1
|
Xiong C, Ren H, Xu D, Gao Y. Spatial scale effects on the value of ecosystem services in China's terrestrial area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121745. [PMID: 38991355 DOI: 10.1016/j.jenvman.2024.121745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Identifying the response characteristics of ecosystem service value (ESV) to changes in spatial scales, known as spatial scale effects, is crucial in guiding the development of corresponding management strategies. This paper examines ESV in China's terrestrial area during the year 2020, revealing the spatial aggregation characteristics of ESV and the trade-off and synergistic relationships of ecosystem services at different spatial scales, ranging from 1 km × 1 km-10 km × 10 km, with a gradient of 1 km. The results indicate: 1) The distribution pattern of ESV in China's terrestrial area is "high in the southeast and low in the northwest." 2) The spatial characteristics of ESV in China's terrestrial area undergo a distinct transition at the 3 km × 3 km scale. In detail, the spatial clustering features show a trend of first rising and then falling with the increase in spatial scale, while the synergistic relationships between different ecosystem services strengthen and the trade-off relationships weaken with the increase of the spatial scale. These findings can inform the formulation of differentiated ecological protection compensation policies and enable cross-area trading of ecological values in China.
Collapse
Affiliation(s)
- Changsheng Xiong
- College of International Tourism and Public Administration, Hainan University, Haikou, 570100, China.
| | - Huiyu Ren
- College of International Tourism and Public Administration, Hainan University, Haikou, 570100, China
| | - Dan Xu
- College of International Tourism and Public Administration, Hainan University, Haikou, 570100, China
| | - Yueming Gao
- College of International Tourism and Public Administration, Hainan University, Haikou, 570100, China
| |
Collapse
|
2
|
Lu J, Cheng Y, Qi X, Chen H, Lin X. Rethinking urban wilderness: Status, hotspots, and prospects of ecosystem services. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121366. [PMID: 38870786 DOI: 10.1016/j.jenvman.2024.121366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
An urban wilderness (UW) portrays a coupled relationship between natural dominance and human management in urban spaces. Superior ecosystem services support sustainable urban development. Systematic assessments of the status, changes, and trends of urban wilderness ecosystem services (UWESs) are a debated and complex issue in the field of ecology despite their importance as key components for ensuring the sustainable development of human society. We aimed to analyze the scientific literature on UWESs published between 2000 and 2022. Hence, we used bibliometric methods to comprehensively understand the research lineages, hotspots, and trends in UWESs. We found that the research has roughly encompassed two phases: initial exploration (2000-2011)and rapid growth (2012-2022). The number of publications has shown a continuous growth trend; the research hotspots include UWs compared with urban greenfield ecosystems, the spatio-temporal dynamics of UWs, ecosystem services and value assessments, and the coupling and linkage between ecosystem maintenance and human health. We summarized relevant trends for the concept of harmonious coexistence between human beings and nature, focusing on spatio-temporal dynamics and multidisciplinary integration as well as reinforcing the link with human health. This study can serve as a reference for demonstrating the value of UWESs and their practical application in a UW.
Collapse
Affiliation(s)
- Jianbin Lu
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| | - Yu Cheng
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| | - Xinhua Qi
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| | - Huayang Chen
- Fujian Institute of Education, Fuzhou 350025, China.
| | - Xijie Lin
- Institute of Geography, Fujian Normal University, Fuzhou 350108, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Kougioumoutzis K, Constantinou I, Panitsa M. Rising Temperatures, Falling Leaves: Predicting the Fate of Cyprus's Endemic Oak under Climate and Land Use Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:1109. [PMID: 38674518 PMCID: PMC11053427 DOI: 10.3390/plants13081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Endemic island species face heightened extinction risk from climate-driven shifts, yet standard models often underestimate threat levels for those like Quercus alnifolia, an iconic Cypriot oak with pre-adaptations to aridity. Through species distribution modelling, we investigated the potential shifts in its distribution under future climate and land-use change scenarios. Our approach uniquely combines dispersal constraints, detailed soil characteristics, hydrological factors, and anticipated soil erosion data, offering a comprehensive assessment of environmental suitability. We quantified the species' sensitivity, exposure, and vulnerability to projected changes, conducting a preliminary IUCN extinction risk assessment according to Criteria A and B. Our projections uniformly predict range reductions, with a median decrease of 67.8% by the 2070s under the most extreme scenarios. Additionally, our research indicates Quercus alnifolia's resilience to diverse erosion conditions and preference for relatively dry climates within a specific annual temperature range. The preliminary IUCN risk assessment designates Quercus alnifolia as Critically Endangered in the future, highlighting the need for focused conservation efforts. Climate and land-use changes are critical threats to the species' survival, emphasising the importance of comprehensive modelling techniques and the urgent requirement for dedicated conservation measures to safeguard this iconic species.
Collapse
Affiliation(s)
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (K.K.); (I.C.)
| |
Collapse
|
4
|
Wang K, Li S, Zhu Z, Gao X, Li X, Tang W, Liang J. Identification of priority conservation areas based on ecosystem services and systematic conservation planning analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36573-36587. [PMID: 36550250 DOI: 10.1007/s11356-022-24883-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
In order to reverse the trend of ecological deterioration and resolve the conflict between ecological conservation and economic development, it is necessary to evaluate the trends of ecosystem services (ESs) and unravel the relationship between ESs and environmental drivers and identify the priority areas for ESs. In this research, we used the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model to quantify the variation of four important ESs (water purification, water yield, soil conservation, and habitat quality) in the Dongting Lake Basin from 2000 to 2015. During the past 15 years, water yield was declined by 3.38% and soil conservation was increased by 1.45%. Water quality purification was deteriorated with the rise in phosphorus export (5.32%) and nitrogen export (4.09%). Meanwhile, habitat quality was decreased by 3.27%. Trade-offs occurred primarily among water yield and other ESs. Social-ecological drivers importance analysis found that water yield was primarily influenced by precipitation and temperature. By contrast, water purification and habitat quality were more affected by the distribution of land use and land cover (LULC). Soil conservation was closely related to precipitation and geographical factor. Based on the distribution of ESs and the intensity of human activities, we delineated priority areas for each ESs using the systematic conservation planning tool (Marxan). LULC shifted most dramatically in water yield reserves (6.49%) with a large amount of lands conversed to cropland (4.4%) and build-up land (0.27%), which further increased the risk of water scarcity, while LULC changed less in other ESs priority areas due to human activities. Our study helps develop conservation strategies within specific area cost-effectively and provides scientific support for future conservation program of ESs formulation and adjustment.
Collapse
Affiliation(s)
- Kang Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Wenzhuo Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, People's Republic of China.
| |
Collapse
|
5
|
Kougioumoutzis K, Trigas P, Tsakiri M, Kokkoris IP, Koumoutsou E, Dimopoulos P, Tzanoudakis D, Iatrou G, Panitsa M. Climate and Land-Cover Change Impacts and Extinction Risk Assessment of Rare and Threatened Endemic Taxa of Chelmos-Vouraikos National Park (Peloponnese, Greece). PLANTS (BASEL, SWITZERLAND) 2022; 11:3548. [PMID: 36559660 PMCID: PMC9784511 DOI: 10.3390/plants11243548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Chelmos-Vouraikos National Park is a floristic diversity and endemism hotspot in Greece and one of the main areas where Greek endemic taxa, preliminary assessed as critically endangered and threatened under the IUCN Criteria A and B, are mainly concentrated. The climate and land-cover change impacts on rare and endemic species distributions is more prominent in regional biodiversity hotspots. The main aims of the current study were: (a) to investigate how climate and land-cover change may alter the distribution of four single mountain endemics and three very rare Peloponnesian endemic taxa of the National Park via a species distribution modelling approach, and (b) to estimate the current and future extinction risk of the aforementioned taxa based on the IUCN Criteria A and B, in order to investigate the need for designing an effective plant micro-reserve network and to support decision making on spatial planning efforts and conservation research for a sustainable, integrated management. Most of the taxa analyzed are expected to continue to be considered as critically endangered based on both Criteria A and B under all land-cover/land-use scenarios, GCM/RCP and time-period combinations, while two, namely Alchemilla aroanica and Silene conglomeratica, are projected to become extinct in most future climate change scenarios. When land-cover/land-use data were included in the analyses, these negative effects were less pronounced. However, Silene conglomeratica, the rarest mountain endemic found in the study area, is still expected to face substantial range decline. Our results highlight the urgent need for the establishment of micro-reserves for these taxa.
Collapse
Affiliation(s)
| | - Panayiotis Trigas
- Laboratory of Systematic Botany, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Maria Tsakiri
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ioannis P. Kokkoris
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Eleni Koumoutsou
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Dimitris Tzanoudakis
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Gregoris Iatrou
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|