1
|
Li P, Zhai W, Li B, Guo Q, Wang Y, Gu Y, Zheng L, Zhao F, Liu X, Wang P, Liu D. Glyphosate and urea co-exposure: Impacts on soil nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138150. [PMID: 40188540 DOI: 10.1016/j.jhazmat.2025.138150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/08/2025]
Abstract
Glyphosate, the most widely utilized herbicide, frequently coexists with nitrogen fertilizers such as urea in soil environments. Nitrogen cycling is a key process for maintaining soil ecological functions and nutrient balance. However, the effects of co-exposure to glyphosate and urea on this process have remained unclear. This study investigated the impact of co-exposure to glyphosate (10 mg/kg) and urea (260.87 or 347.83 mg/kg, equivalent to 180 or 240 kg N/ha) on soil nitrogen cycling through a 98-day incubation experiment. Soil nutrients, enzyme activities, bacterial community structure, and functional genes were analyzed. NH4+-N and NO3--N contents significantly decreased by 44.70-53.43 % and 36.74-49.12 %, respectively. Co-exposure reduced bacterial diversity and altered nitrogen cycling genes, decreasing nifH while increasing amoA and nosZ, indicating reduced nitrogen input potential and increased inorganic nitrogen loss. Enzyme analysis confirmed excessive activation of nitrification and denitrification, lowering nitrogen availability. Partial least squares structural equation modeling (PLS-SEM) showed co-exposure indirectly decreased NH4+-N and NO3--N via enhanced nitrate and nitrite reductase activities. The study highlights the complex interactions between herbicides and fertilizers in soil environments and underscores the need for further research to understand the implications for wider soil health and crop production in agriculture systems.
Collapse
Affiliation(s)
- Pengxi Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Bingxue Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Yujue Wang
- Syngenta Crop Protection AG, Rosentalstrasse 67, Basel CH-4002, Switzerland
| | - Yucheng Gu
- Syngenta Ltd, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, UK
| | - Li Zheng
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Fanrong Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
2
|
Di K, Yuanyuan C, Shishi F, Qianmin L, Shuzhen Z. Microbial community diversity and assembly processes in the aridification of wetlands on the Qinghai-Tibet Plateau. iScience 2025; 28:112494. [PMID: 40395670 PMCID: PMC12090270 DOI: 10.1016/j.isci.2025.112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/16/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
This study investigates soil microbial community dynamics in high-altitude wetlands on the Qinghai-Tibet Plateau under drought conditions. It compares the composition, structure, and assembly mechanisms of microbial communities in water-rich and water-deficient wetlands. The results show that while α diversity remains stable after aridification, the community undergoes significant phylum reorganization. Aridification leads to increased sensitivity in the β diversity of archaea and bacteria to environmental and geographic factors, while fungal β diversity remains unchanged. Co-occurrence network analysis reveals a more complex and denser microbial network in aridified wetlands. Hub microbial groups are found only in bacteria and fungi, and their richness decreases after aridification. The study suggests a shift from a neutral to a partially deterministic assembly process, marked by reduced dispersal limitations and stronger heterogeneous selections. These findings contribute to understanding microbial community evolution in response to global environmental changes.
Collapse
Affiliation(s)
- Kang Di
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), China West Normal University, Nanchong 637009, China
| | - Chen Yuanyuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Feng Shishi
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Liu Qianmin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Zou Shuzhen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
- Key Laboratory of Environmental Science and Biodiversity Conservation (Sichuan Province), China West Normal University, Nanchong 637009, China
| |
Collapse
|
3
|
Wei J, Hong Z, Li W, Yang X, Fu Z, Chen X, Hu J, Jin Z, Long B, Chang X, Qian Y. Norfloxacin affects inorganic nitrogen compound transformation in tailwater containing Corbicula fluminea. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135116. [PMID: 39013323 DOI: 10.1016/j.jhazmat.2024.135116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
The Asian clam, Corbicula fluminea, commonly used in engineered wetlands receiving tailwater, affects nitrogen compound transformation in water. This study investigates how a commonly observed antibiotic in tailwater, norfloxacin, impact nitrogen compound transformation in tailwater containing C. fluminea. The clam was exposed to artificial tailwater with norfloxacin (0, 0.2, 20, and 2000 μg/L) for 15 days. Water properties, C. fluminea ecotoxicity responses, microorganism composition and nitrification- or denitrification-related enzyme activities were measured. Results revealed norfloxacin-induced increases and reductions in tailwater NH4+ and NO2- concentrations, respectively, along with antioxidant system inhibition, organ histopathological damage and disruption of water filtering and digestion system. Microorganism composition, especially biodiversity indices, varied with medium (clam organs and exposure water) and norfloxacin concentrations. Norfloxacin reduced NO2- content by lowering the ratio between microbial nitrifying enzyme (decreased hydroxylamine oxidoreductase and nitrite oxidoreductase activity) and denitrifying enzyme (increased nitrate reductase and nitrite reductase activity) in tailwater. Elevated NH4+ content resulted from upregulated ammonification and inhibited nitrification of microorganisms in tailwater, as well as increased ammonia emission from C. fluminea due to organ damage and metabolic disruption of the digestion system. Overall, this study offers insights into using benthic organisms to treat tailwater with antibiotic residues, especially regarding nitrogen treatment.
Collapse
Affiliation(s)
- Junling Wei
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zijin Hong
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Wei Li
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xiufang Yang
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zihao Fu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xinyu Chen
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Junxiang Hu
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Zhangnan Jin
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Bojiang Long
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China.
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Yu Qian
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, Yunnan 650091, China; Institute of International Institute of Rivers and Eco-Security, Yunnan University, Kunming, Yunnan 650091, China.
| |
Collapse
|
4
|
Niu Y, Kang E, Li Y, Zhang X, Yan Z, Li M, Yan L, Zhang K, Wang X, Yang A, Yu X, Kang X, Cui X. Non-flooding conditions caused by water table drawdown alter microbial network complexity and decrease multifunctionality in alpine wetland soils. ENVIRONMENTAL RESEARCH 2024; 254:119152. [PMID: 38754612 DOI: 10.1016/j.envres.2024.119152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Several soil functions of alpine wetland depend on microbial communities, including carbon storage and nutrient cycling, and soil microbes are highly sensitive to hydrological conditions. Wetland degradation is often accompanied by a decline in water table. With the water table drawdown, the effects of microbial network complexity on various soil functions remain insufficiently understood. In this research, we quantified soil multifunctionality of flooded and non-flooded sites in the Lalu Wetland on the Tibetan Plateau. We employed high-throughput sequencing to investigate the microbial community responses to water table depth changes, as well as the relationships between microbial network properties and soil multifunctionality. Our findings revealed a substantial reduction in soil multifunctionality at both surface and subsurface soil layers (0-20 cm and 20-40 cm) in non-flooded sites compared to flooded sites. The α-diversity of bacteria in the surface soil of non-flooded sites was significantly lower than that in flooded sites. Microbial network properties (including the number of nodes, number of edges, average degree, density, and modularity of co-occurrence networks) exhibited significant correlations with soil multifunctionality. This study underscores the adverse impact of non-flooded conditions resulting from water table drawdown on soil multifunctionality in alpine wetland soils, driven by alterations in microbial community structure. Additionally, we identified soil pH and moisture content as pivotal abiotic factors influencing soil multifunctionality, with microbial network complexity emerging as a valuable predictor of multifunctionality.
Collapse
Affiliation(s)
- Yuechuan Niu
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Enze Kang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Xiaodong Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Xiaoshun Yu
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| | - Xiaoyong Cui
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wang K, Bi B, Zhu K, Wen M, Han F. Responses of soil dissolved organic carbon properties to the desertification of desert wetlands in the Mu Us Sandy Land. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120318. [PMID: 38387347 DOI: 10.1016/j.jenvman.2024.120318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
In desert wetlands, the decline in ground water table results in desertification, triggering soil carbon and nutrient loss. However, the impacts of desertification on soil dissolved organic carbon (DOC) properties which determine the turnover of soil carbon and nutrients are unclear. Here, the desertification gradient was represented by the distance from the wetland center (0∼240 m) traversing reed marshes, desert shrubs and bare sandy land in the Hongjian Nur Basin, north China. Soil DOC properties were determined by ultraviolet and fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC). Results showed that soil DOC content decreased significantly from 107.23 mg kg-1 to 8.44 mg kg-1 by desertification (p < 0.05). However, the proportion of DOC to soil organic carbon (SOC) was gradually significantly increased. According to spectral parameters, microbial-derived DOC decreased from 0 to 120 m (reed marshes to desert shrubs) but increased from 120 to 240 m (desert shrubs to bare sandy lands), with a reverse hump-shaped distribution pattern. The molecular weight and aromaticity of DOC increased from 0 to 120 m but decreased from 120 to 240 m, with a hump-shaped distribution pattern. For the DOC composition, although the relative abundances of humic-acid components remained stable (p > 0.05), they were ultimately decreased by serious desertification and the amino acids became the dominant component. A similar change pattern was also found for humification index. Additionally, MBC and C:N were the two most important variables in determining the content and spectral properties, respectively. Together, these findings relationships between the soil DOC properties and desertification degree, especially the increase in DOC proportion and the decrease in humification degree, which may reduce soil C stabilization in the Hongjian Nur Basin.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Boyuan Bi
- Shannxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection,School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Kanghui Zhu
- Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China
| | - Miao Wen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Research Center on Soil & Water Conservation, Institute of Soil and Water Conservation, Chinese Academy of Sciences Ministry of Water Resources, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Fu Q, Qiu Y, Zhao J, Li J, Xie S, Liao Q, Fu X, Huang Y, Yao Z, Dai Z, Qiu Y, Yang Y, Li F, Chen H. Monotonic trends of soil microbiomes, metagenomic and metabolomic functioning across ecosystems along water gradients in the Altai region, northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169351. [PMID: 38123079 DOI: 10.1016/j.scitotenv.2023.169351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
To investigate microbial communities and their contributions to carbon and nutrient cycling along water gradients can enhance our comprehension of climate change impacts on ecosystem services. Thus, we conducted an assessment of microbial communities, metagenomic functions, and metabolomic profiles within four ecosystems, i.e., desert grassland (DG), shrub-steppe (SS), forest (FO), and marsh (MA) in the Altai region of Xinjiang, China. Our results showed that soil total carbon (TC), total nitrogen, NH4+, and NO3- increased, but pH decreased with soil water gradients. Microbial abundances and richness also increased with soil moisture except the abundances of fungi and protists being lowest in MA. A shift in microbial community composition is evident along the soil moisture gradient, with Proteobacteria, Basidiomycota, and Evosea proliferating but a decline in Actinobacteria and Cercozoa. The β-diversity of microbiomes, metagenomic, and metabolomic functioning were correlated with soil moisture gradients and have significant associations with specific soil factors of TC, NH4+, and pH. Metagenomic functions associated with carbohydrate and DNA metabolisms, as well as phages, prophages, TE, plasmids functions diminished with moisture, whereas the genes involved in nitrogen and potassium metabolism, along with certain biological interactions and environmental information processing functions, demonstrated an augmentation. Additionally, MA harbored the most abundant metabolomics dominated by lipids and lipid-like molecules and organic oxygen compounds, except certain metabolites showing decline trends along water gradients, such as N'-Hydroxymethylnorcotinine and 5-Hydroxyenterolactone. Thus, our study suggests that future ecosystem succession facilitated by changes in rainfall patterns will significantly alter soil microbial taxa, functional potential, and metabolite fractions.
Collapse
Affiliation(s)
- Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Siqi Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qiuchang Liao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yu Huang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Furong Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
7
|
Lei J, Su Y, Jian S, Guo X, Yuan M, Bates CT, Shi ZJ, Li J, Su Y, Ning D, Wu L, Zhou J, Yang Y. Warming effects on grassland soil microbial communities are amplified in cool months. THE ISME JOURNAL 2024; 18:wrae088. [PMID: 38747385 PMCID: PMC11170927 DOI: 10.1093/ismejo/wrae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/25/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming.
Collapse
Affiliation(s)
- Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yuanlong Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siyang Jian
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengting Yuan
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94704, United States
| | - Colin T Bates
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Zhou Jason Shi
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Jiabao Li
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences and Environmental Microbiology & Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yifan Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, United States
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK 73019, United States
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
8
|
Han L, Xu H, Wang Q, Liu X, Li X, Wang Y, Nie J, Liu M, Ju C, Yang C. Deciphering the degradation characteristics of the fungicides imazalil and penflufen and their effects on soil bacterial community composition, assembly, and functional profiles. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132379. [PMID: 37643571 DOI: 10.1016/j.jhazmat.2023.132379] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The adsorption-desorption and degradation characteristics of two widely applied fungicides, imazalil and penflufen, and the responses of soil bacterial diversity, structure, function, and interaction after long-term exposure were systemically studied in eight different soils. The adsorption ability of imazalil in soil was significantly higher than that of penflufen. Both imazalil and penflufen degraded slowly in most soils following the order: imazalil > penflufen, with soil pH, silt, and clay content being the potential major influencing factors. Both imazalil and penflufen obviously inhibited the soil microbial functional diversity, altered the soil bacterial community and decreased its diversity. Although exposure to low and high concentrations of imazalil and penflufen strengthened the interactions among the soil bacterial communities, the functional diversity of the co-occurrence network tended to be simple at high concentrations, especially in penflufen treatment. Both imazalil and penflufen markedly disturbed soil nitrogen cycling, especially penflufen seriously inhibited most nitrogen cycling processes, such as nitrogen fixation and nitrification. Meanwhile, sixteen and ten potential degradative bacteria of imazalil and penflufen, respectively, were found in soils, including Kaistobacter and Lysobacter. Collectively, the long-term application of imazalil and penflufen could cause residual accumulation in soils and subsequently result in serious negative effects on soil ecology.
Collapse
Affiliation(s)
- Lingxi Han
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Han Xu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Qianwen Wang
- Central Laboratory, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Xiaoming Li
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yiran Wang
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China.
| | - Mingyu Liu
- College of Horticulture, Qingdao Agricultural University, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Chao Ju
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Congjun Yang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Zhang S, Han S, Gao J, Yu X, Hu S. Low-temperature corn straw-degrading bacterial agent and moisture effects on indigenous microbes. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12644-8. [PMID: 37392246 PMCID: PMC10386949 DOI: 10.1007/s00253-023-12644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/05/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
While the in situ return of corn straw can improve soil fertility and farmland ecology, additional bacterial agents are required in low-temperature areas of northern China to accelerate straw degradation. Moisture is an important factor affecting microbial activity; however, owing to a lack of bacterial agents adapted to low-temperature complex soil environments, the effects of soil moisture on the interaction between exogenous bacterial agents and indigenous soil microorganisms remain unclear. To this end, we explored the effect of the compound bacterial agent CFF constructed using Pseudomonas putida and Acinetobacter lwoffii, developed to degrade corn straw in low-temperature soils (15 °C), on indigenous bacterial and fungal communities under dry (10% moisture content), slightly wet (20%), and wet (30%) soil-moisture conditions. The results showed that CFF application significantly affected the α-diversity of bacterial communities and changed both bacterial and fungal community structures, enhancing the correlation between microbial communities and soil-moisture content. CFF application also changed the network structure and the species of key microbial taxa, promoting more linkages among microbial genera. Notably, with an increase in soil moisture, CFF enhanced the rate of corn straw degradation by inducing positive interactions between bacterial and fungal genera and enriching straw degradation-related microbial taxa. Overall, our study demonstrates the alteration of indigenous microbial communities using bacterial agents (CFF) to overcome the limitations of indigenous microorganisms for in situ straw-return agriculture in low-temperature areas. KEY POINTS: • Low-temperature and variable moisture conditions (10-30%) were compared • Soil microbial network structure and linkages between genera were altered • CFF improves straw degradation via positive interactions between soil microbes.
Collapse
Affiliation(s)
- Sainan Zhang
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
| | - Shengcai Han
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010000, People's Republic of China
| | - Julin Gao
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
| | - Xiaofang Yu
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China.
| | - Shuping Hu
- College of Agriculture, Inner Mongolia Agricultural University, 306 Zhaowunda Road, Saihan District, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
- Key Laboratory of Crop Cultivation and Genetic Improvement, Inner Mongolia Autonomous Region, 010000, Hohhot, People's Republic of China
| |
Collapse
|
10
|
Liu X, Zhou W, Wang X, Wu H, Dong W. Microbial gradual shifts during the process of species replacement in Taihang Mountain. Front Microbiol 2023; 14:1158731. [PMID: 37089536 PMCID: PMC10113637 DOI: 10.3389/fmicb.2023.1158731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
IntroductionUnderstanding microbial gradual shifts along species replacement can help elucidate the mechanisms driving secondary succession, and predict microbial responses to changing environments. However, how climate-induced species replacement alters microbial processes, and whether microbial shifts follow predictable assembly trajectories remain unclear.MethodsUsing space-for-time substitution approach, we studied shifts in bacterial and fungal communities in the succession from Leptodermis oblonga to Vitex negundo var. heterophylla shrubland in Taihang Mountain.Results and DiscussionSpecies replacement, induced by climate related environmental change, significantly increased the above-ground biomass of shrublands, and TP and TK contents in topsoil. The succession from L. oblonga to V. negundo var. heterophylla communities resulted in the gradually replacement of cold-tolerant microbes with warm-affinity ones, and alterations of microbial communities involved in soil biogeochemical processes. Soil and plant variables, such as above-ground biomass, soil pH, total phosphorus, and total potassium, well explained the variations in microbial communities, indicating that the coordinated changes in plant communities and soil properties during secondary succession caused accompanied shifts in microbial diversity and composition.
Collapse
Affiliation(s)
- Xiuping Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wangming Zhou
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Xinzhen Wang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Hongliang Wu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- *Correspondence: Wenxu Dong,
| |
Collapse
|