1
|
Rodriguez PM, Vera B, Burgos C, Gimenez G, Miglioranza KSB, Ramirez CL, Lavalle A, Ondarza PM, Guiñazú NL. Expression of carboxylesterase and paraoxonase in the placenta and their association with chlorpyrifos exposure during pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118285. [PMID: 40359857 DOI: 10.1016/j.ecoenv.2025.118285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Exposure to environmental chemicals during pregnancy, including organophosphate pesticides, can affect the health of both the mother and the fetus, and have repercussions later in life. The present study aimed to determine whether the A-esterases paraoxonases (PON) and the B-esterases carboxylesterases (CES) are modulated in the placenta of pregnant women residing in an intensive pesticide use scenario. A total of 104 healthy pregnant women were recruited between 2018 and 2022 and were classified according to their residential settings in rural (RG) and urban (UG) groups. Chlorpyrifos (CP) level in the placenta was determined by GC-ECD, and confirmed by GC-MS. To analyze possible impacts in esterases, the CES and PON activity, mRNA transcript and protein expression levels were studied. Significantly higher CP levels were detected in RG vs UG. Also, CES activity determined with 1-naphthyl acetate substrate was significantly lower in RG vs UG. In contrast, PON arylesterase and lactonase activities were up modulated in RG vs UG. Likewise, mRNA transcript levels of CES1, CES2 and PON2 were upregulated in the RG along with increases in CES2 and PON2 protein expressions. Moreover, a positive significant correlation was determined between CP concentration and CES1 and CES2 mRNA levels. Rural samples showed elevated CP concentrations and alterations in esterases, which elucidate the impact of CP exposure in mRNA CES and PON regulation. These findings highlight the need for further investigation into the effects of pesticide exposure during pregnancy and to deepen the knowledge about the function that esterases play in the placenta.
Collapse
Affiliation(s)
- Piuque M Rodriguez
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina; Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Berta Vera
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina; Facultad de Medicina, Universidad Nacional del Comahue, Los Arrayanes y Av. Toschi, Cipolletti, Río Negro 8324, Argentina
| | - Carolina Burgos
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Gustavo Gimenez
- Departamento de Estadística, Facultad de Economía, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina.
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, Mar del Plata 7600, Argentina.
| | - Cristina L Ramirez
- Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, Mar del Plata 7600, Argentina.
| | - Andrea Lavalle
- Departamento de Estadística, Facultad de Economía, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Dean Funes 3350, Mar del Plata 7600, Argentina.
| | - Natalia L Guiñazú
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina; Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén 8300, Argentina.
| |
Collapse
|
2
|
Glinka M, Jażdżewska K, Vakh C, Drążkowska I, Bagińska E, Majchrzak T, Młynarczyk M, Rachoń D, Wasik A, Płotka-Wasylka J. Assessment of baby disposable diapers application for urine collection and determination of phthalate metabolites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116033. [PMID: 38335581 DOI: 10.1016/j.ecoenv.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
The baby disposable diapers were investigated as a sampling material for urine collection and validated for the evaluation of the exposure of children to xenobiotics. Phthalate metabolites detected in urine samples were chosen as proof-of-concept analytes. For the determination of phthalate metabolites in children's urine samples, high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) was used. Two sampling approaches were compared, namely sterile containers and baby disposable diapers. Thirty urine samples from infants and toddlers were analyzed by both methods in parallel and the results were compared. It was found that for diaper sampling, lower concentrations of the metabolites were observed, however, the general distribution for particular metabolites remains the same for both methods. For most of the metabolites high determination coefficients were obtained, namely 0.9929 for MEHHP, 0.9836 for MMP, 0.9796 for MECPP, and 0.9784 for 2-cx-MMHP. For MEOHP the determination correlation coefficient was 0.9154, while for MBP was - 0.7771 and MEHP was - 0.5228. In general, for diaper sampling an underestimation for 2-cx-MMHP and MEOHP was observed, while for MMP diaper-based approach provides overestimation. However, the proposed procedure confirms the possibility of using baby disposable diapers as a material for the collection of urine samples for biomonitoring purposes and fast screening of phthalates exposure.
Collapse
Affiliation(s)
- Marta Glinka
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Poland
| | - Katarzyna Jażdżewska
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Poland
| | - Christina Vakh
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Poland; EcoTech Center, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Izabela Drążkowska
- Department of Neonatology, University Clinical Centre, Gdańsk, Poland; Division of Neonatology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ewa Bagińska
- Department of Neonatology, University Clinical Centre, Gdańsk, Poland
| | - Tomasz Majchrzak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Poland
| | - Michał Młynarczyk
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Poland
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Andrzej Wasik
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Poland
| | - Justyna Płotka-Wasylka
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Poland; BioTechMed Center, Research Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
3
|
Ul Haq I, Zhang KX, Gou Y, Hajjar D, Makki AA, Alkherb WAH, Ali H, Liu C. Transcriptomic and biochemical insights into fall armyworm ( Spodoptera frugiperda) responses on silicon-treated maize. PeerJ 2024; 12:e16859. [PMID: 38410805 PMCID: PMC10896081 DOI: 10.7717/peerj.16859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024] Open
Abstract
Background The fall armyworm, Spodoptera frugiperda, is an agricultural pest of significant economic concern globally, known for its adaptability, pesticide resistance, and damage to key crops such as maize. Conventional chemical pesticides pose challenges, including the development of resistance and environmental pollution. The study aims to investigate an alternative solution: the application of soluble silicon (Si) sources to enhance plant resistance against the fall armyworm. Methods Silicon dioxide (SiO2) and potassium silicate (K2SiO3) were applied to maize plants via foliar spray. Transcriptomic and biochemical analyses were performed to study the gene expression changes in the fall armyworm feeding on Si-treated maize. Results Results indicated a significant impact on gene expression, with a large number of differentially expressed genes (DEGs) identified in both SiO2 and K2SiO3 treatments. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified critical DEGs involved in specific pathways, including amino acid, carbohydrate, lipid, energy, xenobiotics metabolisms, signal transduction, and posttranslational modification, significantly altered at both Si sources. Biochemical analyses further revealed that Si treatments inhibited several enzyme activities (glutamate dehydrogenase, trehalase, glucose-6-phosphate dehydrogenase, chitinase, juvenile hormone esterase, and cyclooxygenase while simultaneously inducing others (total protein, lipopolysaccharide, fatty acid synthase, ATPase, and cytochrome P450), thus suggesting a toxic effect on the fall armyworm. In conclusion, Si applications on maize influence the gene expression and biochemical activities of the fall armyworm, potentially offering a sustainable pest management strategy.
Collapse
Affiliation(s)
- Inzamam Ul Haq
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Ke-Xin Zhang
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuping Gou
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dina Hajjar
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa A Makki
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia
| | - Wafa A H Alkherb
- Department of Biology, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Habib Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Changzhong Liu
- College of Plant Protection, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Abdali M, Ghasemi F, Seyed Hosseini HM, Mahdavi V. Different sized gold nanoparticles for array-based sensing of pesticides and its application for strawberry pollution monitoring. Talanta 2024; 267:125121. [PMID: 37672984 DOI: 10.1016/j.talanta.2023.125121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The use of pesticides plays an essential role in improving crop quality and yield, however, it causes air, water, and soil pollution and the residue of these pesticides in agricultural products threatens the ecosystem and human life. Therefore, it is highly desirable to develop rapid, simple, and cost-effective methods for regular monitoring of pesticide residues in agricultural products especially strawberry that is consumed fresh and unpeeled. In this study, gold nanoparticles (AuNPs) of varying sizes have been exploited as sensing units to design a non-enzymatic colorimetric sensor array for the detection and discrimination of various pesticides including; bifenazate (BF), paraquat (PQ), diazinon (DZ), thiometon (TM), and carbendazim (CD) and chlorpyrifos (CP). Because of their strong size- and environmentally-dependent properties, AuNPs with different sizes produced distinguished plasmonic patterns in the presence of pesticides at a vast range of concentrations (25-800 ng mL-1). Plasmonic patterns of sensor units have been analyzed by various data visualization (bar plots and heat maps) and pattern recognition methods (linear discriminant analysis (LDA)). The multivariate calibrations showed linear responses ranging from 50 to 800 ng mL-1 for carbendazim, chlorpyrifos, paraquat, and bifenazate and 25-800 ng mL-1 for diazinon and thiometon. The limit of detection (LOD) was calculated to be 17.7, 22.8, 22.4, 9.7, 7.4, and 23.8 ng mL-1 for carbendazim, chlorpyrifos, paraquat, diazinon, thiometon, and bifenazate respectively. Finally, the applicability of the designed sensor was evaluated in real samples comprising tap water, well water, soil, and fruit, leave, drainage water, and culture substrate of strawberry.
Collapse
Affiliation(s)
- Masoumeh Abdali
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Forough Ghasemi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.
| | - Hossein Mir Seyed Hosseini
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|