1
|
Gao J, Mang Q, Li Q, Sun Y, Xu G. Microbial-algal symbiotic system drives reconstruction of nitrogen, phosphorus, and methane cycles for purification of pollutants in aquaculture water. BIORESOURCE TECHNOLOGY 2025; 430:132531. [PMID: 40233882 DOI: 10.1016/j.biortech.2025.132531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Intensive aquaculture's excessive nitrogen, phosphorus, and methane emissions caused environmental degradation. This study explored how algae-bacteria symbiotic systems (ABSS) enhanced water purification by regulating element cycles. We established a Chlorella pyrenoidosa-Bacillus subtilis symbiotic system. At a 1:1 bacteria-to-algae ratio, chlorophyll a and cell dry weight were highest. C. pyrenoidosa supplied organic acids, carbohydrates, and amino acids to B. subtilis, which reciprocated with amino acids, purines, and vitamins. ABSS significantly reduced total nitrogen, ammonia nitrogen (NH4+-N), nitrite (NO2--N), nitrate (NO3--N), phosphate (PO43--P), total phosphorous, dissolved organic carbon, and chemical oxygen demand in aquaculture water. It reshaped microbial communities and enriched key genus (Limnohabitans, Planktophila, Polaromonas, Methylocystis) and upregulating genes linked to organic phosphate mineralization, methane oxidation, and nitrate reduction. These changes strengthened nitrogen-phosphorus-methane cycle coupling, boosting water purification. ABSS offers an eco-engineering solution for aquaculture pollution by optimizing microbial interactions and nutrient cycling.
Collapse
Affiliation(s)
- Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Qi Mang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
2
|
Pham MDT, Bui XT, Vo TKQ, Dao TS, Le LT, Vo TDH, Huynh KPH, Nguyen TB, Lin C, Visvanathan C. Microalgae - bacteria based wastewater treatment systems: Granulation, influence factors and pollutants removal. BIORESOURCE TECHNOLOGY 2025; 418:131973. [PMID: 39672237 DOI: 10.1016/j.biortech.2024.131973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Wastewater treatment based on microalgae and bacteria symbiosis is an environmentally friendly, sustainable technology that has attracted attention recently because of its high efficiency in treating pollutants, saving energy, and short-term biomass recovery. Among them, the granular microalgae and bacteria combination emerges with the advantages of rapid gravity settling, good resistance to adverse environmental conditions, outstanding wastewater treatment performance, and easy biomass recovery. This review aims to clarify the microalgal-bacterial granule (MBG) - based process for wastewater treatment. In particular, MBG characteristics, granulation mechanism, and influence factors on the process are also discussed. The review contributes to the knowledge system related to MBG research in recent years, thereby pointing out research gaps that need to be filled in the future.
Collapse
Affiliation(s)
- Mai-Duy-Thong Pham
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam.
| | - Thi-Kim-Quyen Vo
- Ho Chi Minh City University of Industry and Trade (HUIT), 140 Le Trong Tan street, Tay Thanh ward, Tan Phu district, Ho Chi Minh City, Vietnam
| | - Thanh-Son Dao
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam
| | - Linh-Thy Le
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), ward 11, district 5, Ho Chi Minh City, Vietnam
| | - Thi-Dieu-Hien Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Ky-Phuong-Ha Huynh
- Key Laboratory of Advanced Waste Treatment Technology & Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Binh Nguyen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chitsan Lin
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chettiyappan Visvanathan
- Department of Civil and Environmental Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
Liu YH, Huang JN, Wen B, Gao JZ, Chen ZZ. Comprehensive assessment of three crayfish culture modes: From production performance to environmental sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176470. [PMID: 39317249 DOI: 10.1016/j.scitotenv.2024.176470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Integrated agriculture-aquaculture has emerged as a promising ecological development model. Crayfish, a popular aquaculture species, are traditionally reared either in monoculture ponds (mono-C) or in rice-crayfish polyculture system (poly-RC). In this study, we introduced a novel polyculture system by combining fruit tree with crayfish (poly-FC), aiming to compare these three crayfish culture modes in terms of production performance and ecological sustainability. The results indicated that crayfish reared in the two polyculture modes exhibited significantly higher specific growth rate and condition factor compared to those in mono-C. Crayfish cultured in poly-FC also showed better muscle quality and higher levels of crude fat and flavor or essential amino acids. Isotope mixing model showed that feed and benthic animals were the primary food sources of crayfish in mono-C, whereas aquatic plants, fruit litter or rice contributed more to those in polyculture modes. For greenhouse gas emissions, poly-FC mode emitted almost no CO2 and N2O even favored negative CH4 emission, while poly-RC and mono-C modes showed positive emissions of CH4 and CO2, respectively. Supported by metagenomics, the sink of CH4 in poly-FC was probably due to the lower mcr abundance but the higher pmo abundance in water. The low production and emission of N2O in poly-FC might result from the low-abundant Nitrospirae_bacterium and its coding gene norC in sediment, consistent with the lower denitrification rate but the higher NO3- concentration than mono-C. Overall, our findings reveal the superiority of polyculture of fruit tree with crayfish in terms of production performance and greenhouse gas emissions in the system.
Collapse
Affiliation(s)
- Yuan-Hao Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jun-Nan Huang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Ren Z, Li H, Sun P, Fu R, Bai Z, Zhang G, Sun L, Wei Y. Development and challenges of emerging biological technologies for algal-bacterial symbiosis systems: A review. BIORESOURCE TECHNOLOGY 2024; 413:131459. [PMID: 39255948 DOI: 10.1016/j.biortech.2024.131459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The algal-bacterial symbiosis system (ABSS) is considered as a sustainable wastewater treatment process. This review provides a comprehensive overview of the mechanisms of ABSS for the removal of common pollutant, heavy metals, and especially for emerging pollutants. For the macroscopical level, this review not only describes in detail the reactor types, influencing factors, and the development of the algal-bacterial process, but also innovatively proposes an emerging process that combines an ABSS with other processes, which enhances the efficiency of removing difficult-to-biodegrade pollutants. Further for the microscopic level, interactions between algae and bacteria, including nutrient exchange, signaling transmission and gene transfer, have been deeply discussed the symbiotic relationship with nutrient removal and biomass production. Finally, recommendations are given for the future development of the ABSS. This review comprehensively examines ABSS principles, development, algal-bacterial interactions, and application in wastewater treatment, aiming to deepen theoretical and practical understanding and advance ABSS technology.
Collapse
Affiliation(s)
- Zhijun Ren
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Huixue Li
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Peng Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Ruiyao Fu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zijia Bai
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Guangming Zhang
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Li Sun
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Yanjie Wei
- Key Laboratory of Environmental Protection in Water Transport Engineering Ministry of Communications, Tianjin Research Institute of Water Transport Engineering, Tianjin 300456, China.
| |
Collapse
|
5
|
Xiao Z, Meng H, Li S, Ning W, Song Y, Han J, Chang JS, Wang Y, Ho SH. Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems. ENVIRONMENTAL RESEARCH 2024; 257:119326. [PMID: 38849002 DOI: 10.1016/j.envres.2024.119326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
With the burgeoning growth of the livestock and aquaculture industries, antibiotic residues in treated wastewater have become a serious ecological threat. Traditional biological wastewater treatment technologies-while effective for removing conventional pollutants, such as organic carbon, ammonia and phosphate-struggle to eliminate emerging contaminants, notably antibiotics. Recently, the use of microalgae has emerged as a sustainable and promising approach for the removal of antibiotics due to their non-target status, rapid growth and carbon recovery capabilities. This review aims to analyse the current state of antibiotic removal from wastewater using algae-bacteria symbiosis systems and provide valuable recommendations for the development of livestock/aquaculture wastewater treatment technologies. It (1) summarises the biological removal mechanisms of typical antibiotics, including bioadsorption, bioaccumulation, biodegradation and co-metabolism; (2) discusses the roles of intracellular regulation, involving extracellular polymeric substances, pigments, antioxidant enzyme systems, signalling molecules and metabolic pathways; (3) analyses the role of treatment facilities in facilitating algae-bacteria symbiosis, such as sequencing batch reactors, stabilisation ponds, membrane bioreactors and bioelectrochemical systems; and (4) provides insights into bottlenecks and potential solutions. This review offers valuable information on the mechanisms and strategies involved in the removal of antibiotics from livestock/aquaculture wastewater through the symbiosis of microalgae and bacteria.
Collapse
Affiliation(s)
- Zhihua Xiao
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Hao Meng
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Weihao Ning
- Xinrui Environmental Protection Technology Co., Ltd, Yantai, 264000, China
| | - Youliang Song
- Shaoxing Academy of Agricultural Sciences, Shaoxing, 312003, China
| | - Jinglong Han
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yue Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264000, China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
6
|
Li W, Wang L, Qiang X, Song Y, Gu W, Ma Z, Wang G. Design, construction and application of algae-bacteria synergistic system for treating wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121720. [PMID: 38972186 DOI: 10.1016/j.jenvman.2024.121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The wastewater treatment technology of algae-bacteria synergistic system (ABSS) is a promising technology which has the advantages of low energy consumption, good treatment effect and recyclable high-value products. In this treatment technology, the construction of an ABSS is a very important factor. At the same time, the emergence of some new technologies (such as microbial fuel cells and bio-carriers, etc.) has further enriched constructing the novel ABSS, which could improve the efficiency of wastewater treatment and the biomass harvesting rate. Thus, this review focuses on the construction of a novel ABSS in wastewater treatment in order to provide useful suggestions for the technology of wastewater treatment.
Collapse
Affiliation(s)
- Weihao Li
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lijun Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Xi Qiang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuling Song
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
7
|
Gan Y, Ji X, Yang R. Metagenomic profiling of antibiotic resistance genes/bacteria removal in urban water: Algal-bacterial consortium treatment system. BIORESOURCE TECHNOLOGY 2024; 404:130905. [PMID: 38801952 DOI: 10.1016/j.biortech.2024.130905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/12/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
Antibiotic resistance genes (ARGs) have exhibited significant ecological concerns, especially in the urban water that are closely associated with human health. In this study, with presence of exogenous Chlorella vulgaris-Bacillus licheniformis consortium, most of the typical ARGs and MGEs were removed. Furthermore, the relative abundance of potential ARGs hosts has generally decreased by 1-4 orders of magnitude, revealing the role of algal-bacterial consortium in cutting the spread of ARGs in urban water. While some of ARGs such as macB increased, which may be due to the negative impact of algicidal bacteria and algal viruses in urban water on exogenous C. vulgaris and the suppression of exogenous B. licheniformis by indigenous microorganisms. A new algal-bacterial interaction might form between C. vulgaris and indigenous microorganisms. The interplay between C. vulgaris and bacteria has a significant impact on the fate of ARGs removal in urban water.
Collapse
Affiliation(s)
- Yongdi Gan
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Xiyan Ji
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Ruzhou Yang
- Iontra Inc., 5925 E. Evans Ave, Denver, CO 80222, USA
| |
Collapse
|
8
|
Gan W, Zhang R, Cao Z, Liu H, Fan W, Sun A, Song S, Zhang Z, Shi X. Unveiling the hidden risks: Pesticide residues in aquaculture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172388. [PMID: 38614356 DOI: 10.1016/j.scitotenv.2024.172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The present study systematically assessed the presence and ecological risks of 79 pesticides in various aquaculture systems, namely pond aquaculture (PA), greenhouse aquaculture (GA), and raceway aquaculture (RA) at different aquaculture stages, along with evaluating the pesticide removal of four tailwater treatment systems. Sixteen herbicides and two fungicides were identified, with the total concentrations ranging from 8.33 ng/L to 3248.45 ng/L. The PA system demonstrated significantly higher concentrations (p < 0.05) and a wider range of pesticide residues compared to the GA and RA systems. Prometryn, simetryn, atrazine, and thifluzamide were found to be the predominant pesticides across all three aquaculture modes, suggesting their significance as pollutants that warrant monitoring. Additionally, the findings indicated that the early aquaculture stage exhibits the highest levels of pesticide concentration, underscoring the importance of heightened monitoring and regulatory interventions during this phase. Furthermore, among the four tailwater treatment systems analyzed, the recirculating tailwater treatment system exhibited the highest efficacy in pesticide removal. A comprehensive risk assessment revealed minimal ecological risks in both the aquaculture and tailwater environments. However, the pesticide mixtures present high risks to algae and low to medium risks to aquatic invertebrates and fish, particularly during the early stages of aquaculture. Simetryn and prometryn were identified as high-risk pesticides. Based on the prioritization index, simetryn, prometryn, diuron, and ametryn are recommended for prioritization in risk assessment. This study offers valuable data for pesticide control and serves as a reference for the establishment of a standardized pesticide monitoring and management system at various stages of aquaculture.
Collapse
Affiliation(s)
- Weijia Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhi Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
9
|
Li J, Li T, Sun D, Guan Y, Zhang Z. Treatment of agricultural wastewater using microalgae: A review. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:41-82. [PMID: 39059843 DOI: 10.1016/bs.aambs.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.
Collapse
Affiliation(s)
- Jiayi Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Tong Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Dongzhe Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, P.R. China.
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, P.R. China; College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China.
| |
Collapse
|
10
|
Li L, Chai W, Sun C, Huang L, Sheng T, Song Z, Ma F. Role of microalgae-bacterial consortium in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121226. [PMID: 38795468 DOI: 10.1016/j.jenvman.2024.121226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
In the global effort to reduce CO2 emissions, the concurrent enhancement of pollutant degradation and reductions in fossil fuel consumption are pivotal aspects of microalgae-mediated wastewater treatment. Clarifying the degradation mechanisms of bacteria and microalgae during pollutant treatment, as well as regulatory biolipid production, could enhance process sustainability. The synergistic and inhibitory relationships between microalgae and bacteria are introduced in this paper. The different stimulators that can regulate microalgal biolipid accumulation are also reviewed. Wastewater treatment technologies that utilize microalgae and bacteria in laboratories and open ponds are described to outline their application in treating heavy metal-containing wastewater, animal husbandry wastewater, pharmaceutical wastewater, and textile dye wastewater. Finally, the major requirements to scale up the cascade utilization of biomass and energy recovery are summarized to improve the development of biological wastewater treatment.
Collapse
Affiliation(s)
- Lixin Li
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China.
| | - Wei Chai
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Caiyu Sun
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Linlin Huang
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Tao Sheng
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Zhiwei Song
- School of Environment and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, China
| | - Fang Ma
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
11
|
Tang CC, Hu YR, Zhang M, Chen SL, He ZW, Li ZH, Tian Y, Wang XC. Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123951. [PMID: 38604305 DOI: 10.1016/j.envpol.2024.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Ya-Ru Hu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Min Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Sheng-Long Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
12
|
Li S, Xing D, Sun C, Jin C, Zhao Y, Gao M, Guo L. Effect of mariculture wastewater concentrations on high-value production and pollutants removal with bacterial-algal coupling reactor (BACR). BIORESOURCE TECHNOLOGY 2023; 385:129410. [PMID: 37390931 DOI: 10.1016/j.biortech.2023.129410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
To achieve the goal of cost-effective mariculture wastewater treatment, a novel Bacteria-Algae Coupling Reactor (BACR) integrating acidogenic fermentation with microalgae cultivation was applied for the mariculture wastewater treatment. Currently, there is limited research on the impact of different concentrations of mariculture wastewater on the pollutant removal and the high-value products recovery. In this study, different concentrations (4, 6, 8, and 10 g/L) of mariculture wastewater were treated with BACR. The results showed thatoptimalMW concentrations of 8 g/L improved the growth viability and biochemical components synthetic of Chlorella vulgaris, which increased the potential for high-value products recovery. The BACR exhibited the excellent removal efficiency of chemical oxygen demand, ammonia-nitrogen and total phosphorus with 82.30%, 81.12% and 96.40%, respectively. This study offers an ecological and economic approach to improve the MW treatment through the utilization of a novel bacterial-algal coupling system.
Collapse
Affiliation(s)
- Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Cheng Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China.
| |
Collapse
|
13
|
Fard MB, Wu D. Potential interactive effect on biomass and bio-polymeric substances of microalgal-bacterial aerobic granular sludge as a valuable resource for sustainable development. BIORESOURCE TECHNOLOGY 2023; 376:128929. [PMID: 36940876 DOI: 10.1016/j.biortech.2023.128929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The algal/bacterial biomass and extracellular polymeric substances (EPSs) existing in microalgal-bacterial aerobic granular sludge (MB-AGS) offer a promising bioresource. The current review-based paper presents a systematic overview of the compositions and interactions (gene transfer, signal transduction, and nutrient exchange) of microalgal and bacteria consortia, the role of cooperative or competitive partnerships of MB-AGS in the treatment of wastewater and recovery of resource, and the environmental/operational factors affecting their interactions and EPS production. Moreover, a brief notes is given on the opportunities and major challenges of utilizing the microalgal-bacterial biomass and EPS for phosphorus and polysaccharides chemical recovery, renewable energy (i.e. biodiesel, hydrogen, electricity) production. Overall, this compact review will pave the way for developing MB-AGS future biotechnology.
Collapse
Affiliation(s)
- Moein Besharati Fard
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium.
| |
Collapse
|
14
|
Algae-mediated bioremediation of ciprofloxacin through a symbiotic microalgae-bacteria consortium. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|