1
|
Barrantes-Jiménez K, Lejzerowicz F, Tran T, Calderón-Osorno M, Rivera-Montero L, Rodríguez-Sánchez C, Wikmark OG, Eiler A, Grossart HP, Arias-Andrés M, Rojas-Jiménez K. Anthropogenic imprint on riverine plasmidome diversity and proliferation of antibiotic resistance genes following pollution and urbanization. WATER RESEARCH 2025; 281:123553. [PMID: 40184705 DOI: 10.1016/j.watres.2025.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Plasmids are key determinants in microbial ecology and evolution, facilitating the dissemination of adaptive traits and antibiotic resistance genes (ARGs). Although the molecular mechanisms governing plasmid replication, maintenance, and transfer have been extensively studied, the specific impacts of urbanization-induced pollution on plasmid ecology, diversity, and associated ARGs in tropical regions remain underexplored. This study investigates these dynamics in a tropical aquatic ecosystem, providing novel insights into how pollution shapes plasmid composition and function. In contrast to the observed decrease in chromosomal diversity, we demonstrate that pollution associated with urbanization increases the diversity and taxonomic composition of plasmids within a bacterial community (plasmidome). We analyzed eighteen water and sediment metagenomes, capturing a gradient of pollution and ARG contamination along a tropical urban river. Plasmid and chromosomal diversity profiles were found to be anti-correlated. Plasmid species enrichment along the pollution gradient led to significant compositional differences in water samples, where differentially abundant species suggest plasmid maintenance within specific taxonomic classes. Additionally, the diversity and abundance of ARGs related to the plasmidome increased concomitantly with the intensity of fecal and chemical pollution. These findings highlight the critical need for targeted plasmidome studies to better understand plasmids' environmental spread, as their dynamics are independent of chromosomal patterns. This research is crucial for understanding the consequences of bacterial evolution, particularly in the context of environmental and public health.
Collapse
Affiliation(s)
- Kenia Barrantes-Jiménez
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional and Universidad Estatal a Distancia, San José, Costa Rica; Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica
| | - Franck Lejzerowicz
- Section for Aquatic Biology and Toxicology, Blindernveien 31 0371 Oslo, University of Oslo, Norway
| | - Tam Tran
- NORCE, Siva Innovasjonssenter, Sykehusvn 21, 9019 Tromsø, Norway
| | - Melany Calderón-Osorno
- Costa Rica National High Technology Center (CeNAT), P.O. Box: 1174-1200, San José, Costa Rica
| | - Luis Rivera-Montero
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica
| | - César Rodríguez-Sánchez
- Faculty of Microbiology & Research Center for Tropical Diseases (CIET), University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica
| | | | - Alexander Eiler
- Section for Aquatic Biology and Toxicology, Blindernveien 31 0371 Oslo, University of Oslo, Norway
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Department 3, Plankton and Microbial Ecology, Zur Alten Fischerhuette 2, 16775 Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - María Arias-Andrés
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Campus Omar Dengo, P.O. Box 86-3000, Heredia, Costa Rica.
| | - Keilor Rojas-Jiménez
- Biology School, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| |
Collapse
|
2
|
Mora J, Olson M, Rocks SS, Zahn G. Watershed urbanization alters aquatic plant mycobiomes through the loss of rare taxa. Mycologia 2025; 117:235-245. [PMID: 40014846 DOI: 10.1080/00275514.2025.2462525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Urban expansion, projected to triple globally from 2000 to 2030, significantly impacts biodiversity and ecosystem processes, including those of microbial communities. Microbes are key drivers of many ecosystem processes and affect the fitness and resilience of plants and animals, but research on the biotic effects of urbanization has focused primarily on macroorganisms. This study investigates host-associated fungal communities in the pollution-tolerant aquatic plant Ranunculus aquatilis along an urbanization gradient in the Provo River, Utah, USA, a rapidly urbanizing region. We collected plant and adjacent water samples from 10 locations along the river, spanning from rural to urbanized areas within a single watershed, and conducted DNA amplicon sequencing to characterize fungal community composition. Our results show a significant decline in fungal alpha diversity correlated with increased urbanization metrics such as impervious surface area and developed land cover. Specifically, fungal richness and Shannon diversity decreased as urbanization intensified, driven primarily by a reduction in rare taxa. Despite a stable core microbiome dominated by a few taxa, the overall community structure varied significantly along the urbanization gradient, with notable shifts in dominant fungal taxa. Contrary to expectations, no detectable levels of heavy metals were found in water samples at any location, suggesting that other urbanization-related factors, potentially including organic pollutants or plant stress responses, influence fungal endophyte communities. Our findings underscore the need for further investigation into the mechanisms driving these patterns, particularly the roles of organic pollution, nutrient loads, and plant stress. As global urbanized watershed area grows, the fate of aquatic plant life is tied to their fungal community. Understanding these interactions is crucial for predicting the impacts of continued urbanization on freshwater ecosystems.
Collapse
Affiliation(s)
- Jacob Mora
- Department of Biology, Utah Valley University, 800 West University Parkway, Orem, Utah 84058, USA
| | - Matthew Olson
- Department of Earth Science, Utah Valley University, 800 West University Parkway, Orem, Utah 84058, USA
| | - Sara S Rocks
- Department of Chemistry, Utah Valley University, 800 West University Parkway, Orem, Utah 84058, USA
| | - Geoffrey Zahn
- Department of Biology, Utah Valley University, 800 West University Parkway, Orem, Utah 84058, USA
- Environmental Studies Department, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
3
|
Jarquín-Díaz VH, Dayaram A, Soilemetzidou ES, Desvars-Larrive A, Bohner J, Buuveibaatar B, Kaczensky P, Walzer C, Greenwood AD, Löber U. Unraveling the distinctive gut microbiome of khulans (Equus hemionus hemionus) in comparison to their drinking water and closely related equids. Sci Rep 2025; 15:2767. [PMID: 39843625 PMCID: PMC11754619 DOI: 10.1038/s41598-025-87216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
The microbial composition of host-associated microbiomes is influenced by co-evolutionary interactions, host genetics, domestication, and the environment. This study investigates the contribution of environmental microbiota from freshwater bodies to the gastrointestinal microbiomes of wild khulans (Equus hemionus hemionus, n = 21) and compares them with those of captive khulans (n = 12) and other equids-Przewalski's horse (n = 82) and domestic horse (n = 26). Using PacBio technology and the LotuS pipeline for 16S rRNA gene sequencing, we analyze microbial diversity and conduct differential abundance, alpha, and beta diversity analyses. Results indicate limited microbial sharing between wild khulans and their waterhole environments, suggesting minimal environmental influence on their gut microbiomes and low levels of water contamination by khulans. Wild khulans exhibit greater microbial diversity and richness compared to captive ones, likely due to adaptations to the harsh nutritional conditions of the Gobi desert. Conversely, captive khulans show reduced microbial diversity, potentially affected by dietary changes during captivity. These findings highlight the significant impact of environment and lifestyle on the gut microbiomes of equids.
Collapse
Affiliation(s)
- Víctor Hugo Jarquín-Díaz
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred- Kowalke Str. 17, 10315, Berlin, Germany
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anisha Dayaram
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, AG Rosenmund, Charitéplatz 1, 10117, Berlin, Germany
| | - Eirini S Soilemetzidou
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Amelie Desvars-Larrive
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- Unit of Veterinary Public Health and Epidemiology, Complexity Science Hub, University of Veterinary Medicine, Vienna, Austria
| | - Julia Bohner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Petra Kaczensky
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Stor-Elvdal, Norway
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
- Wildlife Conservation Society - Global USA and University of Veterinary Medicine AT, New York, USA
| | - Alex D Greenwood
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- School of Veterinary Medicine, Free University of Berlin, Oertzenweg 19 b, 14163, Berlin, Germany.
| | - Ulrike Löber
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred- Kowalke Str. 17, 10315, Berlin, Germany.
- Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
4
|
Onana VE, Beisner BE, Walsh DA. Water Quality and Land Use Shape Bacterial Communities Across 621 Canadian Lakes. Environ Microbiol 2025; 27:e70037. [PMID: 39868666 DOI: 10.1111/1462-2920.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
Human activities such as agriculture and urban development are linked to water quality degradation. Canada represents a large and heterogeneous landscape of freshwater lakes, where variations in climate, geography and geology interact with land cover alteration to influence water quality differently across regions. In this study, we investigated the influence of water quality and land use on bacterial communities across 12 ecozones. At the pan-Canadian scale, total phosphorus (TP) was the most significant water quality variable influencing community structure, and the most pronounced shift was observed at 110 μg/L of TP, corresponding to the transition from eutrophic to hypereutrophic conditions. At the regional scale, water quality significantly explained bacterial community structure in all ecozones. In terms of land use effect, at the pan-Canadian scale, agriculture and, to a lesser extent, urbanisation were significant land use variables influencing community structure. Regionally, in ecozones characterised by extensive agriculture, this land cover variable was consistently significant in explaining community structure. Likewise, in extensively urbanised ecozones, urbanisation was consistently significant in explaining community structure. Overall, these results demonstrate that bacterial richness and community structure are influenced by water quality and shaped by agriculture and urban development in different ways.
Collapse
Affiliation(s)
- Vera E Onana
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Canada
- Department of Biology, Concordia University, Montréal, Canada
| | - Beatrix E Beisner
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Canada
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada
| | - David A Walsh
- Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, Canada
- Department of Biology, Concordia University, Montréal, Canada
| |
Collapse
|
5
|
Behl S, Kusuma V, Cardoso T, Hamed A, Almheiri G, Kazi S, Shanmugam B, Brudecki G, Vaylombran D, Quilez J, Elamin W. Whole genome sequencing approaches for taxonomic profiling and evaluation of wastewater quality. J Microbiol Methods 2024; 227:107051. [PMID: 39374795 DOI: 10.1016/j.mimet.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Tracking metagenomic abundance in wastewater is undoubtedly a powerful tool to detect emerging variants and improve community health. However, there are a few factors that limit environmental water-based genomic monitoring: sampling variability, incomplete coverage, genetic fragmentation, degradation, data analysis and interpretation. The decreasing costs of high-throughput sequencing and high-end supercomputers have increased the use and accuracy of genomic data for microbial detection and monitoring in wastewater samples within any given region. To better understand the microbial dynamics and to determine the target sequencing throughput required to establish taxa that may pose as bio-indicators of an epidemiological outbreak, wastewater samples were collected from distinct locations within the Emirate of Abu Dhabi, United Arab Emirates using appropriate sampling methods. A reference database of ∼27,000 known species was developed and used for further analysis. The results showed that 15 % of data in each sample matched any of ∼27,000 known bacterial, viral, fungal, or protozoan species. Despite the high fraction of unclassified data (85 %), more than 2000 species from >800 genera across >30 phyla were detected in each sample. Both 5 Gb and 10 Gb of sequenced data detected the top ∼2000 species with highest abundance. Doubling the target sequencing throughput (i.e., 10 Gb vs 5 Gb) detected ∼500 additional low-abundance species per sample however it did not affect the overall sample composition or translate into higher per-sample species diversity captured. There was a marginal increase in the number of species detected in each sample beyond 0.20 Gb of classified data. Overall, the results indicate that sequencing to a 3 Gb throughput detects nearly 95 % of all species in the samples.
Collapse
Affiliation(s)
- Shalini Behl
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates.
| | - Vinay Kusuma
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Thyago Cardoso
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Ahmed Hamed
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Ghareesa Almheiri
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Shumaila Kazi
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Bhuvaneshkumar Shanmugam
- Reference and Surveillance Intelligence Department (RASID), M42 Environmental Sciences and Abu Dhabi Quality and Conformity Council (ADQCC), Abu Dhabi, United Arab Emirates
| | - Grzegorz Brudecki
- Reference and Surveillance Intelligence Department (RASID), M42 Environmental Sciences and Abu Dhabi Quality and Conformity Council (ADQCC), Abu Dhabi, United Arab Emirates
| | - Dhwani Vaylombran
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Javier Quilez
- Omics Centre of Excellence, M42 Health, Abu Dhabi, United Arab Emirates
| | - Wael Elamin
- Reference and Surveillance Intelligence Department (RASID), M42 Environmental Sciences and Abu Dhabi Quality and Conformity Council (ADQCC), Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Lu Y, Xu J, Feng Y, Jiang J, Wu C, Chen Y. How can the microbial community in watershed sediment maintain its resistance in the presence of shifting antibiotic residuals? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122242. [PMID: 39163669 DOI: 10.1016/j.jenvman.2024.122242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
The widespread presence of antibiotics in global watershed environments poses a serious threat to public health and ecosystems. It is essential to examine the resistance of microbial communities in watershed environments in response to shifting antibiotic residues. Sediment samples were collected from seven sites across a watershed, encompassing surface sediment (0-10 cm) and bottom sediment (30-40 cm) depths. The aim was to replicate exposure scenarios to different antibiotics (oxytetracycline (OTC) and sulfadiazine (SD)) at varying concentrations (0, 10, and 100 μg/L) in sediment overlying water, within controlled laboratory settings. The study findings revealed significant variations in the microbial community structure of sediments between different treatments, with distinct differences observed in the upper stream and top sediment layers compared to the sediments located downstream and in the bottom layers. After the introduction of antibiotics, a significant decrease in microbial nodes was observed in the genus-level co-occurrence network analysis of the bottom sediment layer, particularly in the OTC treatment groups. In contrast, the downstream region displayed more robust correlations among the top 20 genera than the upstream area. There was no significant variance observed in the expression of Antibiotic resistance genes (ARGs), consisting of tetracycline resistance genes (tetC, tetG, tetM, tetW, and tetX) and sulfonamide resistance genes (sul1, sul2, and sul3), between sediments in the top and bottom layers. Nevertheless, downstream samples exhibited significantly higher levels of ARGs when compared to upstream samples. Network correlation analysis indicated notably lower correlations between ARGs and bacterial genera in sediments from upstream or surface layers compared to those in downstream or deeper layers. Moreover, correlations in the sediments from surface layers and upstream regions showed a decreasing trend with increasing SD exposure concentrations, while those in deeper layers and downstream areas remained relatively stable. The presence of antibiotics notably enhanced the correlation between sediment properties and ARGs, particularly emphasizing associations with total carbon, nitrogen, and sulfur content. However, the introduction of SD and OTC resulted in a decrease in the influence of these sediment factors on microbial community functions related to sulfur and nitrogen metabolism, as indicated by KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation. The research provided empirical evidence on how microbial resistance responds to changes in antibiotics in sediment samples taken from various depths and locations within a watershed. It emphasized the urgent need for heightened awareness of the movement and alteration of antibiotic resistance patterns in watershed ecosystems.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, Quanzhou, 362000, China; Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541000, China
| | - Jinghua Xu
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, Quanzhou, 362000, China; School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Ying Feng
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, Quanzhou, 362000, China; School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Jinping Jiang
- Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541000, China
| | - Chunfa Wu
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Yongshan Chen
- Key Laboratory of Rural Environmental Remediation and Waste Recycling (Quanzhou Normal University), Fujian Province University, Quanzhou, 362000, China; School of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
7
|
Lancaster E, Winston R, Martin J, Lee J. Urban stormwater green infrastructure: Evaluating the public health service role of bioretention using microbial source tracking and bacterial community analyses. WATER RESEARCH 2024; 259:121818. [PMID: 38815337 DOI: 10.1016/j.watres.2024.121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Bioretention cells (BRCs) control stormwater flow on-site during precipitation, reducing runoff and improving water quality through chemical, physical, and biological processes. While BRCs are effective in these aspects, they provide habitats for wildlife and may face microbial hazards from fecal shedding, posing a potential threat to human health and the nearby environment. However, limited knowledge exists regarding the ability to control microbial hazards (e.g., beyond using typical indicator bacteria) through stormwater biofiltration. Therefore, the purpose of this study is to characterize changes in the bacterial community of urban stormwater undergoing bioretention treatment, with the goal of assessing the public health implications of these green infrastructure solutions. Samples from BRC inflow and outflow in Columbus, Ohio, were collected post-heavy storms from October 2021 to March 2022. Conventional culture-based E. coli monitoring and microbial source tracking (MST) were conducted to identify major fecal contamination extent and its sources (i.e., human, canine, avian, and ruminant). Droplet digital polymerase chain reaction (ddPCR) was utilized to quantify the level of host-associated fecal contamination in addition to three antibiotic resistant genes (ARGs): tetracycline resistance gene (tetQ), sulfonamide resistance gene (sul1), and Klebsiella pneumoniae carbapenemase resistance gene (blaKPC). Subsequently, 16S rRNA gene sequencing was conducted to characterize bacterial community differences between stormwater BRC inflow and outflow. Untreated urban stormwater reflects anthropogenic contamination, suggesting it as a potential source of contamination to waterbodies and urban environments. When comparing inlet and outlet BRC samples, urban stormwater treated via biofiltration did not increase microbial hazards, and changes in bacterial taxa and alpha diversity were negligible. Beta diversity results reveal a significant shift in bacterial community structure, while simultaneously enhancing the water quality (i.e., reduction of metals, total suspended solids, total nitrogen) of urban stormwater. Significant correlations were found between the bacterial community diversity of urban stormwater with fecal contamination (e.g. dog) and ARG (sul1), rainfall intensity, and water quality (hardness, total phosphorous). The study concludes that bioretention technology can sustainably maintain urban microbial water quality without posing additional public health risks, making it a viable green infrastructure solution for heavy rainfall events exacerbated by climate change.
Collapse
Affiliation(s)
- Emma Lancaster
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Jay Martin
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Wyler E, Lauber C, Manukyan A, Deter A, Quedenau C, Teixeira Alves LG, Wylezich C, Borodina T, Seitz S, Altmüller J, Landthaler M. Pathogen dynamics and discovery of novel viruses and enzymes by deep nucleic acid sequencing of wastewater. ENVIRONMENT INTERNATIONAL 2024; 190:108875. [PMID: 39002331 DOI: 10.1016/j.envint.2024.108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Wastewater contains an extensive reservoir of genetic information, yet largely unexplored. Here, we analyzed by high-throughput sequencing total nucleic acids extracted from wastewater samples collected during a 17 month-period in Berlin, Germany. By integrating global wastewater datasets and applying a novel computational approach to accurately identify viral strains within sewage RNA-sequencing data, we demonstrated the emergence and global dissemination of a specific astrovirus strain. Astrovirus abundance and sequence variation mirrored temporal and spatial patterns of infection, potentially serving as footprints of specific timeframes and geographical locations. Additionally, we revealed more than 100,000 sequence contigs likely originating from novel viral species, exhibiting distinct profiles in total RNA and DNA datasets and including undescribed bunyaviruses and parvoviruses. Finally, we identified thousands of new CRISPR-associated protein sequences, including Transposase B (TnpB), a class of compact, RNA-guided DNA editing enzymes. Collectively, our findings underscore the potential of high-throughput sequencing of total nucleic acids derived from wastewater for a broad range of applications.
Collapse
Affiliation(s)
- Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Chris Lauber
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, A Joint Venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Artür Manukyan
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Aylina Deter
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Quedenau
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Luiz Gustavo Teixeira Alves
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Tatiana Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Seitz
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Berlin Institute of Health at Charité, Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Liang H, Huang J, Xia Y, Yang Y, Yu Y, Zhou K, Lin L, Li X, Li B. Spatial distribution and assembly processes of bacterial communities in riverine and coastal ecosystems of a rapidly urbanizing megacity in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173298. [PMID: 38761945 DOI: 10.1016/j.scitotenv.2024.173298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Rapid urbanization has precipitated significant anthropogenic pollution (nutrients and pathogens) in urban rivers and their receiving systems, which consequentially disrupted the compositions and assembly of bacterial community within these ecosystems. However, there remains scarce information regarding the composition and assembly of both planktonic and benthic bacterial communities as well as pathogen distribution in such environments. In this study, full-length 16S rRNA gene sequencing was conducted to investigate the bacterial community composition, interactions, and assembly processes as well as the distribution of potential pathogens along a riverine-coastal continuum in Shenzhen megacity, China. The results indicated that both riverine and coastal bacterial communities were predominantly composed of Gammaproteobacteria (24.8 ± 12.6 %), Alphaproteobacteria (16.1 ± 9.8 %), and Bacteroidota (14.3 ± 8.6 %), while sedimentary bacterial communities exhibited significantly higher diversity compared to their planktonic counterparts. Bacterial community patterns exhibited significant divergences across different habitats, and a significant distance-decay relationship of bacterial community similarity was particularly observed within the urban river ecosystem. Moreover, the urban river ecosystem displayed a more complex bacterial co-occurrence network than the coastal ecosystem, and a low ratio of negative:positive cohesion suggested the inherent instability of these networks. Homogeneous selection and dispersal limitation emerged as the predominant influences on planktonic and sedimentary bacterial communities, respectively. Pathogenic genera such as Vibrio, Bacteroides, and Acinetobacter, known for their roles in foodborne diseases or wound infection, were also identified. Collectively, these findings provided critical insights into bacterial community dynamics and their implications for ecosystem management and pathogen risk control in riverine and coastal environments impacted by rapid urbanization.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Huang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), Shenzhen 518020, China
| | - Lin Lin
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
10
|
Adhikary RK, Starrs D, Wright D, Croke B, Glass K, Lal A. Spatio-Temporal Variation in the Exceedance of Enterococci in Lake Burley Griffin: An Analysis of 16 Years' Recreational Water Quality Monitoring Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:579. [PMID: 38791793 PMCID: PMC11121496 DOI: 10.3390/ijerph21050579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Recreational waterbodies with high levels of faecal indicator bacteria (FIB) pose health risks and are an ongoing challenge for urban-lake managers. Lake Burley Griffin (LBG) in the Australian Capital city of Canberra is a popular site for water-based recreation, but analyses of seasonal and long-term patterns in enterococci that exceed alert levels (>200 CFU per 100 mL, leading to site closures) are lacking. This study analysed enterococci concentrations from seven recreational sites from 2001-2021 to examine spatial and temporal patterns in exceedances during the swimming season (October-April), when exposure is highest. The enterococci concentrations varied significantly across sites and in the summer months. The frequency of the exceedances was higher in the 2009-2015 period than in the 2001-2005 and 2015-2021 periods. The odds of alert-level concentrations were greater in November, December, and February compared to October. The odds of exceedance were higher at the Weston Park East site (swimming beach) and lower at the Ferry Terminal and Weston Park West site compared to the East Basin site. This preliminary examination highlights the need for site-specific assessments of environmental and management-related factors that may impact the public health risks of using the lake, such as inflows, turbidity, and climatic conditions. The insights from this study confirm the need for targeted monitoring efforts during high-risk months and at specific sites. The study also advocates for implementing measures to minimise faecal pollution at its sources.
Collapse
Affiliation(s)
- Ripon Kumar Adhikary
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (K.G.); (A.L.)
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Danswell Starrs
- Environment, Planning and Sustainable Development Directorate, ACT Government, Canberra 2601, Australia;
- Research School of Biology, Australian National University, Canberra 2601, Australia
| | - David Wright
- Lake and Dam, National Capital Authority, Canberra 2601, Australia;
| | - Barry Croke
- Institute for Water Futures, Mathematical Sciences Institute and Fenner School of Environment and Society, Australian National University, Canberra 2601, Australia;
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (K.G.); (A.L.)
| | - Aparna Lal
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (K.G.); (A.L.)
| |
Collapse
|
11
|
Liang H, Huang J, Tao Y, Klümper U, Berendonk TU, Zhou K, Xia Y, Yang Y, Yu Y, Yu K, Lin L, Li X, Li B. Investigating the antibiotic resistance genes and their potential risks in the megacity water environment: A case study of Shenzhen Bay Basin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133536. [PMID: 38242018 DOI: 10.1016/j.jhazmat.2024.133536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Antibiotic resistance genes (ARGs) constitute emerging pollutants and pose serious risks to public health. Anthropogenic activities are recognized as the main driver of ARG dissemination in coastal regions. However, the distribution and dissemination of ARGs in Shenzhen Bay Basin, a typical megacity water environment, have been poorly investigated. Here, we comprehensively profiled ARGs in Shenzhen Bay Basin using metagenomic approaches, and estimated their associated health risks. ARG profiles varied greatly among different sampling locations with total abundance ranging from 2.79 × 10-2 (Shenzhen Bay sediment) to 1.04 (hospital sewage) copies per 16S rRNA gene copy, and 45.4% of them were located on plasmid-like sequences. Sewage treatment plants effluent and the corresponding tributary rivers were identified as the main sources of ARG contamination in Shenzhen Bay. Mobilizable plasmids and complete integrons carrying various ARGs probably participated in the dissemination of ARGs in Shenzhen Bay Basin. Additionally, 19 subtypes were assigned as high-risk ARGs (Rank I), and numerous ARGs were identified in potential human-associated pathogens, such as Burkholderiaceae, Rhodocyclaceae, Vibrionaceae, Pseudomonadaceae, and Aeromonadaceae. Overall, Shenzhen Bay represented a higher level of ARG risk than the ocean environment based on quantitative risk assessment. This study deepened our understanding of the ARGs and the associated risks in the megacity water environment.
Collapse
Affiliation(s)
- Hebin Liang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Huang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yi Tao
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Uli Klümper
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01217, Germany
| | - Thomas U Berendonk
- Institute for Hydrobiology, Technische Universität Dresden, Dresden 01217, Germany
| | - Kai Zhou
- Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (the First Affiliated Hospital, Southern University of Science and Technology; the Second Clinical Medical College, Jinan University), Shenzhen 518020, China
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Lin Lin
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
12
|
Abstract
Antibiotic resistance genes predate the therapeutic uses of antibiotics. However, the current antimicrobial resistance crisis stems from our extensive use of antibiotics and the generation of environmental stressors that impose new selective pressure on microbes and drive the evolution of resistant pathogens that now threaten human health. Similar to climate change, this global threat results from human activities that change habitats and natural microbiomes, which in turn interact with human-associated ecosystems and lead to adverse impacts on human health. Human activities that alter our planet at global scales exacerbate the current resistance crisis and exemplify our central role in large-scale changes in which we are both protagonists and architects of our success but also casualties of unanticipated collateral outcomes. As cognizant participants in this ongoing planetary experiment, we are driven to understand and find strategies to curb the ongoing crises of resistance and climate change.
Collapse
Affiliation(s)
- María Mercedes Zambrano
- Corpogen Research Center, Bogotá, Colombia;
- Dirección de Investigaciones y Transferencia de Conocimiento, Universidad Central, Bogotá, Colombia
| |
Collapse
|
13
|
Rayamajhee B, Williams NLR, Siboni N, Rodgers K, Willcox M, Henriquez FL, Seymour JR, Potts J, Johnson C, Scanes P, Carnt N. Identification and quantification of Acanthamoeba spp. within seawater at four coastal lagoons on the east coast of Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165862. [PMID: 37541500 DOI: 10.1016/j.scitotenv.2023.165862] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Acanthamoeba is an opportunistic free-living heterotrophic protist that is the most predominant amoeba in diverse ecological habitats. Acanthamoeba causes amoebic keratitis (AK), a painful and potentially blinding corneal infection. Major risk factors for AK have been linked to non-optimal contact lens hygiene practices and Acanthamoeba contamination of domestic and recreational water. This study investigated the incidence and seasonal variation of Acanthamoeba spp. within coastal lagoons located on the eastern coast of Australia and then examined the association between Acanthamoeba and water abiotic factors and bacterial species within the water. Water samples were collected from four intermittently closed and open lagoons (ICOLLs) (Wamberal, Terrigal, Avoca and Cockrone) every month between August 2019 to July 2020 except March and April. qPCR was used to target the Acanthamoeba 18S rRNA gene, validated by Sanger sequencing. Water abiotic factors were measured in situ using a multiprobe metre and 16S rRNA sequencing (V3-V4) was performed to characterise bacterial community composition. Network analysis was used to gauge putative associations between Acanthamoeba incidence and bacterial amplicon sequence variants (ASVs). Among 206 water samples analysed, 79 (38.3%) were Acanthamoeba positive and Acanthamoeba level was significantly higher in summer compared with winter, spring, or autumn (p = 0.008). More than 50% (23/45) water samples of Terrigal were positive for Acanthamoeba which is a highly urbanised area with extensive recreational activities while about 32% (16/49) samples were positive from Cockrone that is the least impacted lagoon by urban development. All sequenced strains belonged to the pathogenic genotype T4 clade except two which were of genotype clades T2 and T5. Water turbidity, temperature, intl1 gene concentration, and dissolved O2 were significantly associated with Acanthamoeba incidence (p < 0.05). The ASVs level of cyanobacteria, Pseudomonas spp., Candidatus spp., and marine bacteria of the Actinobacteria phylum and Acanthamoeba 18S rRNA genes were positively correlated (Pearson's r ≥ 0.14). The presence of Acanthamoeba spp. in all lagoons, except Wamberal, was associated with significant differences in the composition of bacterial communities (beta diversity). The results of this study suggest that coastal lagoons, particularly those in urbanised regions with extensive water recreational activities, may pose an elevated risk to human health due to the relatively high incidence of pathogenic Acanthamoeba in the summer. These findings underscore the importance of educating the public about the rare yet devastating impact of AK on vision and quality of life, highlighting the need for collaborative efforts between public health officials and educators to promote awareness and preventive measures, especially focusing lagoons residents and travellers.
Collapse
Affiliation(s)
- Binod Rayamajhee
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Nathan L R Williams
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Kiri Rodgers
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Blantyre, South Lanarkshire, G72 0LH, Scotland, UK
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Fiona L Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences, University of the West of Scotland, Blantyre, South Lanarkshire, G72 0LH, Scotland, UK
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Jaimie Potts
- Estuaries and Catchments Team, Waters Wetland Coastal Science Branch, NSW Department of Planning, Industry and Environment, Lidcombe, NSW 2141, Australia
| | - Colin Johnson
- Estuaries and Catchments Team, Waters Wetland Coastal Science Branch, NSW Department of Planning, Industry and Environment, Lidcombe, NSW 2141, Australia
| | - Peter Scanes
- Estuaries and Catchments Team, Waters Wetland Coastal Science Branch, NSW Department of Planning, Industry and Environment, Lidcombe, NSW 2141, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, Faculty of Medicine and Health, UNSW, Sydney, Australia
| |
Collapse
|
14
|
Zhang Y, Wang M, Cheng W, Huang C, Ren J, Zhai H, Niu L. Temporal and Spatial Variation Characteristics and Influencing Factors of Bacterial Community in Urban Landscape Lakes. MICROBIAL ECOLOGY 2023; 86:2424-2435. [PMID: 37272971 DOI: 10.1007/s00248-023-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Urban landscape lakes are closely related to human activity, but there are limited studies on their bacterial community characteristics and risks to human health. In this study, four different types of urban landscape lakes in Xi'an were selected, and the bacterial community structures in different seasons were analyzed by Illumina Nova high-throughput sequencing technology. Seasonal variations in bacterial communities were analyzed by linear discriminant analysis, STAMP difference analysis, and nonmetric multidimensional scaling. Redundancy analysis was used to investigate the influencing factors. Furthermore, the metabolic functions of bacterial communities were predicted by Tax4Fun. There were clear seasonal differences in the α-diversity of bacteria, with bacterial diversity being higher in winter than in summer in the four urban landscape lakes, and the diversity of different water sources was different; the distributions of Proteobacteria, Actinobacteria, Chloroflexi, and Verrucomicrobia had significant seasonal differences; and the dominant bacteria at the genus level had obvious temporal and spatial differences. Furthermore, a variety of environmental factors had an impact on bacterial communities, and temperature, DO, and nitrogen were the primary factors affecting the seasonal variation in bacteria. There are also significant seasonal differences in the metabolic functions of bacterial communities. These results are helpful for understanding the current status of bacteria in the aquatic environments of such urban landscape lakes.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China.
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Chen Huang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Jiehui Ren
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Hongqin Zhai
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Li Niu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
- Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
15
|
Zhao Y, Hu Z, Xie H, Wu H, Wang Y, Xu H, Liang S, Zhang J. Size-dependent promotion of micro(nano)plastics on the horizontal gene transfer of antibiotic resistance genes in constructed wetlands. WATER RESEARCH 2023; 244:120520. [PMID: 37657315 DOI: 10.1016/j.watres.2023.120520] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Constructed wetlands (CWs) have been identified as significant sources of micro(nano)plastics (MPs/NPs) and antibiotic resistance genes (ARGs) in aquatic environments. However, little is known about the impact of MPs/NPs exposure on horizontal gene transfer (HGT) of ARGs and shaping the corresponding ARG hosts' community. Herein, the contribution of polystyrene (PS) particles (control, 4 mm, 100 μm, and 100 nm) to ARG transfer was investigated by adding an engineered fluorescent Escherichia coli harboring RP4 plasmid-encoded ARGs into CWs. It was found MPs/NPs significantly promoted ARG transfer in a size-dependent manner in each CW medium (p < 0.05). The 100 μm-sized PS exhibited the most significant promotion of ARG transfer (p < 0.05), whereas 100 nm-sized PS induced limited promotion due to its inhibitory activity on microbes. The altered RP4-carrying bacterial communities suggested that MPs/NPs, especially 100 µm-PS, could recruit pathogenic and nitrifying bacteria to acquire ARGs. The increased sharing of RP4-carrying core bacteria in CW medium further suggested that ARGs can spread into CW microbiome using MPs/NPs as carriers. Overall, our results highlight the high risks of ARG dissemination induced by MPs/NPs exposure and emphasize the need for better control of plastic disposal to prevent the potential health threats.
Collapse
Affiliation(s)
- Yanhui Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China.
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Yuechang Wang
- Beijing Further Tide Eco-construction Co., Ltd, Beijing 100012, P.R. China
| | - Han Xu
- College of Agriculture and Forestry Science, Linyi University, Linyi 276000, P.R. China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, P.R. China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, P.R. China.
| |
Collapse
|
16
|
Lokatis S, Jeschke JM, Bernard-Verdier M, Buchholz S, Grossart HP, Havemann F, Hölker F, Itescu Y, Kowarik I, Kramer-Schadt S, Mietchen D, Musseau CL, Planillo A, Schittko C, Straka TM, Heger T. Hypotheses in urban ecology: building a common knowledge base. Biol Rev Camb Philos Soc 2023; 98:1530-1547. [PMID: 37072921 DOI: 10.1111/brv.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Urban ecology is a rapidly growing research field that has to keep pace with the pressing need to tackle the sustainability crisis. As an inherently multi-disciplinary field with close ties to practitioners and administrators, research synthesis and knowledge transfer between those different stakeholders is crucial. Knowledge maps can enhance knowledge transfer and provide orientation to researchers as well as practitioners. A promising option for developing such knowledge maps is to create hypothesis networks, which structure existing hypotheses and aggregate them according to topics and research aims. Combining expert knowledge with information from the literature, we here identify 62 research hypotheses used in urban ecology and link them in such a network. Our network clusters hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems. We discuss the potentials and limitations of this approach. All information is openly provided as part of an extendable Wikidata project, and we invite researchers, practitioners and others interested in urban ecology to contribute additional hypotheses, as well as comment and add to the existing ones. The hypothesis network and Wikidata project form a first step towards a knowledge base for urban ecology, which can be expanded and curated to benefit both practitioners and researchers.
Collapse
Affiliation(s)
- Sophie Lokatis
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig, 04103, Germany
| | - Jonathan M Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Maud Bernard-Verdier
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Sascha Buchholz
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, Münster, 48149, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam, 14469, Germany
| | - Frank Havemann
- Institut für Bibliotheks- und Informationswissenschaft, Humboldt-Universität zu Berlin, Dorotheenstraße 26, Berlin, 10117, Germany
| | - Franz Hölker
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Yuval Itescu
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingo Kowarik
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Stephanie Kramer-Schadt
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Daniel Mietchen
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute for Globally Distributed Open Research and Education (IGDORE), Gothenburg, Sweden
| | - Camille L Musseau
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Aimara Planillo
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Conrad Schittko
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tanja M Straka
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tina Heger
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Technical University of Munich, Restoration Ecology, Emil-Ramann-Str. 6, Freising, 85350, Germany
| |
Collapse
|
17
|
Lee J, Lee S, Hu C, Marion JW. Beyond cyanotoxins: increased Legionella, antibiotic resistance genes in western Lake Erie water and disinfection-byproducts in their finished water. Front Microbiol 2023; 14:1233327. [PMID: 37700867 PMCID: PMC10493389 DOI: 10.3389/fmicb.2023.1233327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Background Western Lake Erie is suffering from harmful cyanobacterial blooms, primarily toxic Microcystis spp., affecting the ecosystem, water safety, and the regional economy. Continued bloom occurrence has raised concerns about public health implications. However, there has been no investigation regarding the potential increase of Legionella and antibiotic resistance genes in source water, and disinfection byproducts in municipal treated drinking water caused by these bloom events. Methods Over 2 years, source water (total n = 118) and finished water (total n = 118) samples were collected from drinking water plants situated in western Lake Erie (bloom site) and central Lake Erie (control site). Bloom-related parameters were determined, such as microcystin (MC), toxic Microcystis, total organic carbon, N, and P. Disinfection byproducts (DBPs) [total trihalomethanes (THMs) and haloacetic acids (HAAs)] were assessed in finished water. Genetic markers for Legionella, antibiotic resistance genes, and mobile genetic elements were quantified in source and finished waters. Results Significantly higher levels of MC-producing Microcystis were observed in the western Lake Erie site compared to the control site. Analysis of DBPs revealed significantly elevated THMs concentrations at the bloom site, while HAAs concentrations remained similar between the two sites. Legionella spp. levels were significantly higher in the bloom site, showing a significant relationship with total cyanobacteria. Abundance of ARGs (tetQ and sul1) and mobile genetic elements (MGEs) were also significantly higher at the bloom site. Discussion Although overall abundance decreased in finished water, relative abundance of ARGs and MGE among total bacteria increased after treatment, particularly at the bloom site. The findings underscore the need for ongoing efforts to mitigate bloom frequency and intensity in the lake. Moreover, optimizing water treatment processes during bloom episodes is crucial to maintain water quality. The associations observed between bloom conditions, ARGs, and Legionella, necessitate future investigations into the potential enhancement of antibiotic-resistant bacteria and Legionella spp. due to blooms, both in lake environments and drinking water distribution systems.
Collapse
Affiliation(s)
- Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, United States
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | - Chenlin Hu
- College of Pharmacy, University of Houston, Houston, TX, United States
| | - Jason W. Marion
- Department of Public Health and Clinical Sciences, Eastern Kentucky University, Richmond, KY, United States
| |
Collapse
|
18
|
Zhou JC, Wang YF, Zhu D, Zhu YG. Deciphering the distribution of microbial communities and potential pathogens in the household dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162250. [PMID: 36804982 DOI: 10.1016/j.scitotenv.2023.162250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The reliance of modern society on indoor environments increasing has made them crucial sites for human exposure to microbes. Extensive research has identified ecological drivers that influence indoor microbial assemblages. However, few studies have examined the dispersion of microbes in different locations of identical indoor environments. In this study, we employed PacBio Sequel full-length amplicon sequencing to examine the distribution of microbes at distinct locations in a single home and to identify the potential pathogens and microbial functions. Microbial communities differed considerably among the indoor sampling sites (P < 0.05). In addition, bacterial diversity was influenced by human activities and contact with the external environment at different sites, whereas fungal diversity did not significantly differ among the sites. Potential pathogens, including bacteria and fungi, were significantly enriched on the door handle (P < 0.05), suggesting that door handles may be hotpots for potential pathogens in the household. A high proportion of fungal allergens (34.37 %-56.50 %), which can cause skin diseases and asthma, were observed. Co-occurrence network analysis revealed the essential ecological role of microbial interactions in the development of a healthy immune system. Overall, we revealed the differences in microbial communities at different sampling sites within a single indoor environment, highlighting the distribution of potential pathogens and ecological functions of microbes, and providing a new perspective and information for assessing indoor health from a microbiological viewpoint.
Collapse
Affiliation(s)
- Jia-Cheng Zhou
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; International School of Beijing, Beijing 101318, China
| | - Yi-Fei Wang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China; University of the Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Wang J, Yue W, Wang Z, Bai Y, Song J. Removal effect of trihalomethanes (THMs) and halogenated acetic acids (HAAs) precursors in reclaimed water by polyaluminum chloride (PACl) coagulation. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:672-684. [PMID: 36789711 DOI: 10.2166/wst.2023.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study analyzed the removal effect of various doses of polyaluminum chloride (PACI) on wastewater treatment plants at pH 7. The sewage plant's secondary effluent organic matter (EfOM) separates into four components: hydrophobic base (HOB), hydrophilic (HI), hydrophobic acid (HOA), and hydrophobic neutral (HON). The removal effect for various forms of organic waste is optimum at 16 mg/L and that halogenated acetic acids (HAAs) and trihalomethanes (THMs) are formed simultaneously. After PACI treatment, hydrophobic organic compounds were converted to humic acid (HA), fulvic acid (FA), soluble microbial products (SMPs), and other HI organic compounds, increasing the amount of HAAs produced by HI fractions. Removal rate of hydrophobic organic compounds, particularly HON, is 92.8% when using PAC. Moreover, after EfOM coagulation, most HAAs are trichloroacetic acid (TCAA), followed by bromochloroacetic acid (BCAA) and bromodichloroacetic acid (BDCAA). Only HOB can produce monochloroacetic acid (MCAA), whereas HA and SMPs with HOA are primary components of dichloroacetic acid (DCAA). The toughest removable byproduct of THMs is CHBr3, and after condensation of each THM component, only HOA and HON produce CHBr3, while HI produces only a minimal quantity of CHBrCl2 and CHCl3.This finding is critical for understanding how disinfection byproducts are produced after chlorinating EfOM.
Collapse
Affiliation(s)
- Juncheng Wang
- College of Energy and Environmental Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan City, Hebei Province 056038, China
| | - Wen Yue
- College of Energy and Environmental Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan City, Hebei Province 056038, China
| | - Zhenghao Wang
- College of Environment, Hohai University, Nanjing City, Jiangsu Province 210024, China
| | - Yu Bai
- Handan Municipal Engineering Company, Handan City, Hebei Province 056001, China
| | - Jina Song
- College of Energy and Environmental Engineering, Hebei University of Engineering, No. 19 Taiji Road, Handan City, Hebei Province 056038, China
| |
Collapse
|
20
|
Brindefalk B, Brolin H, Säve‐Söderbergh M, Karlsson E, Sundell D, Wikström P, Jacobsson K, Toljander J, Stenberg P, Sjödin A, Dryselius R, Forsman M, Ahlinder J. Bacterial composition in Swedish raw drinking water reveals three major interacting ubiquitous metacommunities. Microbiologyopen 2022; 11:e1320. [PMID: 36314747 PMCID: PMC9511821 DOI: 10.1002/mbo3.1320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Surface raw water used as a source for drinking water production is a critical resource, sensitive to contamination. We conducted a study on Swedish raw water sources, aiming to identify mutually co-occurring metacommunities of bacteria, and environmental factors driving such patterns. METHODS The water sources were different regarding nutrient composition, water quality, and climate characteristics, and displayed various degrees of anthropogenic impact. Water inlet samples were collected at six drinking water treatment plants over 3 years, totaling 230 samples. The bacterial communities of DNA sequenced samples (n = 175), obtained by 16S metabarcoding, were analyzed using a joint model for taxa abundance. RESULTS Two major groups of well-defined metacommunities of microorganisms were identified, in addition to a third, less distinct, and taxonomically more diverse group. These three metacommunities showed various associations to the measured environmental data. Predictions for the well-defined metacommunities revealed differing sets of favored metabolic pathways and life strategies. In one community, taxa with methanogenic metabolism were common, while a second community was dominated by taxa with carbohydrate and lipid-focused metabolism. CONCLUSION The identification of ubiquitous persistent co-occurring bacterial metacommunities in freshwater habitats could potentially facilitate microbial source tracking analysis of contamination issues in freshwater sources.
Collapse
Affiliation(s)
- Björn Brindefalk
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Harald Brolin
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Melle Säve‐Söderbergh
- Science DivisionSwedish Food AgencyUppsalaSweden
- Institute of Environmental Medicine, Karolinska InstitutetStockholmSweden
| | - Edvin Karlsson
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
- Department of Ecology and Environmental Science (EMG)Umeå UniversityUmeåSweden
| | - David Sundell
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Per Wikström
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Karin Jacobsson
- Department of Biomedical Science and Veterinary Public HealthSwedish University of Agricultural SciencesUppsalaSweden
| | | | - Per Stenberg
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
- Department of Ecology and Environmental Science (EMG)Umeå UniversityUmeåSweden
| | - Andreas Sjödin
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | | | - Mats Forsman
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| | - Jon Ahlinder
- CBRN Security and Defence, FOI, Swedish Defence Research AgencyUmeåSweden
| |
Collapse
|