1
|
Zhang X, Liu Y, Mo X, Huang Z, Zhu Y, Li H, Jiang L, Tan Z, Yang Z, Zhu Y, Huang J, Zeng B, Zhuo R. Ectomycorrhizal fungi and biochar promote soil recalcitrant carbon increases under arsenic stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137598. [PMID: 39954432 DOI: 10.1016/j.jhazmat.2025.137598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Globally, vast mining areas (∼31,396.3 km2) hold significant potential for soil carbon sequestration. However, the sequestration capacity of mine soils is closely linked to contamination characteristics and restoration strategies. Arsenic, a highly toxic metalloid prevalent in acid mine soils, affects carbon turnover through its interactions with soil compounds. Nevertheless, the underlying mechanisms remain inadequately understood. This study introduces a phytobial remediation approach combining ectomycorrhizal fungus (Suillus luteus) inoculated into Pinus massoniana and biochar as a soil amendment. Results demonstrated that S. luteus extended apoplastic spaces to absorb arsenic into root cell intervals while encapsulating organic matter into aggregates. Biochar further promoted recalcitrant carbon formation, significantly increasing aggregate-carbon, particulate organic carbon (POC), and mineral-associated organic carbon (MAOC) by 3.15-, 1.74-, and 2.33-fold, respectively, compared to controls. Distinct hyphosphere microbiomes were observed in the combined treatment (BS), with enhanced microbial diversity, enzyme activity, carbon-sequestration genes, and necromass production, indicating the pivotal role of soil microorganisms in stable carbon pool formation. These synergistic effects not only facilitated arsenic detoxification but also significantly contributed to carbon stabilization.
Collapse
Affiliation(s)
- Xuan Zhang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, PR China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, PR China
| | - Yang Liu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, PR China
| | - Xingran Mo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, PR China
| | - Zhongliang Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, PR China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, PR China
| | - Hui Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, PR China
| | - Lijuan Jiang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, PR China
| | - Zhuming Tan
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, PR China
| | - Zihao Yang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, PR China
| | - Yi Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, PR China
| | - Jing Huang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, PR China
| | - Baiquan Zeng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, PR China.
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, PR China.
| |
Collapse
|
2
|
Hu J, Yang S, Cornelis WM, Zhang M, Huang Q, Qiu H, Qi S, Jiang Z, Xu Y, Zhu L. Microstructure and Microorganisms Alternation of Paddy Soil: Interplay of Biochar and Water-Saving Irrigation. PLANTS (BASEL, SWITZERLAND) 2025; 14:1498. [PMID: 40431061 PMCID: PMC12114665 DOI: 10.3390/plants14101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Biochar application and controlled irrigation (CI) enhance water conservation, lower emissions, and increase crop yields. However, the synergistic effects on the relationship between paddy soil microstructure and microbiome remain poorly understood. This study investigates the impact of different irrigation regimes and biochar applications on soil physicochemical properties, soil microstructure, and the composition and functions of soil microorganisms in paddy soil. The CA treatment (CI with 60 t/hm2 biochar) showed higher abundances of Mycobacteriaceae, Streptomycetaceae, Comamonadaceae, and Nocardioidaceae than the CK treatment (CI without biochar), which was attributed to two main factors. First, CA increased the pore throat equivalent radius (EqR), throat surface area (SAR), total throat number (TTN), volume fraction (VF), and connected porosity (CP) by 1.47-9.61%, 7.50-25.21%, 41.55-45.99%, 61.12-73.04%, and 46.36-93.75%, respectively, thereby expanding microbial habitats and providing refuges for microorganisms. Second, CA increased the cation exchange capacity (CEC), mean weight diameter (MWD), soil organic carbon (SOC), and total nitrogen (TN) by 22.14-25.06%, 42.24-56.61%, 22.98-56.5%, and 9.41-87.83%, respectively, reinforcing soil structural stability and carbon storage, which promoted microbial community diversity. FK (flood irrigation without biochar) showed no significant correlations with these environmental factors. Compared to CK soil metabolites at Level 2 and Level 3, FK exhibited higher levels of the citrate cycle, indicating that changes in water and oxygen environments due to CI reduced soil organic matter decomposition and carbon cycle. CA and CK strongly correlated with the soil microstructure (VF, CP, TTN, SAR, EqR), and CA notably enhanced soil metabolites related to the synthesis and degradation of ketone bodies, suggesting that biochar can mitigate the adverse metabolomic effects of CI. These results indicate that biochar application in CI paddy fields highlights the critical role of soil microstructure in microbial composition and function and better supports soil sustainability.
Collapse
Affiliation(s)
- Jiazhen Hu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
- Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Wim M. Cornelis
- Department of Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mairan Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Qian Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Haonan Qiu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Suting Qi
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Zewei Jiang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China
| | - Lili Zhu
- Urban Water Scheduling and Information Management Department of Kunshan City, Kunshan 215300, China
| |
Collapse
|
3
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Abd-Elkader AM, El-Desouki Z, Xia X, Jiang C. Unraveling the synergistic effect of biochar and potassium solubilizing bacteria on potassium availability and rapeseed growth in acidic soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125109. [PMID: 40138938 DOI: 10.1016/j.jenvman.2025.125109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Potassium (K) is an essential macronutrient for plant growth. However, its bioavailability is low in acidic soils. Excessive K fertilization deteriorates the soil health, thus highlighting the need for sustainable alternatives. In previous studies, biochar application has been proven to be an effective amendment. Meanwhile, various potassium solubilizing bacteria (KSB) have been identified in soil that contributes to K bioavailability. However, their interaction under combine (co) application in acidic soil and its effects on K availability remain poorly understood. Therefore, a pot experiment was conducted to investigate the synergistic effect of co-application of rice straw biochar (BC) and KSB consortium on K availability to promote rapeseed growth. The treatment plan consisted of CK (control), recommended K fertilizer, 2 % BC (2 % w/w), KSB consortium, KSB consortium + 2 % BC (2 % w/w). Results of soil analysis conducted after crop maturity showed that co-application of 2 % BC and KSB consortium significantly improved the soil pH and organic matter contents by 0.62 and 12.52 units respectively, relative to CK. Meanwhile, soil available nutrients were greatly enhanced, as available K content increased by 52.1 %, which indicated that co-application of 2 % BC and KSB consortium could facilitate the better conversion of different forms of soil K and make it available for plant uptake. Furthermore, it also improved extracellular enzymatic activities (26.7-71.6 %) and soil bacterial community (Actinobacteriota and Firmicutes). These improvements greatly enhanced plant biomass (46 %) and yield (31 %). Overall results proved that co-application of 2 % BC and KSB effectively enhanced K availability for sustainable plant growth. Still, there is a need to identify the most efficient KSB strains that, in conjugation with BC, reduce the K fertilizer usage.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Ali M Abd-Elkader
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China; Department of Agricultural Botany Faculty of Agriculture, Ain Shams University, Cario, 11241, Egypt.
| | - Zeinab El-Desouki
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
4
|
Luo H, Chen J, Yang B, Li Y, Wang P, Yu J, Yuan B, Zhang Y, Ren J, Du P, Li F. Cadmium distribution and availability in different particle-size aggregates of post-harvest paddy soil amended with bio-based materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177739. [PMID: 39612707 DOI: 10.1016/j.scitotenv.2024.177739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Research on the use of organic materials as soil amendments for the remediation of Cd-contaminated agricultural land exists. However, the mechanisms based on which organic materials affect the distribution and availability of Cd in soil aggregates remain unclear. Here, Cd-contaminated paddy soil and different bio-based materials were used for rice pot experiments. Rhizosphere soils were separated into six particle sizes. Cd fractions were analyzed with BCR sequential extraction and specific functional groups associated with Cd were characterized using XPS. We found that bio-based materials promoted the formation of large aggregates to different extents. Cd tended to be enriched in fine- and coarse-grained soil particles, which is mainly related to the soil organic matter. Bio-based materials reduced the relative content of the weak-acid extractable fraction and increased the relative content of the reducible fraction, resulting in soil Cd immobilization. Soil dissolved organic matter (DOM) was the key factor affecting the distribution and availability of Cd in soil aggregates and different organic matter and Cd-binding functional groups in aggregates altered the Cd availability in soil. The results provide insight and guidance for understanding the cadmium immobilization mechanism and screening appropriate materials in the remediation of agricultural land.
Collapse
Affiliation(s)
- Huilong Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, China
| | - Juan Chen
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yake Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Panpan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jingjing Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bei Yuan
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Yunhui Zhang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Jie Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ping Du
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Kim BJ, Jeon YJ, Ko MS. Influence of Pseudomonas aeruginosa-based biopolymer on mitigating soil erosion and heavy metal dispersion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176889. [PMID: 39419219 DOI: 10.1016/j.scitotenv.2024.176889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Extreme weather phenomena caused by climate change have exacerbated soil erosion and the subsequent dispersion of pollutants. Pseudomonas aeruginosa is known to contribute to the remediation of polluted water and reduce the geochemical mobility of heavy metals in contaminated soil. However, studies on the influence of biopolymers produced by soil microbes and P. aeruginosa on physical soil properties and soil erosion are limited. We aimed to investigate the influence of soil microbes on the mitigation of soil erosion and geochemical dispersion of heavy metals using a naturally occurring microbial substance, P. aeruginosa-based biopolymer (PBB). The PBB comprised carboxyl, hydroxyl, and amine surface functional groups; consequently, the biopolymer effectively sequestered Cd (maximum sorption capacity qm = 45.7 mg/g), Cu (qm = 26.7 mg/g), Pb (qm = 64.9 mg/g), and Zn (qm = 26.1 mg/g) in the solution. The PBB amendment of the soil improved the physical properties associated with soil erosion, increasing soil aggregation stability and shear strength by 41.6% and 36.8%, respectively. The extraction of heavy metals from soil via synthetic precipitate leaching decreased by 54.2% following the PBB amendment, and a negative correlation was observed between soil aggregate stability and heavy metal extraction, indicating that this microbial substance could immobilize pollutants by adsorbing cationic metal ions and inhibiting water-induced disaggregation. In the soil erosion experiments, soil loss and heavy metal extraction decreased by 70.9% and 43.8%, respectively, following the PBB amendment. These aggregation and sorption effects of the PBB underscore the potential of soil microbes to mitigate soil erosion and immobilize the geochemical dispersion of heavy metals, thereby contributing to the conservation of soil and water quality in areas surrounding contaminated slopes and heavy metal-contaminated areas, such as cut slopes, agricultural fields, mine dumps, and dams.
Collapse
Affiliation(s)
- Bum-Jun Kim
- Department of Integrated Energy and Infra System, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong-Jung Jeon
- Department of Integrative Engineering for Hydrogen Safety, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Myoung-Soo Ko
- Department of Integrated Energy and Infra System, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Integrative Engineering for Hydrogen Safety, Graduate School, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Tang Q, Moeskjær S, Cotton A, Dai W, Wang X, Yan X, Daniell TJ. Organic fertilization reduces nitrous oxide emission by altering nitrogen cycling microbial guilds favouring complete denitrification at soil aggregate scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174178. [PMID: 38917905 DOI: 10.1016/j.scitotenv.2024.174178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Agricultural management practices can induce changes in soil aggregation structure that alter the microbial nitrous oxide (N2O) production and reduction processes occurring at the microscale, leading to large-scale consequences for N2O emissions. However, the mechanistic understanding of how organic fertilization affects these context-dependent small-scale N2O emissions and associated key nitrogen (N) cycling microbial communities is lacking. Here, denitrification gas (N2O, N2) and potential denitrification capacity N2O/(N2O + N2) were assessed by automated gas chromatography in different soil aggregates (>2 mm, 2-0.25 and <0.25 mm), while associated microbial communities were assessed by sequencing and qPCR of N2O-producing (nirK and nirS) and reducing (nosZ clade I and II) genes. The results indicated that organic fertilization reduced N2O emissions by enhancing the conversion of N2O to N2 in all aggregate sizes. Moreover, potential N2O production and reduction hotspots occurred in smaller soil aggregates, with the degree depending on organic fertilizer type and application rate. Further, significantly higher abundance and diversity of nosZ clades relative to nirK and nirS revealed complete denitrification promoted through selection of denitrifying communities at microscales favouring N2O reduction. Communities associated with high and low emission treatments form modules with specific sequence types which may be diagnostic of emission levels. Taken together, these findings suggest that organic fertilizers reduced N2O emissions through influencing soil factors and patterns of niche partitioning between N2O-producing and reducing communities within soil aggregates, and selection for communities that overall are more likely to consume than emit N2O. These findings are helpful in strengthening the ability to predict N2O emissions from agricultural soils under organic fertilization as well as contributing to the development of net-zero carbon strategies for sustainable agriculture.
Collapse
Affiliation(s)
- Quan Tang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Sara Moeskjær
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Anne Cotton
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Department of Earth and Environmental Sciences, The University of Manchester, Williamson Building, Manchester M13 9PY, UK; Manchester Institute of Biotechnology, The University of Manchester, John Garside Building, 131 Princess Street, Manchester M1 7DN, UK
| | - Wenxia Dai
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaozhi Wang
- Key Laboratory of Arable Land Quality Monitoring and Evaluation, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tim J Daniell
- Microbiology to Molecular Microbiology: Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
7
|
Long XX, Yu ZN, Liu SW, Gao T, Qiu RL. A systematic review of biochar aging and the potential eco-environmental risk in heavy metal contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134345. [PMID: 38696956 DOI: 10.1016/j.jhazmat.2024.134345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Biochar is widely accepted as a green and effective amendment for remediating heavy metals (HMs) contaminated soil, but its long-term efficiency and safety changes with biochar aging in fields. Currently, some reviews have qualitatively summarized biochar aging methods and mechanisms, aging-induced changes in biochar properties, and often ignored the potential eco-environmental risk during biochar aging process. Therefore, this review systematically summarizes the study methods of biochar aging, quantitatively compares the effects of different biochar aging process on its properties, and discusses the potential eco-environmental risk due to biochar aging in HMs contaminated soil. At present, various artificial aging methods (physical aging, chemical aging and biological aging) rather than natural field aging have been applied to study the changes of biochar's properties. Generally, biochar aging increases specific surface area (SSA), pore volume (PV), surface oxygen-containing functional group (OFGs) and O content, while decreases pH, ash, H, C and N content. Chemical aging method has a greater effect on the properties of biochar than other aging methods. In addition, biochar aging may lead to HMs remobilization and produce new types of pollutants, such as polycyclic aromatic hydrocarbons (PAHs), environmentally persistent free radicals (EPFRs) and colloidal/nano biochar particles, which consequently bring secondary eco-environmental risk. Finally, future research directions are suggested to establish a more accurate assessment method and model on biochar aging behavior and evaluate the environmental safety of aged biochar, in order to promote its wider application for remediating HMs contaminated soil.
Collapse
Affiliation(s)
- Xin-Xian Long
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Ze-Ning Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shao-Wen Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ting Gao
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Rong-Liang Qiu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Xu P, Wang Q, Duan C, Huang G, Dong K, Wang C. Biochar addition promotes soil organic carbon sequestration dominantly contributed by macro-aggregates in agricultural ecosystems of China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121042. [PMID: 38703652 DOI: 10.1016/j.jenvman.2024.121042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Soil aggregates play pivotal roles in soil organic carbon (SOC) preservation and climate change. Biochar has been widely applied in agricultural ecosystems to improve soil physicochemical properties. However, the underlying mechanisms of SOC sequestration by soil aggregation with biochar addition are not well understood at a large scale. Here, we conducted a meta-analysis of 2335 pairwise data from 45 studies to explore how soil aggregation sequestrated SOC after biochar addition in agricultural ecosystems of China. Biochar addition markedly enhanced the proportions of macro-aggregates and aggregate stability, and the production of organic binding agents positively facilitated the formation of macro-aggregates and aggregate stability. Soil aggregate-associated organic carbon (OC) indicated a significantly increasement by biochar addition, which was attributed to direct and indirect inputs of OC from biochar and organic residues, respectively. Biochar stimulated SOC sequestration dominantly contributed by macro-aggregates, and it could be interpreted by a greater improvement in proportions and OC protection of macro-aggregates. Furthermore, the SOC sequestration of soil aggregation with biochar addition was regulated by climate conditions (mean annual temperature and precipitation), biochar attributes (biochar C/N ratio and pH), experimental practices (biochar addition level and duration), and agronomic managements (land type, cropping intensity, fertilization condition, and crop type). Collectively, our synthetic analysis emphasized that biochar promoted the SOC sequestration by improving soil aggregation in agricultural ecosystems of China.
Collapse
Affiliation(s)
- Peidong Xu
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China.
| | - Qiang Wang
- College of Forestry, Shanxi Agricultural University, Taigu 030801, China
| | - Chengjiao Duan
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China
| | - Guoyong Huang
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Kuanhu Dong
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
| | - Changhui Wang
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
9
|
Halalsheh M, Shatanawi K, Shawabkeh R, Kassab G, Mohammad H, Adawi M, Ababneh S, Abdullah A, Ghantous N, Balah N, Almomani S. Impact of temperature and residence time on sewage sludge pyrolysis for combined carbon sequestration and energy production. Heliyon 2024; 10:e28030. [PMID: 38596039 PMCID: PMC11002555 DOI: 10.1016/j.heliyon.2024.e28030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Environmental challenges related to sewage sludge call for urgent sustainable management of this resource. Sludge pyrolysis might be considered as a sustainable technology and is anticipated to support measures for mitigating climate change through carbon sequestration. The end products of the process have various applications, including the agricultural utilization of biochar, as well as the energy exploitation of bio-oil and syngas. In this research, sewage sludge was pyrolyzed at 500 °C, 600 °C, 750 °C, and 850 °C. At each temperature, pyrolysis was explored at 1hr, 2hrs, and 3hrs residence times. The ratio (H/Corg)at was tapped to imply organic carbon stability and carbon sequestration potential. Optimum operating conditions were achieved at 750 °C and 2hrs residence time. Produced biochar had (H/Corg)at ratio of 0.54, while nutrients' contents based on dry weight were 3.99%, 3.2%, and 0.6% for total nitrogen (TN), total phosphorus (TP), and total potassium (TK), respectively. Electrical conductivity of biochar was lesser than the feed sludge. Heavy metals in biochar aligned with the recommended values of the International Biochar Initiative. Heat content of condensable and non-condensable volatiles was sufficient to maintain the temperature of the furnace provided that PYREG process is considered. However, additional energy source is demanded for sludge drying.
Collapse
Affiliation(s)
- M. Halalsheh
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - K. Shatanawi
- Civil Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| | - R. Shawabkeh
- Department of Chemical Engineering, School of Engineering, The University of Jordan, Amman, Jordan
| | - G. Kassab
- Civil Engineering Department, School of Engineering, The University of Jordan, Amman, Jordan
| | - H. Mohammad
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - M. Adawi
- Water, Energy and Environment Center, The University of Jordan, Amman, Jordan
| | - S. Ababneh
- German Development Cooperation, Amman, Jordan
| | - A. Abdullah
- German Development Cooperation, Amman, Jordan
| | - N. Ghantous
- German Development Cooperation, Amman, Jordan
| | - N. Balah
- German Development Cooperation, Amman, Jordan
| | - S. Almomani
- German Development Cooperation, Amman, Jordan
| |
Collapse
|
10
|
Xie X, Liu Y, Chen G, Turatsinze AN, Yue L, Ye A, Zhou Q, Wang Y, Zhang M, Zhang Y, Li Z, Tran LSP, Wang R. Granular bacterial inoculant alters the rhizosphere microbiome and soil aggregate fractionation to affect phosphorus fractions and maize growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169371. [PMID: 38104809 DOI: 10.1016/j.scitotenv.2023.169371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The constraint of phosphorus (P) fixation on crop production in alkaline calcareous soils can be alleviated by applying bioinoculants. However, the impact of bacterial inoculants on this process remains inadequately understood. Here, a field study was conducted to investigate the effect of a high-concentration, cost-effective, and slow-release granular bacterial inoculant (GBI) on maize (Zea mays L.) plant growth. Additionally, we explored the effects of GBI on rhizosphere soil aggregate physicochemical properties, rhizosphere soil P fraction, and microbial communities within aggregates. The outcomes showed a considerable improvement in plant growth and P uptake upon application of the GBI. The application of GBI significantly enhanced the AP, phoD gene abundance, alkaline phosphatase activity, inorganic P fractions, and organic P fractions in large macroaggregates. Furthermore, GBI impacted soil aggregate fractionation, leading to substantial alterations in the composition of fungal and bacterial communities. Notably, key microbial taxa involved in P-cycling, such as Saccharimonadales and Mortierella, exhibited enrichment in the rhizosphere soil of plants treated with GBI. Overall, our study provides valuable insight into the impact of GBI application on microbial distributions and P fractions within aggregates of alkaline calcareous soils, crucial for fostering healthy root development and optimal crop growth potential. Subsequent research endeavors should delve into exploring the effects of diverse GBIs and specific aggregate types on P fraction and community composition across various soil profiles.
Collapse
Affiliation(s)
- Xiaofan Xie
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaofeng Chen
- Gansu Shangnong Biotechnology Co. Ltd, Baiyin 730900, China
| | - Andéole Niyongabo Turatsinze
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Yue
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Ye
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Zhou
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meilan Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; General Station of Gansu Cultivated Land Quality Construction and Protection, Lanzhou 730020, China
| | - Yubao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongping Li
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Ruoyu Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Chen H, Gao Y, Dong H, Sarkar B, Song H, Li J, Bolan N, Quin BF, Yang X, Li F, Wu F, Meng J, Wang H, Chen W. Chitin and crawfish shell biochar composite decreased heavy metal bioavailability and shifted rhizosphere bacterial community in an arsenic/lead co-contaminated soil. ENVIRONMENT INTERNATIONAL 2023; 176:107989. [PMID: 37245444 DOI: 10.1016/j.envint.2023.107989] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/08/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
Sustainable management of ever-increasing organic biowaste and arable soil contamination by potentially toxic elements are of concern from both environmental and agricultural perspectives. To tackle the waste issue of crawfish shells and simultaneously minimize the threat of arsenic (As) and lead (Pb) to human health, a pot trial was conducted using chitin (CT), crawfish shell biochar (CSB), crawfish shell powder (CSP), and CT-CSB composite to compare their remediation efficiencies in As/Pb co-contaminated soil. Results demonstrated that addition of all amendments decreased Pb bioavailability, with the greatest effect observed for the CT-CSB treatment. Application of CSP and CSB increased the soil available As concentration, while significant decreases were observed in the CT and CT-CSB treatments. Meanwhile, CT addition was the most effective in enhancing the soil enzyme activities including acid phosphatase, α-glucosidase, N-acetyl-β-glucosaminidase, and cellobiohydrolase, whereas CSB-containing treatments suppressed the activities of most enzymes. The amendments altered the bacterial abundance and composition in soil. For instance, compared to the control, all treatments increased Chitinophagaceae abundance by 2.6-4.7%. The relative abundance of Comamonadaceae decreased by 1.6% in the CSB treatment, while 2.1% increase of Comamonadaceae was noted in the CT-CSB treatment. Redundancy and correlation analyses (at the family level) indicated that the changes in bacterial community structure were linked to bulk density, water content, and As/Pb availability of soils. Partial least squares path modeling further indicated that soil chemical property (i.e., pH, dissolved organic carbon, and cation exchange capacity) was the strongest predictor of As/Pb availability in soils following amendment application. Overall, CT-CSB could be a potentially effective amendment for simultaneously immobilizing As and Pb and restoring soil ecological functions in contaminated arable soils.
Collapse
Affiliation(s)
- Hanbo Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China; Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Yurong Gao
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiyun Dong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Hocheol Song
- Department of Earth Resources and Environmental Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Jianhong Li
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Bert F Quin
- Quin Environmentals (NZ) Ltd., PO Box 125122, St. Heliers, Auckland 1740, New Zealand
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Fangbai Li
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Meng
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China.
| | - Wenfu Chen
- Agronomy College, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|