1
|
Zhu LW, Li YQ, Lu LW, Wang JY, Du J, Zhao P. Temporal dynamics of stomatal regulation and carbon- and water-related traits for a native tree species in low subtropical China. TREE PHYSIOLOGY 2024; 44:246-259. [PMID: 38281184 PMCID: PMC11898628 DOI: 10.1093/treephys/tpae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/22/2024] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Stomata are pivotal in modulating water and carbon processes within plants. However, our understanding of the temporal dynamics of water- and carbon-related traits, as influenced by stomatal behavior, remains limited. Here, we explore how stomatal regulation behavior and water- and carbon-related traits vary with changing environments by examining the seasonal variations in these traits of the native tree species Schima superba Gardn. et Champ. in low subtropical China. In February, April and July of 2022, a series of water- and carbon-related traits were measured in the leaves and stems. The results showed that S. superba exhibited isohydric behavior in February when the soil dried out and vapor pressure deficit (VPD) was lower but anisohydric behavior in April and July when the soil was wetter and VPD was higher. In February, nonstructural carbohydrates (NSC) and their components increased, and a relatively large contribution of soluble sugars to the change in NSC was observed. In the branches and phloem, NSC and their components displayed a relatively high monthly variability, suggesting their role in maintaining carbon balance within the trees. Conversely, the NSC in the leaves demonstrated minimal monthly variability. The specific leaf area, as well as the concentration of nitrogen (N) and phosphorus (P) per unit mass in leaves and the cumulative stem water release, exhibited a decrease with a reduction in soil water potential. Interestingly, the hydraulic conductivity remained consistent throughout this process. Furthermore, the relatively low monthly growth rate observed in February could suggest a carbon sink limitation. In conclusion, the increased NSC and decreased water status of S. superba under relatively stressed soil conditions indicated a trade-off between water and carbon storage. Our findings enhance our comprehension of the dynamics and regulation of water and carbon status in forests, thereby advancing the development of plant carbon and water process models under climate change scenarios.
Collapse
Affiliation(s)
- Li-Wei Zhu
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Yan-Qiong Li
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Long-Wei Lu
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Jing-Yi Wang
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Jie Du
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| | - Ping Zhao
- South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou, 510650, China
- South China National Botanical Garden, Tianyuan Road 1190, Tianhe District, Guangzhou, 510650, China
| |
Collapse
|
2
|
Lv H, Gangwisch M, Saha S. Crown die-back of peri-urban forests after combined heatwave and drought was species-specific, size-dependent, and also related to tree neighbourhood characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169716. [PMID: 38159755 DOI: 10.1016/j.scitotenv.2023.169716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
The Rhine River valley of Germany has been facing recurrent and intense spells of drought and heatwaves threatening the health of trees in peri-urban forests. Crown damage intensified by climate change accelerates tree mortality, threatening its ecological, economic, and social benefits; however, the pattern of crown die-back in peri-urban forests remained unclear. We performed a field inventory to estimate the crown die-back of 2578 trees of 51 species from 68 randomly selected peri-urban forest plots in Karlsruhe region on the right bank of the Rhine, after the catastrophic summer heatwave and drought of 2018. We related crown die-back to species-specific drought tolerance, wood anatomical traits, tree size, canopy surface temperature, tree density, Shannon's diversity and Gini coefficient for tree height. Regression results indicate that small-size trees were found to be more susceptible to canopy damage than large trees, with a 1-meter increase in tree height associated with a 0.8 % reduction in crown die-back. This size-dependent process is also species-specific. Among the 12 species with significant (p < 0.05) linear relationship between height and die-back, 9 species demonstrated negative correlations and 3 species showed positive relationships. Species tolerant to drought or cavitation (e.g., trees with diffuse porous xylem, 21 species) had significantly lower crown dieback. For example, with a 1-point-scale increase in drought tolerance crown die-back declined 14.35 %. Trees that experienced high canopy surface temperature and grew with high tree density and species diversity (Shannon's diversity) had more crown die-back. However, high structural diversity (Gini coefficient) was related to lower crown die-back. Our results suggested that future research should focus more on tree species-specific hydraulic and thermal traits and tree density and structure management to improve tree health and species selection in peri-urban forests under future climate change.
Collapse
Affiliation(s)
- Hailiang Lv
- Heilongjiang Bayi Agricultural University, Xinfeng Road 5, 163316 Daqing, China; Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, Karlstr. 11, 76133 Karlsruhe, Germany.
| | - Marcel Gangwisch
- Institute of Earth and Environmental Sciences, Faculty of Environment and Natural Resources, University of Freiburg, Werthmannstr. 10, D-79085 Freiburg, Germany
| | - Somidh Saha
- Institute for Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute of Technology, Karlstr. 11, 76133 Karlsruhe, Germany; Institute of Geography and Geoecology (IfGG), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Liu Y, Zheng C, Su X, Chen J, Li X, Sun C, Nizamani MM. Comparative analysis and characterization of the chloroplast genome of Krascheninnikovia ceratoides (Amarathaceae): a xerophytic semi-shrub exhibiting drought resistance and high-quality traits. BMC Genom Data 2024; 25:10. [PMID: 38287264 PMCID: PMC10826016 DOI: 10.1186/s12863-024-01197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Krascheninnikovia ceratoides, a perennial halophytic semi-shrub belonging to the genus Krascheninnikovia (Amarathaceae), possesses noteworthy ecological, nutritional, and economic relevance. This species is primarily distributed across arid, semi-arid, and saline-alkaline regions of the Eurasian continent, encompassing Inner Mongolia, Xinjiang, Qinghai, Gansu, Ningxia, and Tibet. RESULTS We reported the comprehensive chloroplast (cp) genome of K. ceratoides, characterized by a circular conformation spanning 151,968 bp with a GC content of 36.60%. The cp genome encompassed a large single copy (LSC, 84,029 bp), a small single copy (SSC, 19,043 bp), and a pair of inverted repeats (IRs) regions (24,448 bp each). This genome harbored 128 genes and encompassed 150 simple sequence repeats (SSRs). Through comparative analyses involving cp genomes from other Cyclolobeae (Amarathaceae) taxa, we observed that the K. ceratoides cp genome exhibited high conservation, with minor divergence events in protein-coding genes (PCGs) accD, matK, ndhF, ndhK, ycf1, and ycf2. Phylogenetic reconstructions delineated K. ceratoides as the sister taxon to Atriplex, Chenopodium, Dysphania, and Suaeda, thus constituting a robust clade. Intriguingly, nucleotide substitution ratios (Ka/Ks) between K. ceratoides and Dysphania species for ycf1 and ycf2 genes surpassed 1.0, indicating the presence of positive selection pressure on these loci. CONCLUSIONS The findings of this study augment the genomic repository for the Amarathaceae family and furnish crucial molecular instruments for subsequent investigations into the ecological adaptation mechanisms of K. ceratoides within desert ecosystems.
Collapse
Affiliation(s)
- Yuping Liu
- School of Life Sciences, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China
| | - Changyuan Zheng
- School of Life Sciences, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China.
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China.
| | - Jinyuan Chen
- School of Life Sciences, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China
| | - Xiaoli Li
- School of Life Sciences, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China
| | - Chenglin Sun
- School of Life Sciences, Qinghai Normal University, 38# Wusixi Road, Xining, 810008, Qinghai Province, China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Liu S, Xu G, Chen T, Wu X, Li Y. Quantifying the effects of precipitation exclusion and groundwater drawdown on functional traits of Haloxylon ammodendron - How does this xeric shrub survive the drought? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166945. [PMID: 37699482 DOI: 10.1016/j.scitotenv.2023.166945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
The increasing frequency of drought and decline in groundwater levels are causing ecophysiological changes in woody plants, particularly in desert ecosystems in arid regions. However, the combined effects of meteorological and hydrological droughts on perennial desert plants, especially phreatophytes, remain poorly understood. To address this knowledge gap, we conducted a 5-year precipitation exclusion experiment at two sites with contrasting groundwater depths in the Gurbantunggut Desert located in northwest China. Our study aimed to investigate the impacts of precipitation exclusion and groundwater depth decline on multiple traits of H. ammodendron. We found that long-term precipitation exclusion enhanced midday leaf water potential, stomatal conductance, chlorophyll content, root nonstructural carbohydrates concentration, leaf starch concentration, but decreased water use efficiency. Groundwater drawdown decreased predawn and midday leaf water potentials, maximum net photosynthetic rate, stomatal conductance, Huber value, stem water δ18O, but enhanced water use efficiency and branch nonstructural carbohydrates concentration. A combination of precipitation exclusion and groundwater depth decline reduced Huber value, but did not show exacerbated effects. The findings demonstrate that hydrological drought induced by groundwater depth decline poses a greater threat to the survival of H. ammodendron than future changes in precipitation.
Collapse
Affiliation(s)
- Shensi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiqing Xu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tuqiang Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wu
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Yan Li
- Fukang Station of Desert Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Fukang 831500, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|