1
|
Li B, Gesang Q, Sun Y, Wang Y, Nan J, Xu J. Soil Microbial Adaptation and Biogeochemical Feedback in Degraded Alpine Meadows of the Qinghai-Tibetan Plateau. Microorganisms 2025; 13:1142. [PMID: 40431314 PMCID: PMC12114374 DOI: 10.3390/microorganisms13051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Alpine meadows on the Qinghai-Tibetan Plateau are experiencing rapid degradation due to climate change and anthropogenic disturbances, leading to severe ecological consequences. In this study, we investigated the response of soil microbial communities and their metabolic functions across a degradation gradient using metagenomic sequencing and comprehensive soil physicochemical analysis in the city of Lhasa, China. Results showed that soil pH increased with degradation, while most nutrients, including different forms of nitrogen, phosphorus, and potassium, declined. pH, ammonium nitrogen, and organic matter were identified as key factors driving degradation dynamics. Microbial community composition shifted markedly, with distinct biomarker taxa emerging at different degradation levels. Network analysis revealed a progressive loss of microbial connectivity, with Actinobacteria dominance increasing in heavily degraded soils, while cross-phylum interactions weakened. Functional analysis of biogeochemical cycling genes showed that carbon, nitrogen, and phosphorus cycling were all disrupted by degradation, but each exhibited unique response patterns. These findings will extend our understanding of microbial-mediated soil processes under degradation and provide a scientific foundation for ecosystem management, conservation, and targeted restoration strategies in alpine meadows.
Collapse
Affiliation(s)
- Bingzhang Li
- Tibet Academy of Forest Trees, Lasa 851400, China
| | | | - Yan Sun
- Tibet Academy of Forest Trees, Lasa 851400, China
| | - Yuting Wang
- Tibet Academy of Forest Trees, Lasa 851400, China
| | - Jibin Nan
- Tibet Academy of Forest Trees, Lasa 851400, China
| | - Jun Xu
- Tibet Academy of Forest Trees, Lasa 851400, China
- School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Zhu W, Zhang J, Zhao H, Liu X, Ke J, Wang A, Li X. Relative importance of microbial abundance and taxonomic types in driving the processes and functions of coral reef seawater in the Wuzhizhou Island. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107169. [PMID: 40286480 DOI: 10.1016/j.marenvres.2025.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Abundant and rare taxa of diverse microbial groups may play different roles in coral reefs, yet comprehensive and fine - scale analyses are still lacking. Using high-throughput sequencing methods, we investigated the microbial community and function of impacted reef seawater. Here, we focused on the effects of distinct microbial abundance (abundant versus rare biospheres) and taxonomic types (prokaryotic versus eukaryotic communities). Our study revealed that community assembly processes were more closely related to microbial abundance than to taxonomic types. Rare taxa increased partial functional redundancy compared to the abundant taxa, and bacterial composition had stronger associations with the overall functional attributes than the microeukaryotic taxa. We further demonstrated that taxonomic signatures were more sensitive to temperature and nutrient dynamics in the impacted coral reef than other functional features. These results suggest that community assembly and functional response are highly correlated with microbial abundance and taxonomic types, and that they have different sensitivities as potential indicators of environmental changes. Our findings can promote understanding about community assembly and promising indicators related to microbial abundance and taxonomic types in coral reefs.
Collapse
Affiliation(s)
- Wentao Zhu
- School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Junling Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - He Zhao
- School of Ecology, Hainan University, Haikou, China
| | - Xiangbo Liu
- School of Ecology, Hainan University, Haikou, China
| | - Jingzhao Ke
- School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Aimin Wang
- School of Marine Biology and Fisheries, Hainan University, Haikou, China
| | - Xiubao Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, China; International Joint Research Center for Coral Reef Ecology of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
3
|
Bao Z, Zhang F, Zhao Q, Han Q, Liu J, Xue F, Zhang D, Hou D, Zhang H. Microbial community assembly and co-occurrence patterns in Sanmen bay: A comparative analysis before and after nuclear power plant operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178189. [PMID: 39721531 DOI: 10.1016/j.scitotenv.2024.178189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The limited availability of historical data has resulted in the ongoing debate regarding the short-term effects of thermal discharge from nuclear power plants (NPPs) on microbial communities, including both prokaryotes and microeukaryotes. This study focused on the co-occurrence patterns, assembly processes, and community functions in the eutrophic coastal waters of Sanmen Bay (SMB) before and after NPP operation. Gammaproteobacteria and Alphaproteobacteria were the dominant prokaryotic taxa, while Dinoflagellates consistently maintained their prevalence in SMB. This suggests that short-term thermal discharge does not significantly alter the composition of microbial communities. The co-occurrence networks were primarily composed of Gammaproteobacteria, Alphaproteobacteria, Dinoflagellates, Diatoms, and Cryptophyta, with similar network topological properties across sampling groups. Homogeneous selection and dispersal limitation were the main mechanisms that controlled the assembly of microbial communities. Homogeneous selection was more significant for prokaryotes, while dispersal limitation was the dominant factor in microeukaryotes, irrespective of a thermal discharge. Prokaryotic β-diversity and nutrients showed substantially positive effects on the functional potential of the prokaryotic community. The findings indicate that short-term thermal discharge from the NPP, as long as they do not cause a significant overall temperature increase in the bay, are unlikely to impact the microbial communities within the coastal bay ecosystem.
Collapse
Affiliation(s)
- Zhen Bao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fengyuan Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qunfen Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Qingxi Han
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Junfeng Liu
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Feng Xue
- Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China
| | - Huajun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Department of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
4
|
Wang M, Zhao J, Gu Y, Wu Y, Liu Y, Tang Z, Xu Y, Mao X, Zhang J, Tian W. Deciphering the mechanism of rhizosphere microecosystem in modulating rice cadmium accumulation via integrating metabolomics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178181. [PMID: 39729842 DOI: 10.1016/j.scitotenv.2024.178181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Cadmium (Cd) accumulation in rice poses significant risks to human health. The Cd accumulation levels vary widely among cultivars and are strongly associated with the rhizosphere microecosystem. However, the underlying mechanisms remain poorly understood. Here, we conducted a field experiment in Cd-contaminated areas with 24 popular regional cultivars. These cultivars were categorized into high Cd accumulation (HA) and low Cd accumulation (LA) groups based on their grain Cd content. Rhizosphere soil physicochemical properties were monitored, and key metabolites, microbiomes, and their interaction contributing to Cd accumulation were analyzed using omics-sequencing technologies and bioinformatics analysis. Metabolomic analysis identified distinct rhizosphere metabolite profiles between the HA and LA groups, with key metabolites showing strong correlations with Cd accumulation. Key metabolites in the LA group were linked to reduced Cd uptake and enhanced antioxidant defense mechanisms, while those in the HA group were associated with increased Cd mobility and uptake. Metagenomic analysis of the rhizosphere soil showed that the LA group harbored a more diverse and interconnected microbial community, with tax such as Syntrophaceae, Anaerolineae, Thermoflexales, and Syntrophales, along with metabolite such as disopyramide, playing central roles in Cd immobilization and detoxification. Additionally, the enhanced carbon, nitrogen, and phosphorus cycling in the LA group suggests a more robust nutrient assimilation process that supports plant growth and reduces Cd uptake. This study highlights the critical role of the rhizosphere microecosystem in regulating Cd accumulation and underscores the potential of selecting rice cultivars with favorable rhizosphere traits as a strategy for reducing Cd uptake.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yongjing Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Zhaoyang Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Yu Xu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Yuhua District, Shijiazhuang 050021, China.; Hebei Provincial Academy of Ecological and Environmental Sciences, 30 Yaqing Road, Yuhua District, Shijiazhuang 050037, China
| | - Xinyu Mao
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, Jiangsu, China.
| |
Collapse
|
5
|
Lv H, Yang M, Cheng Y, Li K, Huang T, Wen G. Response of the algal-bacterial community to thermal stratification succession in a deep-water reservoir: Community structure, co-assembly patterns, and functional groups. ENVIRONMENTAL RESEARCH 2024; 261:119688. [PMID: 39074771 DOI: 10.1016/j.envres.2024.119688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Thermal stratification in lakes and reservoirs may intensify and become more persistent with global warming. Periodic thermal stratification is a naturally occurring phenomenon that indicates a transition in aquatic ecosystem homeostasis, which could lead to the deterioration of water quality and impaired aquatic communities. However, the responses of communities and associated nutrient cycling processes to periodic thermal stratification are still poorly understood. This study delved into the changes in water quality, algal-bacterial communities, and functional diversity influenced by thermal stratification succession, and their relationship with nutrient cycling. The results indicated that the apparent community dynamics were driven by environmental factors, with ammonium (NH4+) and nitrate (NO3--N) being the most important factors that influenced the algal and bacterial community structure, respectively. Ecological niche widths were narrower during thermal stratification, exacerbating the antagonism of the communities, and stochastic processes dominated community assembly. Then, the complexities of the co-occurrence network decreased with succession. Algal community assembly became more deterministic, while bacterial assembly became more stochastic. Moreover, the roles of algal-bacterial multidiversity in nutrient cycling differed: bacterial diversity enhanced nutrient cycling, whereas algal diversity had the opposite effect. These findings broadened our understanding of microbial ecological mechanisms to environmental change and provided valuable ecological knowledge for securing water supplies in drinking water reservoirs.
Collapse
Affiliation(s)
- He Lv
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meng Yang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Ya Cheng
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Kai Li
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Gang Wen
- Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
6
|
Feng C, Jia H, Wang H, Wang J, Lin M, Hu X, Yu C, Song H, Wang L. MicroNet-MIMRF: a microbial network inference approach based on mutual information and Markov random fields. BIOINFORMATICS ADVANCES 2024; 4:vbae167. [PMID: 39526038 PMCID: PMC11549015 DOI: 10.1093/bioadv/vbae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Motivation The human microbiome, comprises complex associations and communication networks among microbial communities, which are crucial for maintaining health. The construction of microbial networks is vital for elucidating these associations. However, existing microbial networks inference methods cannot solve the issues of zero-inflation and non-linear associations. Therefore, necessitating novel methods to improve the accuracy of microbial networks inference. Results In this study, we introduce the Microbial Network based on Mutual Information and Markov Random Fields (MicroNet-MIMRF) as a novel approach for inferring microbial networks. Abundance data of microbes are modeled through the zero-inflated Poisson distribution, and the discrete matrix is estimated for further calculation. Markov random fields based on mutual information are used to construct accurate microbial networks. MicroNet-MIMRF excels at estimating pairwise associations between microbes, effectively addressing zero-inflation and non-linear associations in microbial abundance data. It outperforms commonly used techniques in simulation experiments, achieving area under the curve values exceeding 0.75 for all parameters. A case study on inflammatory bowel disease data further demonstrates the method's ability to identify insightful associations. Conclusively, MicroNet-MIMRF is a powerful tool for microbial network inference that handles the biases caused by zero-inflation and overestimation of associations. Availability and implementation The MicroNet-MIMRF is provided at https://github.com/Fionabiostats/MicroNet-MIMRF.
Collapse
Affiliation(s)
- Chenqionglu Feng
- Department of Epidemiology and Health Statistics, School of Public Health, China Medical University, Shenyang 110122, China
- Department of Infectious Disease Prevention and Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Huiqun Jia
- Department of Infectious Disease Prevention and Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Hui Wang
- Department of Infectious Disease Prevention and Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Jiaojiao Wang
- The State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation Chinese Academy of Sciences, Beijing 100190, China
| | - Mengxuan Lin
- The Academy of Military Medical Sciences, Academy of Military Science of Chinese People’s Liberation Army, Beijing 100071, China
| | - Xiaoyan Hu
- Department of Infectious Disease Prevention and Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Chenjing Yu
- Department of Infectious Disease Prevention and Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Hongbin Song
- Department of Infectious Disease Prevention and Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| | - Ligui Wang
- Department of Infectious Disease Prevention and Control, Chinese PLA Center for Disease Control and Prevention, Beijing 100071, China
| |
Collapse
|
7
|
Zhu Y, Ma S, Wen Y, Zhao W, Jiang Y, Li M, Zou K. Deciphering assembly processes, network complexity and stability of potential pathogenic communities in two anthropogenic coastal regions of a highly urbanized estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124444. [PMID: 38936795 DOI: 10.1016/j.envpol.2024.124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/01/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The existence of potential pathogens may lead to severe water pollution, disease transmission, and the risk of infectious diseases, posing threats to the stability of aquatic ecosystems and human health. In-depth research on the dynamic of potential pathogenic communities is of significant importance, it can provide crucial support for assessing the health status of aquatic ecosystems, maintaining ecological balance, promoting sustainable economic development, and safeguarding human health. Nevertheless, the current understanding of the distribution and geographic patterns of potential pathogens in coastal ecosystems remains rather limited. Here, we investigated the diversity, assembly, and co-occurrence network of potential pathogenic communities in two anthropogenic coastal regions, i.e., the eight mouths (EPR) and nearshore region (NSE), of the Pearl River Estuary (PRE) and a total of 11 potential pathogenic types were detected. The composition and diversity of potential pathogenic communities exhibited noteworthy distinctions between the EPR and NSE, with 6 shared potential pathogenic families. Additionally, in the NSE, a significant pattern of geographic decay was observed, whereas in the EPR, the pattern of geographic decay was not significant. Based on the Stegen null model, it was noted that undominant processes (53.36%/69.24%) and heterogeneous selection (27.35%/25.19%) dominated the assembly of potential pathogenic communities in EPR and NSE. Co-occurrence network analysis showed higher number of nodes, a lower average path length and graph diameter, as well as higher level of negative co-occurrences and modularity in EPR than those in NSE, indicating more complex and stable correlations between potential pathogens in EPR. These findings lay the groundwork for the effective management of potential pathogens, offering essential information for ecosystem conservation and public health considerations in the anthropogenic coastal regions.
Collapse
Affiliation(s)
- Yiyi Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Shanshan Ma
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yongjing Wen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Wencheng Zhao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Yun Jiang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China
| | - Min Li
- Key Laboratory for Sustainable Utilization of Open-sea Fishery, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Keshu Zou
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
8
|
Xie G, Zhang Y, Gong Y, Luo W, Tang X. Extreme trophic tales: deciphering bacterial diversity and potential functions in oligotrophic and hypereutrophic lakes. BMC Microbiol 2024; 24:348. [PMID: 39277721 PMCID: PMC11401395 DOI: 10.1186/s12866-024-03488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Oligotrophy and hypereutrophy represent the two extremes of lake trophic states, and understanding the distribution of bacterial communities across these contrasting conditions is crucial for advancing aquatic microbial research. Despite the significance of these extreme trophic states, bacterial community characteristics and co-occurrence patterns in such environments have been scarcely interpreted. To bridge this knowledge gap, we collected 60 water samples from Lake Fuxian (oligotrophic) and Lake Xingyun (hypereutrophic) during different hydrological periods. RESULTS Employing 16S rRNA gene sequencing, our findings revealed distinct community structures and metabolic potentials in bacterial communities of hypereutrophic and oligotrophic lake ecosystems. The hypereutrophic ecosystem exhibited higher bacterial α- and β-diversity compared to the oligotrophic ecosystem. Actinobacteria dominated the oligotrophic Lake Fuxian, while Cyanobacteria, Proteobacteria, and Bacteroidetes were more prevalent in the hypereutrophic Lake Xingyun. Functions associated with methanol oxidation, methylotrophy, fermentation, aromatic compound degradation, nitrogen/nitrate respiration, and nitrogen/nitrate denitrification were enriched in the oligotrophic lake, underscoring the vital role of bacteria in carbon and nitrogen cycling. In contrast, functions related to ureolysis, human pathogens, animal parasites or symbionts, and phototrophy were enriched in the hypereutrophic lake, highlighting human activity-related disturbances and potential pathogenic risks. Co-occurrence network analysis unveiled a more complex and stable bacterial network in the hypereutrophic lake compared to the oligotrophic lake. CONCLUSION Our study provides insights into the intricate relationships between trophic states and bacterial community structure, emphasizing significant differences in diversity, community composition, and network characteristics between extreme states of oligotrophy and hypereutrophy. Additionally, it explores the nuanced responses of bacterial communities to environmental conditions in these two contrasting trophic states.
Collapse
Affiliation(s)
- Guijuan Xie
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuqing Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Third Construction Company of CCCC second Harbor Engineering Co., Ltd, Zhenjiang, 212000, China
| | - Yi Gong
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Wenlei Luo
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- The Fuxianhu Station of Plateau Deep Lake Field Scientific Observation and Research, Yunnan, 653100, Yuxi, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
9
|
Li J, Zheng Q, Liu J, Pei S, Yang Z, Chen R, Ma L, Niu J, Tian T. Bacterial-fungal interactions and response to heavy metal contamination of soil in agricultural areas. Front Microbiol 2024; 15:1395154. [PMID: 38800759 PMCID: PMC11116572 DOI: 10.3389/fmicb.2024.1395154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Long-term heavy metal contamination of soil affects the structure and function of microbial communities. The aim of our study was to investigate the effect of soil heavy metal contamination on microorganisms and the impact of different heavy metal pollution levels on the microbial interactions. Methods We collected soil samples and determined soil properties. Microbial diversity was analyzed in two groups of samples using high-throughput sequencing technology. Additionally, we constructed microbial networks to analyze microbial interactions. Results The pollution load index (PLI) < 1 indicates that the area is not polluted. 1 < PLI < 2 represents moderate pollution. PLI was 1.05 and 0.14 for the heavy metal contaminated area and the uncontaminated area, respectively. Cd, Hg, Pb, Zn, and Cu were identified as the major contaminants in the contaminated area, with the contamination factors were 30.35, 11.26, 5.46, 5.19, and 2.46, respectively. The diversities and compositions of the bacterial community varied significantly between the two groups. Compared to the uncontaminated area, the co-occurrence network between bacterial and fungal species in the contaminated area was more complex. The keystone taxa of the co-occurrence network in the contaminated area were more than those in the uncontaminated area and were completely different from it. Discussion Heavy metal concentrations played a crucial role in shaping the difference in microbial community compositions. Microorganisms adapt to long-term and moderate levels of heavy metal contamination through enhanced interactions. Bacteria resistant to heavy metal concentrations may play an important role in soils contaminated with moderate levels of heavy metals over long periods of time.
Collapse
Affiliation(s)
- Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen Yang
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Xue Y, Chen H, Xiao P, Jin L, Logares R, Yang J. Core taxa drive microeukaryotic community stability of a deep subtropical reservoir after complete mixing. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:769-782. [PMID: 37688478 PMCID: PMC10667671 DOI: 10.1111/1758-2229.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
Microeukaryotes are key for predicting the change of ecosystem processes in the face of a disturbance. However, their vertical responses to multiple interconnected factors caused by water mixing remain unknown. Here, we conducted a 12-month high-frequency study to compare the impacts of mixing disturbances on microeukaryotic community structure and stability over different depths in a stratified reservoir. We demonstrate that core and satellite microeukaryotic compositions and interactions in surface waters were not resistant to water mixing, but significantly recovered. This was because the water temperature rebounded to the pre-mixing level. Core microeukaryotes maintained community stability in surface waters with high recovery capacity after water mixing. In contrast, the changes in water temperature, chlorophyll-a, and nutrients resulted in steep and prolonged variations in the bottom core and satellite microeukaryotic compositions and interactions. Under low environmental fluctuation, the recovery of microbial communities did not affect nutrient cycling in surface waters. Under high environmental fluctuation, core and satellite microeukaryotic compositions in bottom waters were significantly correlated with the multi-nutrient cycling index. Our findings shed light on different mechanisms of plankton community resilience in reservoir ecosystems to a major disturbance over depths, highlighting the role of bottom microeukaryotes in nutrient cycling.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | - Peng Xiao
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Lei Jin
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| |
Collapse
|
11
|
Xue Y, Abdullah Al M, Chen H, Xiao P, Zhang H, Jeppesen E, Yang J. Relic DNA obscures DNA-based profiling of multiple microbial taxonomic groups in a river-reservoir ecosystem. Mol Ecol 2023; 32:4940-4952. [PMID: 37452629 DOI: 10.1111/mec.17071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Numerous studies have investigated the spatiotemporal variability in water microbial communities, yet the effects of relic DNA on microbial community profiles, especially microeukaryotes, remain far from fully understood. Here, total and active bacterial and microeukaryotic community compositions were characterized using propidium monoazide (PMA) treatment coupled with high-throughput sequencing in a river-reservoir ecosystem. Beta diversity analysis showed a significant difference in community composition between both the PMA untreated and treated bacteria and microeukaryotes; however, the differentiating effect was much stronger for microeukaryotes. Relic DNA only resulted in underestimation of the relative abundances of Bacteroidota and Nitrospirota, while other bacterial taxa exhibited no significant changes. As for microeukaryotes, the relative abundances of some phytoplankton (e.g. Chlorophyta, Dinoflagellata and Ochrophyta) and fungi were greater after relic DNA removal, whereas Cercozoa and Ciliophora showed the opposite trend. Moreover, relic DNA removal weakened the size and complexity of cross-trophic microbial networks and significantly changed the relationships between environmental factors and microeukaryotic community composition. However, there was no significant difference in the rates of temporal community turnover between the PMA untreated and treated samples for either bacteria or microeukaryotes. Overall, our results imply that the presence of relic DNA in waters can give misleading information of the active microbial community composition, co-occurrence networks and their relationships with environmental conditions. More studies of the abundance, decay rate and functioning of nonviable DNA in freshwater ecosystems are highly recommended in the future.
Collapse
Affiliation(s)
- Yuanyuan Xue
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mamun Abdullah Al
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Huihuang Chen
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peng Xiao
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongteng Zhang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus, Denmark
- Sino-Danish Centre for Education and Research, Beijing, China
- Limnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | - Jun Yang
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|