated with Vibrio parahaemolyticus. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135015. [PMID: 38943886 DOI: 10.1016/j.jhazmat.2024.135015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
The rapid proliferation of the halophilic pathogen Vibrio parahaemolyticus poses a severe health hazard to halobios and significantly impedes intensive mariculture. This study aimed to evaluate the potential application of gliding arc discharge plasma (GADP) to control the infection of Vibrio parahaemolyticus in mariculture. This study investigated the inactivation ability of GADP against Vibrio parahaemolyticus in artificial seawater (ASW), changes in the water quality of GADP-treated ASW, and possible inactivation mechanisms of GADP against Vibrio parahaemolyticus in ASW. The results indicate that GADP effectively inactivated Vibrio parahaemolyticus in ASW. As the volume of ASW increased, the time required for GADP sterilization also increased. However, the complete sterilization of 5000 mL of ASW containing Vibrio parahaemolyticus of approximately 1.0 × 104 CFU/mL was achieved within 20 min. Water quality tests of the GADP-treated ASW demonstrated that there were no significant changes in salinity or temperature when Vibrio parahaemolyticus (1.0 ×104 CFU/mL) was completely inactivated. In contrast to the acidification observed in plasma-activated water (PAW) in most studies, the pH of ASW did not decrease after treatment with GADP. The H2O2 concentration in the GADP-treated ASW decreased after post-treatment. The NO2-concentration in the GADP-treated ASW remained unchanged after post-treatment. Further analysis revealed that GADP induced oxidative stress in Vibrio parahaemolyticus, which increased cell membrane permeability and intracellular ROS levels of Vibrio parahaemolyticus. This study provides a viable solution for infection with the halophilic pathogen Vibrio parahaemolyticus and demonstrates the potential of GADP in mariculture.
Collapse
Affiliation(s)
- Meng-Ru Du
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yu-Yi Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Han-Ze Wei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Yu-Pan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Rong-Rong Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China
| | - Ruo-Nan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kun Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jin-Song Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| | - Jie Zhuang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Sciences and Technology of China, Suzhou 215163, China; Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou 215163, China.
| |
Collapse
|
10
|
Song Z, Jiang Y, Chen C, Ding C, Chen H. Effect of Plasma-Activated Water on the Cellulase-Producing Strain Aspergillus niger A32. J Fungi (Basel) 2024; 10:568. [PMID: 39194894 DOI: 10.3390/jof10080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the effect and mechanism of plasma-activated water (PAW) on Aspergillus niger, PAW was prepared using a needle array-plate dielectric barrier discharge plasma system. The concentrations of long-lived reactive oxygen and nitrogen species (RONS), namely, H2O2, NO2-, and NO3-, in the PAW were 48.76 mg/L, 0.046 mg/L, and 172.36 mg/L, respectively. Chemically activated water (CAW) with the same concentration of long-lived RONS was also prepared for comparison. A. niger A32 was treated with PAW and CAW. After treatment, the treated strains were observed and analyzed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to screen probable mutants. The results indicated that the pH, conductivity, and ORP values of PAW were 2.42, 1935 μS/cm, and 517.07 mV, respectively. In contrast, the pH and ORP values of CAW were 6.15 and 301.73 mV, respectively, which differed significantly from those of PAW. In addition, the conductivity of CAW showed no change. SEM and TEM analyses revealed that A. niger A32 treated with CAW exhibited less damage compared with the control. In contrast, A. niger A32 treated with PAW showed significant shrinkage, deformation, and exudate attachment over time. Following PAW treatment, after four passages, a high cellulase-producing stable mutant strain A-WW5 was screened, exhibiting a filter paper enzyme activity of 29.66 U/mL, a cellulose endonuclease activity of 13.79 U/mL, and a β-glucosidase activity of 27.13 U/mL. These values were found to be 33%, 38%, and 2.1% higher than those of the original fungus sample, respectively. In total, 116 SNPs and 61 InDels were present in the genome of the mutant strain A-WW5. The above findings indicate that the impact of PAW on A. niger is not only attributed to long-lasting H2O2, NO2-, and NO3- particles but also to other short-lived active particles; PAW is expected to become a new microbial breeding mutagen.
Collapse
Affiliation(s)
- Zhiqing Song
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Yingwei Jiang
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Chan Chen
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Changjiang Ding
- College of Electric Power, Inner Mongolia University of Technology, Hohhot 010080, China
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Hao Chen
- Application Laboratory for Discharge Plasma & Functional Materials, Inner Mongolia University of Technology, Hohhot 010051, China
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
11
|
Yu S, Sun J, Chen H, Chen W, Zhong Q, Zhang M, Pei J, He R, Chen W. Disruption of Cell Membranes and Redox Homeostasis as an Antibacterial Mechanism of Dielectric Barrier Discharge Plasma against Fusarium oxysporum. Int J Mol Sci 2024; 25:7875. [PMID: 39063117 PMCID: PMC11277233 DOI: 10.3390/ijms25147875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Direct barrier discharge (DBD) plasma is a potential antibacterial strategy for controlling Fusarium oxysporum (F. oxysporum) in the food industry. The aim of this study was to investigate the inhibitory effect and mechanism of action of DBD plasma on F. oxysporum. The result of the antibacterial effect curve shows that DBD plasma has a good inactivation effect on F. oxysporum. The DBD plasma treatment severely disrupted the cell membrane structure and resulted in the leakage of intracellular components. In addition, flow cytometry was used to observe intracellular reactive oxygen species (ROS) levels and mitochondrial membrane potential, and it was found that, after plasma treatment, intracellular ROS accumulation and mitochondrial damage were accompanied by a decrease in antioxidant enzyme activity. The results of free fatty acid metabolism indicate that the saturated fatty acid content increased and unsaturated fatty acid content decreased. Overall, the DBD plasma treatment led to the oxidation of unsaturated fatty acids, which altered the cell membrane fatty acid content, thereby inducing cell membrane damage. Meanwhile, DBD plasma-induced ROS penetrated the cell membrane and accumulated intracellularly, leading to the collapse of the antioxidant system and ultimately causing cell death. This study reveals the bactericidal effect and mechanism of the DBD treatment on F. oxysporum, which provides a possible strategy for the control of F. oxysporum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rongrong He
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
12
|
Qing F, Sui L, He W, Chen Y, Xu L, He L, Xiao Q, Guo T, Liu Z. IRF7 Exacerbates Candida albicans Infection by Compromising CD209-Mediated Phagocytosis and Autophagy-Mediated Killing in Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1932-1944. [PMID: 38709167 DOI: 10.4049/jimmunol.2300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/07/2024]
Abstract
IFN regulatory factor 7 (IRF7) exerts anti-infective effects by promoting the production of IFNs in various bacterial and viral infections, but its role in highly morbid and fatal Candida albicans infections is unknown. We unexpectedly found that Irf7 gene expression levels were significantly upregulated in tissues or cells after C. albicans infection in humans and mice and that IRF7 actually exacerbates C. albicans infection in mice independent of its classical function in inducing IFNs production. Compared to controls, Irf7-/- mice showed stronger phagocytosis of fungus, upregulation of C-type lectin receptor CD209 expression, and enhanced P53-AMPK-mTOR-mediated autophagic signaling in macrophages after C. albicans infection. The administration of the CD209-neutralizing Ab significantly hindered the phagocytosis of Irf7-/- mouse macrophages, whereas the inhibition of p53 or autophagy impaired the killing function of these macrophages. Thus, IRF7 exacerbates C. albicans infection by compromising the phagocytosis and killing capacity of macrophages via regulating CD209 expression and p53-AMPK-mTOR-mediated autophagy, respectively. This finding reveals a novel function of IRF7 independent of its canonical IFNs production and its unexpected role in enhancing fungal infections, thus providing more specific and effective targets for antifungal therapy.
Collapse
Affiliation(s)
- Furong Qing
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Lina Sui
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Wenji He
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Yayun Chen
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- School of Graduate, China Medical University, Shenyang, Liaoning
| | - Li Xu
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Gastroenterology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Qiuxiang Xiao
- School of Graduate, China Medical University, Shenyang, Liaoning
- Department of Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Tianfu Guo
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
| | - Zhiping Liu
- School of Basic Medicine; Gannan Medical University, Ganzhou, Jiangxi
- Center for Scientific Research, Gannan Medical University, Ganzhou, Jiangxi, China
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
13
|
Mokrzyński K, Szewczyk G. Photoreactivity of polycyclic aromatic hydrocarbons (PAHs) and their mechanisms of phototoxicity against human immortalized keratinocytes (HaCaT). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171449. [PMID: 38460699 DOI: 10.1016/j.scitotenv.2024.171449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic compounds in the environment. They are produced by many anthropogenic sources of different origins and are known for their toxicity, carcinogenicity, and mutagenicity. Sixteen PAHs have been identified as Priority Pollutants by the US EPA, which are often associated with particulate matter, facilitating their dispersion through air and water. When human skin is exposed to PAHs, it might occur simultaneously with solar radiation, potentially leading to phototoxic effects. Phototoxic mechanisms involve the generation of singlet oxygen and reactive oxygen species, DNA damage under specific light wavelengths, and the formation of charge transfer complexes. Despite predictions of phototoxic properties for some PAHs, there remains a paucity of experimental data. This study examined the photoreactive and phototoxic properties of the 16 PAHs enlisted in the Priority Pollutants list. Examined PAHs efficiently photogenerated singlet oxygen and superoxide anion in simple solutions. Furthermore, singlet oxygen phosphorescence was detected in PAH-loaded HaCaT cells. Phototoxicity against human keratinocytes was evaluated using various assays. At 5 nM concentration, examined PAHs significantly reduced viability and mitochondrial membrane potential of HaCaT cells following the exposure to solar simulated light. Analyzed compounds induced a substantial peroxidation of cellular proteins after light treatment. The results revealed that a majority of the examined PAHs exhibited substantial reactive oxygen species photoproduction under UVA and violet-blue light, with their phototoxicity corresponding to their photoreactive properties. These findings improve our comprehension of the interactions between PAHs and human skin cells under environmental conditions, particularly when exposed to solar radiation.
Collapse
Affiliation(s)
- Krystian Mokrzyński
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
14
|
Liu Q, Zhu J, Ouyang W, Ding C, Wu Z, Ostrikov KK. Cold plasma turns mixed-dye-contaminated wastewater bio-safe. ENVIRONMENTAL RESEARCH 2024; 246:118125. [PMID: 38199474 DOI: 10.1016/j.envres.2024.118125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024]
Abstract
The excessive and uncontrollable discharge of diverse organic pollutants into the environment has emerged as a significant concern, presenting a substantial risk to human health. Among the advanced oxidation processes used for the purification of wastewater, cold plasma technology is superior in fast and effective decontamination but often fails facing mixed pollutants. To address these issues, here we develop the new conceptual approach, plasma process, and proprietary reactor that ensure, for the first time, that the efficiency of treatment (114.7%) of two mixed organic dyes, methylene blue (MB) and methyl orange (MO), is higher than when the two dyes are treated separately. We further reveal the underlying mechanisms for the energy-efficient complete degradation of the mixed dyes. The contribution of plasma-induced ROS and the distinct degradation characteristics and mechanism of pollutants in mixed treatment are discussed. The electron transfer pathway revealed for the first time suggest that the mixed pollutants reduce the overall redox potentials and facilitate electron transfer during the plasma treatment, promoting synergistic degradation effects. The integrated frameworks including both direct and indirect mechanisms provide new insights into the high-efficiency mixed-contaminant treatment. The degradation products for mixed degradation are revealed based on the identification of intermediate species. The plasma-treated water is proven safe for living creatures in waterways and sustainable fishery applications, using in vivo zebrafish model bio-toxicity assay. Overall, these findings offer a feasible approach and new insights into the mechanisms for the development of highly-effective, energy-efficient technologies for wastewater treatment and reuse in agriculture, industry, and potentially in urban water networks.
Collapse
Affiliation(s)
- Qi Liu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jiwen Zhu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wenchong Ouyang
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, People's Republic of China; Institute of Advanced Technology, University of Science and Technology of China, Hefei, People's Republic of China.
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; Centre for Materials Science, Centre for Clean Energy Technologies and Practices, and Centre for Waste Free World, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| |
Collapse
|
15
|
Al-Adham ISI, Jaber N, Ali Agha ASA, Al-Remawi M, Al-Akayleh F, Al-Muhtaseb N, Collier PJ. Sporadic regional re-emergent cholera: a 19th century problem in the 21st century. J Appl Microbiol 2024; 135:lxae055. [PMID: 38449342 DOI: 10.1093/jambio/lxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Najah Al-Muhtaseb
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| |
Collapse
|
16
|
He Z, Shang X, Zhang T, Yun J. Ca and Mg stimulate protein synthesis in maize kernel through the action of endogenous hormones and defense enzymes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108280. [PMID: 38103337 DOI: 10.1016/j.plaphy.2023.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/06/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Soil calcium (Ca) and magnesium (Mg) mineral states in rain-fed arid regions of Northwest China are inefficient, and their levels of substitution and water-soluble states are far below the lowest threshold required for maize growth, resulting in frequent physiological diseases, restricting synthesis of kernel protein (CRP). Our study set up different levels of foliar spraying of Ca and Mg fertilizers before maize pollination to examine the response characteristics of physiological and biochemical indicators in kernel, and the driving process of CRP synthesis. The main findings were: (1) Ca and Mg significantly increased the levels of CRP and endogenous hormones, and the activities of defense enzymes and CRP synthesis enzymes, which decreased significantly and stabilized at the maturity stage of maize. (2) The synthesis and accumulation of CRP were synergistically regulated by endogenous hormones, defense enzymes, and CRP synthase enzymes, with the degree of regulation varying with the level of Ca and Mg supplementation. Indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), catalase (CAT), malondialdehyde (MDA), and glutamate dehydrogenase (GDH) were the primary physiological driving indicators of CRP synthesis, with CRP having a significant synergistic relationship with CAT and a remarkable trade-off with other driving indicators. (3) The dominant driving pathway of CRP synthesis was "Ca, Mg-IAA or GA or ZR-CAT-GDH-CRP". Ca and Mg positively affected IAA and GA levels, and IAA and GA positively regulated CAT activity. However, CAT negatively regulated GDH levels, causing GDH to negatively influence the synthesis and accumulation of CRP and its components. The findings provide theoretical support for further study of inter-root endogenous hormones and soil microbe-driven processes in the regulation of maize quality by Ca and Mg.
Collapse
Affiliation(s)
- Zhaoquan He
- School of Life Sciences, Yan'an University, Yan'an, 716000, China; Shaanxi Provincial and Municipal Key Laboratory for Research and Utilization of Resource Plants of Loess Plateau, Yan'an University, Yan'an, 716000, China; Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, 716000, China.
| | - Xue Shang
- School of Life Sciences, Yan'an University, Yan'an, 716000, China; Shaanxi Provincial and Municipal Key Laboratory for Research and Utilization of Resource Plants of Loess Plateau, Yan'an University, Yan'an, 716000, China; College of Land Resource and Environment, Jiangxi Agricultural University, Jiangxi, 330045, China
| | - Tonghui Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jianying Yun
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
17
|
Chen Y, He Y, Jin T, Dai C, Xu Q, Wu Z. Bactericidal effect of low-temperature atmospheric plasma against the Shigella flexneri. Biomed Eng Online 2023; 22:119. [PMID: 38071319 PMCID: PMC10709968 DOI: 10.1186/s12938-023-01185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Shigella flexneri (S. flexneri) is a common intestinal pathogenic bacteria that mainly causes bacillary dysentery, especially in low socioeconomic countries. This study aimed to apply cold atmospheric plasma (CAP) on S. flexneri directly to achieve rapid, efficient and environmentally friendly sterilization. METHODS The operating parameters of the equipment were determined by plasma diagnostics. The plate count and transmission electron microscope were employed to calculate bacterial mortality rates and observe the morphological damage of bacterial cells. Measurement of intracellular reactive oxygen species (ROS) and superoxide anions were detected by 2,7-dichlorodihydrofluorescein (DCFH) and Dihydroethidium fluorescence probes, respectively. The fluorescence intensity (a. u.) reflects the relative contents. Additionally, the experiment about the single effect of temperature, ultraviolet (UV), and ROS on bacteria was conducted. RESULTS The peak discharge voltage and current during plasma operation were 3.92kV and 66mA. After discharge, the bacterial mortality rate of 10, 20, 30 and 40 s of plasma treatment was 60.71%, 74.02%, 88.11% and 98.76%, respectively. It was shown that the intracellular ROS content was proportional to the plasma treatment time and ROS was the major contributor to bacterial death. CONCLUSION In summary, our results illustrated that the plasma treatment could inactivate S. flexneri efficiently, and the ROS produced by plasma is the leading cause of bacterial mortality. This highly efficient sterilization method renders plasma a highly promising solution for hospitals, clinics, and daily life.
Collapse
Affiliation(s)
- Yan Chen
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China
| | - Yuanyuan He
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tao Jin
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Chenwei Dai
- Anhui Academy of Medical Sciences, Hefei, China
| | - Qinghua Xu
- Anhui Academy of Medical Sciences, Hefei, China.
| | - Zhengwei Wu
- Joint Laboratory of Plasma Application Technology, Institute of Advanced Technology, University of Science and Technology of China, Hefei, China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
18
|
Hu S, Fu Y, Xue M, Lan Y, Xi W, Xu Z, Han W, Wu D, Cheng C. Simultaneous removal of antibiotic-resistant Escherichia coli and its resistance genes by dielectric barrier discharge plasma. ENVIRONMENTAL RESEARCH 2023; 231:116163. [PMID: 37217128 DOI: 10.1016/j.envres.2023.116163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023]
Abstract
As emerging contaminants, antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been widely detected in various aqueous environments. For antibiotic resistance to be inhibited in the environment, it is essential to control ARB and ARGs. In this study, dielectric barrier discharge (DBD) plasma was used to inactivate antibiotic resistant Escherichia coli (AR E. coli) and remove ARGs simultaneously. Within 15 s of plasma treatment, 108 CFU/mL of AR E. coli were inactivated by 97.9%. The rupture of the bacterial cell membrane and the increase of intracellular ROS are the main reasons for the rapid inactivation of bacteria. Intracellular ARGs (i-qnrB, i-blaCTX-M, i-sul2) and integron gene (i-int1) decreased by 2.01, 1.84, 2.40, and 2.73 log after 15 min of plasma treatment, respectively. In the first 5 min of discharge, extracellular ARGs (e-qnrB, e-blaCTX-M, e-sul2) and integron gene (e-int1) decreased by 1.99, 2.22, 2.66, and 2.80 log, respectively. The results of the ESR and quenching experiments demonstrated that ·OH and 1O2 played important roles in the removal of ARGs. This study shows that DBD plasma is an effective technique to control ARB and ARGs in waters.
Collapse
Affiliation(s)
- Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yuhang Fu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Muen Xue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Lan
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China
| | - Wenhao Xi
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China.
| | - Wei Han
- Institute of Health and Medical Technology/Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Danzhou Wu
- Anhui Engineering Consulting Institute, Hefei 230001, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, People's Republic of China.
| |
Collapse
|
19
|
Fang C, Xu H, Wang S, Shao C, Liu C, Wang H, Huang Q. Simultaneous removal of norfloxacin and chloramphenicol using cold atmospheric plasma jet (CAPJ): Enhanced performance, synergistic effect, plasma-activated water (PAW) contribution, mechanism and toxicity evaluation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131306. [PMID: 37004443 DOI: 10.1016/j.jhazmat.2023.131306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/21/2023] [Accepted: 03/25/2023] [Indexed: 05/03/2023]
Abstract
The extensive abuse and inadvertent discharge of various antibiotics into the environment has become a serious problem for posing a big threat to human health. In order to deal with this problem, we utilized cold atmospheric plasma jet (CAPJ) to treat two different antibiotics, namely, norfloxacin and chloramphenicol, and investigated the efficiencies and corresponding mechanisms for removing the mixed antibiotics. In the application of the CAPJ technique, we made use of not only the direct plasma processing, but also the indirect plasma-activated water (PAW) treatment. The efficiency for mixed antibiotics treatment was considerably enhanced as compared to the efficiency for treatment of single antibiotics. The contributions from the CAPJ-induced reactive oxygen/nitrogen species (RONS) were examined, showing that ·OH and 1O2 played a major role in the degradation of norfloxacin and chloramphenicol in the direct plasma treatment, while 1O2 played a major role in the PAW treatment. The bio-toxicity evaluation was also provided to verify the ecological safety of the CAPJ treatment. As such, this work has not only showed the effectiveness of CAPJ treatment of mixed antibiotics, but also elucidated the mechanisms for the enhanced treatment efficiency, which may provide a new solution for treatment of antibiotics in the environment.
Collapse
Affiliation(s)
- Cao Fang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Hangbo Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shenhao Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Changsheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
20
|
Zhang H, Zhou Y, Zhang Y, Hu Z, Gao X, Wang X, Wu Z. Two-dimensional MoS2 lattice constrained Cu(I) enables high activity and superior stability in visible-light-assisted peroxymonosulfate activation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Mokrzyński K, Sarna M, Sarna T. Photoreactivity and phototoxicity of experimentally photodegraded hair melanosomes from individuals of different skin phototypes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B: BIOLOGY 2023; 243:112704. [PMID: 37030132 DOI: 10.1016/j.jphotobiol.2023.112704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Even though melanin is commonly viewed as natural photoprotectant, the pigment demonstrates residual photoreactivity, which under certain conditions could contribute to UVA-dependent melanomagenesis. Skin melanin is constantly exposed to external stressors, including solar radiation, which could induce photodegradation of the pigment. Although photodegradation of melanin pigments was studied in synthetic models and RPE melanosomes, photochemical and photobiological effects of experimental photodegradation of human skin melanin of different chemical composition remain unknown. In this work, melanosomes isolated from hair of individuals of different skin phototypes (I-III, V) were exposed to high-intensity violet light and its impact on physical and chemical properties of the pigments were analyzed using electron paramagnetic resonance (EPR), spectrophotometry and dynamic light scattering (DLS). Photoreactivity of photodegraded melanins was examined by EPR oximetry, EPR spin-trapping and time-resolved singlet oxygen phosphorescence. Antioxidant potential of the pigments was measured using the EPR DPPH assay. Cellular effect of the exposure of melanosome-loaded HaCaT cells to UV-Vis light was determined by MTT assay, JC-10 assay, and iodometric assay. The data revealed that experimental photodegradation increased photoreactivity of natural melanins, while decreasing their antioxidant capacity. Photodegraded melanin was responsible for higher cell death, a decrease in mitochondrial membrane potential and elevated levels of lipid hydroperoxides.
Collapse
|