1
|
De Girolamo AM, Ricci GF, Parete G, Gómez-Navarro O, Pérez S, Gentile F. Modelling occurrence and environmental risk of azithromycin in an intermittent river: Applying hydrological and water quality models. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 272:104552. [PMID: 40158463 DOI: 10.1016/j.jconhyd.2025.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
Antibiotics are emerging pollutants that may negatively affect river ecosystems. The present paper aims to define a modelling approach for assessing the fate of pharmaceuticals and the ecotoxicological risk in surface waters in intermittent rivers. A hydrological model (Soil and Water Assessment Tool) and a water quality model (Geography-referenced Regional Exposure Assessment Tool for European Rivers) were used in a modelling cascade application in the Canale d'Aiedda basin (S-E, Italy). Measurements of streamflow and azithromycin (AZ) concentrations were used for calibrating the models. Predicted Environmental Concentrations (PEC) of AZ in surface waters and the ecotoxicological risk were estimated. The highest AZ concentrations in the effluent of wastewater treatment plants (2553 ng L-1) and in surface waters were recorded in March 2021. The monitoring and modelling results indicated seasonal changes in AZ concentrations in surface waters: in August, the PEC was one order of magnitude lower than in March. The river reaches downstream of the inlets from the WWTPs presented the highest PEC of AZ, whereas a reduction of PEC was simulated moving downstream of the inlets. The results of the ecotoxicological risk assessment showed that in March most of the river network presented a PEC of AZ higher than the Predicted No-Effect Concentration (PNEC). Coupling the two models has proven to be an effective approach to address the complex interaction between hydrology and water quality in intermittent rivers, suitable for identifying the occurrence and environmental risk of emerging pollutants, fundamental steps for their management.
Collapse
Affiliation(s)
- A M De Girolamo
- Water Research Institute, National Research Council, Bari, Italy.
| | - G F Ricci
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Bari, Italy
| | - G Parete
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Bari, Italy
| | - O Gómez-Navarro
- ONHEALTH, IDAEA-CSIC, Department of Environmental Chemistry, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Pérez
- ONHEALTH, IDAEA-CSIC, Department of Environmental Chemistry, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - F Gentile
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Bari, Italy
| |
Collapse
|
2
|
Coulibaly B, Pastor-López EJ, Diawara A, Savane FB, Escolà-Casas M, Matamoros V, Ba S. Occurrence of antibiotics in hospital wastewater effluents discharged into the Niger River in Bamako, Mali. Risk assessment and solutions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125912. [PMID: 40010595 DOI: 10.1016/j.envpol.2025.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Hospital wastewater effluents are a significant source of antibiotics (ABs) contamination in aquatic environments, contributing to antimicrobial resistance (AMR). This study examines 30 pharmaceutical compounds, including 22 ABs, in wastewater effluents from four hospitals in Bamako, Mali, at exit points (Po) and discharge sites (Pf) into the Niger River. The ABs belong to nine classes, mainly fluoroquinolones, macrolides, and sulfonamides. While half of the ABs were undetected, concentrations of detected ABs ranged from 0.1 to nearly 40 μg/L. Acetyl-sulfamethoxazole (ASMX) and ciprofloxacin (CIP) recorded the highest concentrations at 38.9 ± 25.7 μg/L and 32.0 ± 4.3 μg/L, respectively. Low concentrations (<1 μg/L) were observed for azithromycin, clarithromycin, and sulfadiazine. Significant variations in concentrations between Po and Pf were noted, with some ABs, like ASMX, achieving 100% abatement due to natural attenuation, while others, such as CIP and lincomycin, showed increases of up to 102% and 400%, respectively, possibly due to downstream accumulation or degradation of conjugates. Ecotoxicological and the potential microbial risk selection values revealed high risks (RQ > 1) at all sites although three of the hospitals reduced risks by over 50% for most of them. These findings underscore the need for effective wastewater treatment systems to mitigate ABs contamination. The study also provides critical baseline data and advocates for cost-effective, nature-based solutions like constructed wetlands and regulatory measures to reduce antibiotic pollution and curb risks for AMR proliferation in the Niger River.
Collapse
Affiliation(s)
- Balla Coulibaly
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali
| | - Edward J Pastor-López
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Abdoulaye Diawara
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali
| | - Fatoumata Bintou Savane
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali
| | - Mònica Escolà-Casas
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Sidy Ba
- Laboratory of Chemical and Environmental Engineering, Ecole Nationale d'Ingénieurs Abderhamane Baba Touré (ENI-ABT) of Bamako, Mali; Department of Biomedical, Chemical and Environmental Engineering, ENI-ABT, BP 242, Bamako, Mali.
| |
Collapse
|
3
|
Díaz-Gamboa L, Lahora A, Martínez-López S, Ayuso-García LM, Martínez-Alcalá I. Risk Assessment of Micropollutants for Human and Environmental Health: Alignment with the Urban Wastewater Treatment Directive in Southeastern Spain. TOXICS 2025; 13:275. [PMID: 40278592 PMCID: PMC12030910 DOI: 10.3390/toxics13040275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
The reuse of reclaimed water is essential for sustainable water management in arid regions. However, despite advancements in Wastewater Treatment Plants (WWTPs), certain micropollutants may persist. To address these challenges, the recently enacted European Urban Wastewater Treatment Directive (UWWTD) has established strict standards focused on monitoring twelve specific indicator compounds. In line with this, the present study aims to evaluate the concentrations and potential risks of these twelve UWWTD-designated compounds across various water sources, including surface water, groundwater, and effluents from a WWTP in the southeast of Spain. Although none of the evaluated water sources are, as expected, intended for human consumption, risks were assessed based on worst-case scenarios that could amplify their impact. The study assessed potential risks to human health across different age groups and ecosystems, focusing on key organisms such as fish, daphnia, and algae, using empirical assessment approaches. The risk assessment identified a low risk for most compounds regarding human health, except for citalopram (HRQ = 19.116) and irbesartan (HRQ = 1.104), which showed high human risk quotients (HQR > 1) in babies, particularly in reclaimed water. In terms of ecotoxicological risk, irbesartan presented the highest ecological risk quotient (ERQ = 3.500) in fish, followed by clarithromycin, with algae (ERQ = 1.500) being the most vulnerable organism. Furthermore, compounds like citalopram, venlafaxine, and benzotriazole exhibited moderate ecological risks (ERQ between 0.1 and 1) in the reclaimed water, and their risk was reduced in surface water and groundwater. Finally, this study discussed the potential impacts of elevated concentrations of these emerging compounds, emphasizing the need for rigorous wastewater monitoring to protect human health and ecosystem integrity. It also revealed notable differences in risk assessment outcomes when comparing two distinct evaluation approaches, further highlighting the complexities of accurately assessing these risks.
Collapse
Affiliation(s)
- Lissette Díaz-Gamboa
- Social Responsibility, Sustainability and Innovation Group (GAIA), Universidad Católica de Murcia (UCAM), Av. de los Jerónimos, 135, 30107 Murcia, Spain;
| | - Agustín Lahora
- Regional Entity for Sanitation and Wastewater Treatment in the Region of Murcia (ESAMUR), C. Santiago Navarro, 4, 30100 Murcia, Spain;
| | - Sofía Martínez-López
- Environmental Department, National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, S/N, 30500 Murcia, Spain; (S.M.-L.); (L.M.A.-G.)
| | - Luis Miguel Ayuso-García
- Environmental Department, National Technological Centre for the Food and Canning Industry (CTNC), C. Concordia, S/N, 30500 Murcia, Spain; (S.M.-L.); (L.M.A.-G.)
| | - Isabel Martínez-Alcalá
- Social Responsibility, Sustainability and Innovation Group (GAIA), Universidad Católica de Murcia (UCAM), Av. de los Jerónimos, 135, 30107 Murcia, Spain;
| |
Collapse
|
4
|
Peng T, Song B, Wang Y, Yuan J, Yang Z, Tang L. Trophic transfer of sulfonamide antibiotics in aquatic food chains: A comprehensive review with a focus on environmental health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125823. [PMID: 39923974 DOI: 10.1016/j.envpol.2025.125823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Antibiotics, which have been identified as emerged pollutants, are creating an increase in environmental concerns, with sulfonamide antibiotics (SAs) being among the most commonly discovered antibiotics. Due to their widespread usage and inadequate sewage treatment, SAs are frequently released into the aquatic environment. The introduction of SAs into aquatic environments can kill or inhibit the growth or metabolic activity of microorganisms, thereby affecting biological communities and ecological functions and disrupting the equilibrium of aquatic ecosystems. The transmission of SAs to human beings can occur through trophic transfer of food chains, particularly when humans consume aquatic food. This study examines the trophic transfer of SAs along the aquatic food chain, provides a summarize of the spatial distribution of SAs in aquatic environments, and evaluates the environmental risks associated with it. The prevalence of SAs was predominantly noted in the aqueous phase, with relatively lower concentrations detected in sediments, solidifying their status as one of the most widespread antibiotics among aquatic organisms. SAs, characterized by their high biomagnification capacity and strong bioaccumulative properties in invertebrates, emerge as the antibiotic type with the greatest ecological risks. The ecological risk posed by sulfonamide antibiotics to aquatic organisms is more pronounced than the health risk to humans, suggesting that the adverse effects on aquatic life warrant greater attention. Additionally, this study offers practical recommendations to address the limitations of previous research, emphasizing the importance of regulating exposure and establishing a robust health risk prediction system as effective measures for antibiotic control.
Collapse
Affiliation(s)
- Tianwei Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yuchen Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
5
|
Borowiec BG, Robichaud KB, Craig PM. Interactive effects of elevated temperature and venlafaxine on mitochondrial respiration and enzymatic capacity in Nile tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:737-750. [PMID: 39903854 PMCID: PMC12117019 DOI: 10.1093/etojnl/vgae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 02/06/2025]
Abstract
Warming events are becoming more frequent and extreme in aquatic environments worldwide. Concurrently, many environments are polluted with biologically active compounds such as pharmaceuticals. Understanding how these challenges interact is critical for understanding the climate crisis, as contaminants may modulate how ectotherms respond to heat stress or vice versa. One potential site for these heat × contaminant interactions is the mitochondrion, which is central to metabolism, implicated in thermal tolerance, and evolutionarily conserved. Using high-resolution respirometry, we investigated how acute warming (to 35 °C, 40 °C, or 45 °C from 25 °C) impacted the respiration, coupling, and metabolic capacity of liver mitochondria isolated from Nile tilapia, and how exposure to environmentally relevant levels of the ubiquitous antidepressant venlafaxine modulated those effects. Mitochondria exposed to hotter temperatures had higher respiration rates and decreased respiratory control ratio compared to mitochondria exposed to cooler temperatures. The depressive effects of venlafaxine on respiration rates through complex I and II or complex II only (State 3 and State 4), as well as complex IV-linked respiration, were mild except in mitochondria exposed to high temperatures, suggesting an interactive effect of warming and contaminant exposure. Finally, we found that the maximal enzyme activity of intact mitochondria (represented by mitochondrial respiration) showed a different pattern of response to warming and venlafaxine compared to its underlying components (as reflected by the activity of succinate dehydrogenase [complex II] and cytochrome c oxidase [complex IV]), demonstrating the value of incorporating both interactive and reductive approaches in understanding how mitochondria cope with anthropogenic changes in the environment.
Collapse
Affiliation(s)
| | - Karyn B Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Men C, Jiang H, Ma Y, Cai H, Fu H, Li Z. A nationwide probabilistic risk assessment and a new insight into source-specific risk apportionment of antibiotics in eight typical river basins in China: Human health risk and ecological risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136674. [PMID: 39642732 DOI: 10.1016/j.jhazmat.2024.136674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
China is the largest producer and consumer of antibiotics, a nationwide study on the contamination of antibiotics in China is urgently needed, and source apportionment towards risks associated with antibiotics is now attracting increasing attention. In this study, based on eight antibiotics at 666 sampling sites, spatial variations and probabilistic risks (human health and ecological risk) of antibiotics in eight river basins in China were analyzed. Source-specific health and ecological risk associated with antibiotics in a typical basin was apportioned quantitatively. Results showed that mean antibiotic concentration in Haihe River Basin (HaiRB) and Yellow River Basin (178.25 and 257.36 ng·L-1, respectively) was higher than other basins. In HaiRB, the contribution of livestock and poultry breeding (31.89 %) was the largest of all sources for health risk, whereas pharmaceutical wastewater (35.97 %) was the most dominant source for ecological risk. To determine the most important source for risks associated with antibiotics, the concept of risks-targeted key source was proposed, and a risks-targeted key source apportionment model was developed. Results showed that pharmaceutical wastewater should be prior controlled among all sources. The concept and apportionment model of risks-targeted key source proposed in this study are applicable and referential for related studies.
Collapse
Affiliation(s)
- Cong Men
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Haoquan Jiang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuting Ma
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Hengjiang Cai
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Han Fu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
7
|
Davey CJE, Hartelust AK, Helmus R, Praetorius A, van Wezel AP, ter Laak TL. Presence, removal, and risks of psychopharmaceuticals in wastewater streams. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:375-385. [PMID: 39919239 PMCID: PMC11816319 DOI: 10.1093/etojnl/vgae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 10/21/2024] [Indexed: 02/09/2025]
Abstract
Psychopharmaceuticals are used to treat psychological disorders and other conditions relating to the nervous system and are known to affect nontarget organisms at low concentrations. Their occurrence in the water cycle remains an understudied topic, with data lacking for many compounds, and risks not accounted for in removal targets. Therefore, this study aimed to provide insights into the presence, removal, and risks of psychopharmaceuticals in wastewater. Furthermore, the use of risk assessment in the context of proposed legislation is discussed. Thirty highly used psychopharmaceuticals were studied during 1 week in the wastewater of the Amsterdam West Wastewater Treatment Plant (WWTP) using solid phase extraction and ultra high performance liquid chromatography-quadrupole time of flight-high resolution mass spectrometry. Twenty target compounds were detected in the influent (17 ng-99 µg/L) and 16 in the effluent (34 ng/L-17 µg/L). Removal efficiencies during treatment ranged from 24% to >99%. Paracetamol, amphetamine, fluoxetine, levetiracetam, phenacetin, and sertraline demonstrated almost complete removal, whereas tramadol, lidocaine, lamotrigine, fluvoxamine, and carbamazepine had removals below 50%, with lidocaine demonstrating the lowest removal (24%). Utilizing existing ecotoxicity data, a preliminary risk assessment was performed to contextualize the calculated removal efficiencies. Here, sertraline and ibuprofen still demonstrated a potential risk, despite high removal efficiencies of both compounds. This study highlights that wastewater contains abundant numbers and ecotoxicologically relevant concentrations of psychopharmaceuticals that are insufficiently removed by the WWTP. The implementation of risk-based removal targets in legislation is discussed to facilitate the reduction in emissions of psychopharmaceuticals, for example, by adequate WWTP upgrades with advanced treatments to ensure a toxic-free environment.
Collapse
Affiliation(s)
- Charlie J E Davey
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Anne Kiki Hartelust
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Antonia Praetorius
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Annemarie P van Wezel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas L ter Laak
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
- KWR Water Research Institute, Nieuwegein, the Netherlands
| |
Collapse
|
8
|
Sanusi IO, Olutona GO, Wawata IG, Onohuean H, Adepoju AA. Geospatial monitoring and human health risk assessment of pharmaceutical residues in groundwater and surface water in Kampala and Mbarara Districts, Uganda. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:30. [PMID: 39718649 DOI: 10.1007/s10653-024-02336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
This study investigated the occurrence, concentration and human health risks of five pharmaceutical residues-metronidazole, sulfamethoxazole, ciprofloxacin, carbamazepine, and caffeine-in groundwater and surface water samples from Kampala and Mbarara districts of Uganda. The present study also employed techniques of remote sensing and geographic information system (GIS); thereby, emphasizing the importance of thematic mapping, land use classification, and spatial buffering to evaluate pharmaceutical contaminants in an environmental setting. The risk quotient (RQ) approach was also employed to assess the risk of exposure to the pharmaceutical contaminants. Caffeine was found with the highest average concentration in groundwater (53.515 µg/L), whereas carbamazepine had the highest average concentration in surface water (48.635 µg/L) during the dry season. Ciprofloxacin consistently recorded the lowest average concentrations in both groundwater and surface water across all seasons. Overall, the data revealed high concentrations of pharmaceutical residues in surface water compared to groundwater during both seasons, except for caffeine which was not detected in surface water across the seasons. Notable seasonal changes were also observed in caffeine and metronidazole concentrations, indicating the role of human activities and environmental factors in influencing contamination patterns during specific seasons. The factor analysis revealed that consumption rate of pharmaceuticals and anthropogenic activities are the main factors responsible for the contamination of groundwater and surface water. Moreover, results revealed that the risk of adverse human health effects for carbamazepine and metronidazole during both seasons were high (RQ > 1), thereby highlighting the prioritization of frequent monitoring by the environmental protection agencies. Given that the combined risk of exposure for all the pharmaceuticals exceeded one, adopting stringent pharmaceutical disposal and control measures are essential for mitigating potential human health risks associated with their exposure. Further investigation into optimal and effective pharmaceutical remediation strategies for both groundwater and surface water are highly recommended.
Collapse
Affiliation(s)
- Idris O Sanusi
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, P.O. BOX 71, Ishaka-Bushenyi, Uganda.
| | - Godwin O Olutona
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Kampala International University, Western Campus, P.O. BOX 71, Ishaka-Bushenyi, Uganda
- Industrial Chemistry Programme, College of Agriculture Engineering and Science, Bowen University, Iwo, Nigeria
| | - Ibrahim G Wawata
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Department of Pure and Applied Chemistry, Kebbi State University of Science and Technology, Aliero, PMB +243 1144, Birnin Kebbi, Nigeria
- Institute of Biomedical Research, Faculty of Biomedical Science, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Hope Onohuean
- Biomolecules, Metagenomics, Endocrine and Tropical Disease Research Group (BMETDREG), Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Western Campus, Ishaka-Bushenyi, Uganda
| | - Adeleke A Adepoju
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Makumbi JP, Leareng SK, Pierneef RE, Makhalanyane TP. Synergizing Ecotoxicology and Microbiome Data Is Key for Developing Global Indicators of Environmental Antimicrobial Resistance. MICROBIAL ECOLOGY 2024; 87:150. [PMID: 39611949 PMCID: PMC11607014 DOI: 10.1007/s00248-024-02463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024]
Abstract
The One Health concept recognises the interconnectedness of humans, plants, animals and the environment. Recent research strongly supports the idea that the environment serves as a significant reservoir for antimicrobial resistance (AMR). However, the complexity of natural environments makes efforts at AMR public health risk assessment difficult. We lack sufficient data on key ecological parameters that influence AMR, as well as the primary proxies necessary for evaluating risks to human health. Developing environmental AMR 'early warning systems' requires models with well-defined parameters. This is necessary to support the implementation of clear and targeted interventions. In this review, we provide a comprehensive overview of the current tools used globally for environmental AMR human health risk assessment and the underlying knowledge gaps. We highlight the urgent need for standardised, cost-effective risk assessment frameworks that are adaptable across different environments and regions to enhance comparability and reliability. These frameworks must also account for previously understudied AMR sources, such as horticulture, and emerging threats like climate change. In addition, integrating traditional ecotoxicology with modern 'omics' approaches will be essential for developing more comprehensive risk models and informing targeted AMR mitigation strategies.
Collapse
Affiliation(s)
- John P Makumbi
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Samuel K Leareng
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Rian E Pierneef
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
10
|
Zayyat RM, Yahfoufi R, Al-Hindi M, Kordahi MA, Ayoub GM, Ahmad MN. Elucidating the dynamics of carbamazepine uptake using date pit-derived activated carbon: A comprehensive kinetic and thermodynamic analysis. Heliyon 2024; 10:e39068. [PMID: 39640803 PMCID: PMC11620136 DOI: 10.1016/j.heliyon.2024.e39068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Water contamination with pharmaceuticals such as Carbamazepine (CBZ) presents a significant environmental challenge. This study investigates the use of activated carbon derived from waste date pits (DPAC) for the removal of CBZ from water. The impact of several parameters such as pH, temperature, CBZ concentration, and flow rate on the adsorption were assessed. The generated DPAC demonstrated a specific surface area of 309 m2/g, a pore volume of 0.264 cm³/g, and the pores are mainly distributed at 1.86, 2.73, and 3.43 nm. The Langmuir, Freundlich, Sips, and Toth isotherms were used to fit the experimental data, and the results indicate the occurrence of monolayer adsorption and heterogeneous surface conditions. The Linear Driving Force model was used for kinetic analysis, showing improved fit at higher concentrations. Thermodynamic analyses revealed the process to be endothermic, spontaneous, and entropically driven. The DPAC achieved an adsorption capacity of 14.89 mg/g and maintained 94 % effectiveness after the first regeneration cycle and 70 % after four cycles. This study highlights the potential of DPAC as a sustainable adsorbent for advanced water purification.
Collapse
Affiliation(s)
- Ramez M. Zayyat
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Rim Yahfoufi
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Mahmoud Al-Hindi
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Michel A. Kordahi
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - George M. Ayoub
- Department of Civil and Environmental Engineering, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| | - Mohammad N. Ahmad
- Department of Chemical Engineering and Advanced Energy, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut, 1107 2020, Lebanon
| |
Collapse
|
11
|
Beltrán de Heredia I, González-Gaya B, Zuloaga O, Garrido I, Acosta T, Etxebarria N, Ruiz-Romera E. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174062. [PMID: 38917906 DOI: 10.1016/j.scitotenv.2024.174062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Itziar Garrido
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Teresa Acosta
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
12
|
Lu XM, Liu YX. Effects and mechanisms of aquatic landscape plants on the removal of veterinary antibiotics from hydroponic solutions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 27:117-127. [PMID: 39282802 DOI: 10.1080/15226514.2024.2402877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Four aquatic landscape plants and three veterinary antibiotics were selected to construct a hydroponic test system to analyze the tolerance, removal effect and mechanism of antibiotics. The results indicated that antibiotic concentrations from 0 to 100 μg·L-1 promoted plant heights and leaf chlorophyll contents, while antibiotics at concentrations > 100 μg·L-1 had inhibitory effects. The ability of different plants to remove antibiotics was Acorus calamus L. > Ceratophyllum demersum L. > Thalia dealbata Fraser > Nuphar pumila (Timm) DC. The plants with the best removal of norfloxacin, sulfadimethoxine and chlortetracycline were Ceratophyllum demersum L., Acorus calamus L. and Acorus calamus L. after 12 d of hydroponic cultivation using 100 μg·L-1 antibiotics, with removal rates of 66.6%, 63.0% and 63.2%, respectively. The accumulation of antibiotics in different plant tissues was root > stem > leaf and the accumulation increased with incubation time. The diversity of plant root biofilm microorganisms decreased with increasing treatment concentrations of antibiotics, while the abundance of dominant genera (Aeromonas, Bacillus, Lysinibacillus, Providencia, and Staphylococcus) showed an increasing trend. The findings imply that the antibiotic uptake by plants and the dynamics of the rhizosphere microbial community combine to promote antibiotic removal.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, China
| | - Yi-Xi Liu
- School of Arts Design, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou, China
| |
Collapse
|
13
|
Robichaud K, Bragg LM, Servos MR, Craig PM. Venlafaxine exposure alters mitochondrial respiration and mitomiR abundance in zebrafish brains. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1569-1582. [PMID: 38695684 DOI: 10.1002/etc.5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 04/04/2024] [Indexed: 06/27/2024]
Abstract
Wastewater treatment plant (WWTP) effluent often releases pharmaceuticals like venlafaxine (a serotonin-norephinephrine reuptake inhibitor antidepressant) to freshwater ecosystems at levels causing adverse metabolic effects on fish. Changes to fish metabolism can be regulated by epigenetic mechanisms like microRNA (small RNA molecules that regulate mRNA translation), including regulating mitochondrial mRNAs. Nuclear-encoded microRNAs regulate mitochondrial gene expression in mammals, and have predicted effects in fish. We aimed to identify whether venlafaxine exposure changed mitochondrial respiration and resulted in differentially abundant mitochondrial microRNA (mitomiRs) in zebrafish brains. In vitro exposure of brain homogenate to below environmentally relevant concentrations of venlafaxine (<1 µg/L) caused a decrease in mitochondrial respiration, although this was not driven by changes to mitochondrial Complex I or II function. To identify whether these effects occur in vivo, zebrafish were exposed to 1 µg/L venlafaxine for 0, 1, 6, 12, 24, and 96 h. In vivo, venlafaxine exposure had no significant effects on brain mitochondrial respiration; however, select mitomiRs (dre-miR-301a-5p, dre-miR-301b-3p, and dre-miR-301c-3p) were also measured, because they were bioinformatically predicted to regulate mitochondrial cytochrome c oxidase subunit I (COI) abundance. These mitomiRs were differentially regulated based on venlafaxine exposure (with miR-301c-3p abundance differing during the day and miR-301b-3p being lower in exposed fish at night), and with respect to sex and time sampled. Overall, the results demonstrated that in vitro venlafaxine exposure to zebrafish brain caused a decrease in mitochondrial respiration, but these effects were not seen after acute in vivo exposure. Results may have differed because in vivo exposure allows for fish to mitigate effects through mechanisms that could include mitomiR regulation, and because fish were only acutely exposed. Environ Toxicol Chem 2024;43:1569-1582. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Karyn Robichaud
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Zhao J, Qi B, Zhang P, Jia Y, Guo X, Dong W, Yuan Y. Research progress on the generation of NDMA by typical PPCPs in disinfection treatment of water environment in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172498. [PMID: 38657805 DOI: 10.1016/j.scitotenv.2024.172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The drugs and personal care products in water sources are potential threats to the ecological environment and drinking water quality. In recent years, the presence of PPCPs has been detected in multiple drinking water sources in China. PPCPs are usually stable and resistant to degradation in aquatic environments. During chlorination, chloramination, and ozonation disinfection processes, PPCPs can act as precursor substances to generate N-nitrosodimethylamine (NDMA) which is the most widely detected nitrosamine byproduct in drinking water. This review provides a comprehensive overview of the impact of PPCPs in China's water environment on the generation of NDMA during disinfection processes to better understand the correlation between PPCPs and NDMA generation. Chloramine is the most likely to form NDMA with different disinfection methods, so chloramine disinfection may be the main pathway for NDMA generation. Activated carbon adsorption and UV photolysis are widely used in the removal of NDMA and its precursor PPCPs, and biological treatment is found to be a low-cost and high removal rate method for controlling the generation of NDMA. However, there are still certain regional limitations in the investigation and research on PPCPs, and other nitrosamine by-products such as NMEA, NDEA and NDBA should also be studied to investigate the formation mechanism and removal methods.
Collapse
Affiliation(s)
- Jingrao Zhao
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Beimeng Qi
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China.
| | - Peng Zhang
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Yuqian Jia
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Xiaoyuan Guo
- College of Quality & Safety Engineering, China Jiliang University, 310018 Hangzhou Province, China
| | - Wenjie Dong
- Zhejiang Scientific Research Institute of Transport, 310000 Hangzhou Province, China
| | - Yixing Yuan
- School of Environment, Harbin Institute of Technology, 150001 Harbin, China
| |
Collapse
|
15
|
Liu W, Zhou C, Wang X, Bai X, Ren Y. Spatiotemporal distribution of ecological risk of antibiotics in seven major river basins of China: An optimized multilevel assessment approach. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2035-2043. [PMID: 38678407 DOI: 10.2166/wst.2024.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/30/2024]
Abstract
Antibiotics have been recognized as emerging pollutants due to their ecological and human health risks. This paper aims to enhance the ecological risk assessment (ERA) framework for antibiotics, to illustrate the distribution of these risks across different locations and seasons, and to identify the antibiotics that pose high ecological risk. This paper focuses on 52 antibiotics in seven major basins of China. Relying on the optimized approach of ERA and antibiotic monitoring data published from 2017 to 2021, the results of ERA are presented in multilevel. Across the study area, there are marked variations in the spatial distribution of antibiotics' ecological risks. The Huaihe River Basin, the Haihe River Basin, and the Liaohe River Basin are the top three in the ranking of present ecological risks. The research results also reveal significant differences in temporal variation, underscoring the need for increased attention during certain seasons. Ten antibiotics with high contribution rates to ecological risk are identified, which is an important reference to formulate an antibiotic control list. The multilevel results provided both risk values and their ubiquities across a broad study region, which is a powerful support for developing ecological risk management of antibiotics.
Collapse
Affiliation(s)
- Wei Liu
- School of Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Resource and Environmental Monitoring Laboratory, Hohhot 010070, Inner Mongolia Autonomous Region, China E-mail:
| | - Chunsheng Zhou
- School of Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Resource and Environmental Monitoring Laboratory, Hohhot 010070, Inner Mongolia Autonomous Region, China
| | - Xiangfei Wang
- Inner Mongolia Autonomous Region Environmental Monitoring Station, Hohhot, Inner Mongolia Autonomous Region, China
| | - Xiulian Bai
- School of Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Resource and Environmental Monitoring Laboratory, Hohhot 010070, Inner Mongolia Autonomous Region, China
| | - Yazhe Ren
- School of Resource and Environmental Economics, Inner Mongolia University of Finance and Economics, Resource and Environmental Monitoring Laboratory, Hohhot 010070, Inner Mongolia Autonomous Region, China
| |
Collapse
|
16
|
Vaudreuil MA, Munoz G, Vo Duy S, Sauvé S. Tracking down pharmaceutical pollution in surface waters of the St. Lawrence River and its major tributaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168680. [PMID: 37996029 DOI: 10.1016/j.scitotenv.2023.168680] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/17/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
A reconnaissance survey was undertaken to evaluate the occurrence and risks of 27 pharmaceuticals and metabolites in the St. Lawrence watershed. Surface water samples were collected over a five-year period (2017-2021) along a 700-km reach of the St. Lawrence River as well as 55 tributary rivers (overall N = 406 samples). Additionally, depth water samples and sediments were collected near a major wastewater effluent. Caffeine, diclofenac, and venlafaxine were the most recurrent substances (detection rates >80 %), and extremely high levels were found near a municipal effluent (e.g., ibuprofen (860 ng/L), hydroxyibuprofen (1800 ng/L) and caffeine (7200 ng/L)). Geographical mapping and statistical analyses indicated that the St. Lawrence River water mass after the Montreal City effluent was significantly more contaminated than the other water masses, and that contamination could extend up to 70 km further downstream. This phenomenon was repeatedly observed over the five years of sampling, confirming that this is not a random trend. A slight increase in contamination was also observed near Quebec City, but concentrations rapidly declined in the estuarine transition zone. Tributaries with the highest pharmaceutical levels (ΣPharmas ∼400-900 ng/L) included the Mascouche, Saint-Régis, and Bertrand rivers, all located in the densely populated Greater Montreal area. When flowrate was factored in, the top five tributaries in terms of mass load (ΣPharmas ∼200-2000 kg/year) were the Des Prairies, Saint-François, Richelieu, Ottawa, and Yamaska rivers. All samples met the Canadian Water Quality Guideline for carbamazepine. Despite the large dilution effect of the St. Lawrence River, a risk quotient approach based on freshwater PNEC values suggested that four compounds (caffeine, carbamazepine, diclofenac, and ibuprofen) could present intermediate to high risks for aquatic organisms in terms of chronic exposure.
Collapse
Affiliation(s)
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
17
|
Khezami F, Gómez-Navarro O, Barbieri MV, Khiari N, Chkirbene A, Chiron S, Khadhar S, Pérez S. Occurrence of contaminants of emerging concern and pesticides and relative risk assessment in Tunisian groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167319. [PMID: 37742978 DOI: 10.1016/j.scitotenv.2023.167319] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Groundwater is an important source for drinking water supply, agricultural irrigation and industrial uses in the Middle East and North Africa region. Due to the growing need for groundwater use, groundwater quality studies on the presence of contaminants of emerging concern (CECs) and pesticides have gained attention. The Wadi El Bey is one of the most polluted areas in Tunisia. However, very limited data on CECs infiltration into aquifers has been described, in comparison to industrialized countries where groundwater contamination has been comprehensively addressed. To gain early insight into potential contamination, groundwater wells in northeast Tunisia, an area with high population density and intensive agricultural activity were sampled during two seasons and were analyzed with two high resolution mass spectrometry approaches: target and suspect screening. The latter was used for screening banned pesticides. A selection of 116 CECs of which 19 are transformation products (TPs) and 20 pesticides previously prioritized by suspect screening were screened in the groundwater samples. The results showed the presence of 69 CECs and 1 TP and 20 pesticides at concentrations per well, ranging between 43 and 7384 ng L-1 and 7.3 and 80 ng L-1, respectively. CECs concentrations in Tunisian groundwater do not differ from those in industrialized countries. WWTPs were considered the main source of pollution, where the main classes detected were analgesics, antihypertensives and artificial sweeteners and especially caffeine, salicylic acid and ibuprofen were found to be ubiquitous. Regarding pesticides, triazines herbicides and carbamates insecticides pose the highest concern due to their ubiquitous presence, high leachability potential for most of them and high toxicity. The environmental risk assessment (ERA) highlighted the high risk that caffeine, ibuprofen, and propoxur may pose to the environment, and consequently, to non-target organisms. This study provides occurrence and ERA analysis of CECs and pesticides in Tunisian groundwater.
Collapse
Affiliation(s)
- Farah Khezami
- Laboratory of Georessources, Technopole of Borj Cedria, University Carthage, Soliman, Tunisia
| | | | - Maria Vittoria Barbieri
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093 Montpellier, France
| | - Nouha Khiari
- Laboratory of Georessources, Technopole of Borj Cedria, University Carthage, Soliman, Tunisia
| | - Anis Chkirbene
- LR16AGR02 Water Science and Technology Research Laboratory, National Institute of Agronomy, University of Carthage, Tunis, Tunisia
| | - Serge Chiron
- UMR HydroSciences Montpellier, University of Montpellier, IRD, CNRS, 15 Av. Charles Flahault, 34093 Montpellier, France
| | - Samia Khadhar
- Laboratory of Georessources, Technopole of Borj Cedria, University Carthage, Soliman, Tunisia
| | - Sandra Pérez
- ONHEALTH, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
18
|
Semerjian L, Aissaoui S, Shanableh A, Okoh A, Elhadi R, Mousa M, Alhameed RA, Hassan JAJ, Akhtar I, Semreen MH. Occurrence, spatial and seasonal variations of emerging contaminants in the aquatic environment of Sharjah, United Arab Emirates. CHEMOSPHERE 2023; 345:140426. [PMID: 37844698 DOI: 10.1016/j.chemosphere.2023.140426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
The occurrence, seasonal variations and spatial distribution of emerging contaminants (ECs) in wastewater effluents from wastewater treatment plant (WWTP) and UAE's receiving coastal aquatic environment (seawater and sediments) were evaluated in the present study. A total of 21, 23, and 22 contaminants in the effluents, seawater, and sediments, respectively, at concentrations ranging from low ng L-1 up to 1782 ng L-1 in effluents, from low ng/l up to 236.10 ng L-1 in seawater, and from low ng g-1 up to 60.15 ng g-1 in sediments were recorded. The study revealed that imidacloprid, thiabendazole, and acetaminophen were the most ubiquitous compounds in effluents, seawater, and sediments, respectively, since they were found in all samples collected with a detection frequency of 100%. The study also revealed that the higher concentrations of most contaminants were recorded in autumn. However, thiabendazole in effluents and seawater, acetamiprid in effluents, and sulphapyridine in seawater and sediments showed a higher load in winter. This study highlights the need for proper monitoring and management of ECs in wastewater effluents, seawater, and sediments, especially during the autumn and winter seasons, to minimize their impact on the marine ecosystem and public health.
Collapse
Affiliation(s)
- Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O.Box 27272, Sharjah, United Arab Emirates; Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Salima Aissaoui
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O.Box 27272, Sharjah, United Arab Emirates; Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Jijel, Algeria
| | - Abdallah Shanableh
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Anthony Okoh
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O.Box 27272, Sharjah, United Arab Emirates; Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates; SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Rami Elhadi
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, P.O.Box 27272, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Science and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Rouba A Alhameed
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Iqbal Akhtar
- Drainage Department, Sharjah Municipality, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
19
|
Oyedele GT, Adedara IA, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Metoprolol elicits neurobehavioral insufficiency and oxidative damage in nontarget Nauphoeta cinerea nymphs. ENVIRONMENTAL TOXICOLOGY 2023; 38:3006-3017. [PMID: 37584562 DOI: 10.1002/tox.23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Metoprolol, a drug for hypertension and cardiovascular diseases, has become a contaminant of emerging concern because of its frequent detection in various environmental matrices globally. The dwindling in the biodiversity of useful insects owing to increasing presence of environmental chemicals is currently a great interest to the scientific community. In the current research, the toxicological impact of ecologically relevant concentrations of metoprolol at 0, 0.05, 0.1, 0.25, and 0.5 μg/L on Nauphoeta cinerea nymphs following exposure for 42 consecutive days was evaluated. The insects' behavior was analyzed with automated video-tracking software (ANY-maze, Stoelting Co, USA) while biochemical assays were done using the midgut, head and fat body. Metoprolol-exposed nymphs exhibited significant diminutions in the path efficiency, mobility time, distance traveled, body rotation, maximum speed and turn angle cum more episodes, and time of freezing. In addition, the heat maps and track plots confirmed the metoprolol-mediated wane in the exploratory and locomotor fitness of the insects. Compared with control, metoprolol exposure decreased acetylcholinesterase activity in insects head. Antioxidant enzymes activities and glutathione level were markedly decreased whereas indices of inflammation and oxidative injury to proteins and lipids were significantly increased in head, midgut and fat body of metoprolol-exposed insects. Taken together, metoprolol exposure induces neurobehavioral insufficiency and oxido-inflammatory injury in N. cinerea nymphs. These findings suggest the potential health effects of environmental contamination with metoprolol on ecologically and economically important nontarget insects.
Collapse
Affiliation(s)
- Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
21
|
Bessadok S, Kraiem K, Arous F, Al Souki KS, Tabassi D, El Toumi S, Jaouani A. Efficient Wastewater Treatment and Removal of Bisphenol A and Diclofenac in Mesocosm Flow Constructed Wetlands Using Granulated Cork as Emerged Substrate. TOXICS 2023; 11:toxics11010081. [PMID: 36668807 PMCID: PMC9864862 DOI: 10.3390/toxics11010081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 05/21/2023]
Abstract
Constructed wetlands (CWs) are considered as low-cost and energy-efficient wastewater treatment systems. Media selection is one of the essential technical keys for their implementation. The purpose of this work was essentially to evaluate the removal efficiency of organic pollution and nitrogen from municipal wastewater (MWW) using different selected media (gravel/gravel amended with granulated cork) in mesocosm horizontal flow constructed wetlands (HFCWs). The results showed that the highest chemical oxygen demand (COD) and ammonium nitrogen removal of 80.53% and 42%, respectively, were recorded in the units filled with gravel amended with cork. The influence of macrophytes (Phragmites australis and Typha angustifolia) was studied and both species showed steeper efficiencies. The system was operated under different hydraulic retention times (HRTs) i.e., 6 h, 24 h, 30 h, and 48 h. The obtained results revealed that the COD removal efficiency was significantly enhanced by up to 38% counter to the ammonium rates when HRT was increased from 6 h to 48 h. Moreover, the removal efficiency of two endocrine-disrupting compounds (EDCs) namely, bisphenol A (BPA) and diclofenac (DCF) was investigated in two selected HFCWs, at 48 h HRT. The achieved results proved the high capacity of cork for BPA and DCF removal with the removal rates of 90.95% and 89.66%, respectively. The results confirmed the role of these engineered systems, especially for EDC removal, which should be further explored.
Collapse
Affiliation(s)
- Salma Bessadok
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Khadija Kraiem
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Fatma Arous
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Karim Suhail Al Souki
- Department of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Dorra Tabassi
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Safa El Toumi
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Atef Jaouani
- Bioresources, Environment and Biotechnology Laboratory (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
- Correspondence:
| |
Collapse
|