1
|
Yao H, Cheng Y, Kong Q, Wang X, Rong Z, Quan Y, You X, Zheng H, Li Y. Variation in microbial communities and network ecological clusters driven by soil organic carbon in an inshore saline soil amended with hydrochar in Yellow River Delta, China. ENVIRONMENTAL RESEARCH 2025; 264:120369. [PMID: 39549908 DOI: 10.1016/j.envres.2024.120369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Char materials (e.g., hydrochar) can enhance carbon sequestration, improve soil quality and modulate soil microbial communities to recuperate soil health. However, little is known about the soil organic carbon (SOC) content, as well as the microbial communities and co-occurrence networks in response to hydrochar amendment in an inshore saline soil. Here, the effect of Sesbania cannabina (a halophyte) straw derived hydrochar (SHC) amendment on SOC and labile organic carbon (LOC) fractions and the potential associations among SOC content change, soil C-cycling enzyme activities and microbial communities were illustrated using a pot experiment. SHC effectively improved the contents of SOC and LOC, particularly particulate organic carbon (POC), and stimulated the activities of C-cycling enzymes. Furthermore, SHC induced shift in microbial community compositions and co-occurrence networks, result in decrease in relative abundance of Actinobacteriota and its corresponding ecological cluster, which may favor SOC accumulation. Functional annotation of prokaryotic taxa (FAPROTAX) analysis also revealed a decrease in microbial ecological function related to carbon degradation. These findings provided a deeper insight about the hydrochar-induced SOC enhancement and suggested an efficient approach to improve C sequestration and improve soil health in the coastal salt-affected soil.
Collapse
Affiliation(s)
- Hui Yao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Ziguo Rong
- Yellow River Delta Agricultural High-Tech Industrial Demonstration Zone Salt-Alkaline Land Integrated Utilization Service Center, Dongying, 257300, China
| | - Yue Quan
- Department of Geography and Marine Sciences, Yanbian University, Hunchun, 133000, China
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266100, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Technical Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
2
|
Zhang X, Huang Z, Zhong Z, Li Q, Bian F. Forest management impacts on soil phosphorus cycling: Insights from metagenomics in Moso bamboo plantations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123735. [PMID: 39706000 DOI: 10.1016/j.jenvman.2024.123735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Bamboo forests are crucial ecosystems and provide essential ecological and economic services in both tropical and subtropical regions. Soil phosphorus (P), a vital nutrient for plant growth, is fundamental to the productivity and health of bamboo forests. However, the microbial mechanisms through which management practices affect soil P processes in bamboo forests remain poorly understood. This study employed metagenomics to examine alterations in microbial P cycling in Moso bamboo plantations under three distinct management conditions. The results revealed that intensive management (M2, annual fertilization, selective harvesting, and understory vegetation removal) significantly increased soil inorganic P (Pi) by 61.76% and 87.39% compared to extensive management (M1, selective bamboo trunk and shoot harvesting every two years) and non-management (M0), respectively, while decreasing soil organic P (Po) by 50.41% and 41.05%. Forest management significantly altered the bacterial communities: Firmicutes, WPS-2, and Acidobacteriales were represented in M2, Xanthobacteraceae in M1, and Chloroflexi AD3, Acidothermus, and Subgroup_2 in M0. M2 significantly increased the community-level habitat niche breadth and weakened the deterministic process of bacterial community assembly relative to M1 and M0 (p ≤ 0.05). Furthermore, functional metagenomics showed that the total abundance of genes related to Po mineralization, P transportation, and P regulation was significantly lower (p ≤ 0.05) in M2 than in M0 and M1. pstA, pstB, and pstC were more abundant in M2 (p ≤ 0.05), whereas phnN, phnI, phnG, phoA, phoD, phnC, phnD, and phnE were more abundant in M1 (p ≤ 0.05), and phnF was significantly abundant in M0 (p ≤ 0.05). A partial least squares path model indicated that soil bacterial community and P cycling genes had direct effects on Pi and Po, respectively. These findings enhance our understanding of the links between forest management practices and P cycling, providing insights for improving soil functionality and nutrient balance.
Collapse
Affiliation(s)
- Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China; Engineering Research Center of Biochar of Zhejiang Province, Hangzhou, Zhejiang, 310021, China
| | - Zhiyuan Huang
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China.
| | - Qiaoling Li
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China
| | - Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, Hangzhou, Zhejiang, 310012, China; National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, Zhejiang, 310012, China
| |
Collapse
|
3
|
Zhang G, Liu S, Du W, Li Y, Wu Z, Liu T, Wang Y. Spatiotemporal distributions, co-occurrence networks, and assembly mechanisms of the bacterial community in sediments of the Yangtze River: comprehensive insights into abundant and rare taxa. Front Microbiol 2024; 15:1444206. [PMID: 39723140 PMCID: PMC11668926 DOI: 10.3389/fmicb.2024.1444206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/02/2024] [Indexed: 12/28/2024] Open
Abstract
Sediments are key reservoirs for rare bacterial biospheres that provide broad ecological services and resilience in riverine ecosystems. Compared with planktons, there is a lack of knowledge regarding the ecological differences between abundant and rare taxa in benthic bacteria along a large river. Here, we offer comprehensive insights into the spatiotemporal distributions, co-occurrence networks, and assembly processes of three divided categories namely always rare taxa (ART), conditionally rare taxa (CRT), and conditionally rare and abundant taxa (CRAT) in sediments covering a distance of 4,300 km in the Yangtze River. Our study demonstrated that ART/CRT contributed greatly to the higher Chao-1 index, Shannon-Wiener index, and phylogenetic alpha diversity of benthic bacteria in autumn than in spring. ART showed high overall beta diversity, and CRT/CRAT exhibited more significant distance-decay patterns than ART in both seasons, mainly corresponding to macroscopic landform types. CRT predominated the nonrandom co-occurrence network, with 97% of the keystone species mostly affiliated with Acidobacteriota flourishing in the lower-reach plain. Two selection processes had the greatest influences on the assembly of CRT (74.7-77.6%), whereas CRAT were driven primarily by dispersal limitation (74.9-86.8%) and ART were driven by heterogeneous selection (33.9-48.5%) and undominated stochasticity (32.7-36.5%). Natural factors such as river flow and channel slope exhibited more significant correlations with community variation than nutrients in all three groups, and total organic carbon mediated the balance among the distinct assembly processes of the ART and CRT in both seasons. Taken together, these results provide an improved ecological understanding of the discrepancy in biogeographic patterns between abundant and rare bacterial taxa in the sediments of Asia's largest river.
Collapse
Affiliation(s)
- Guohua Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Shufeng Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, China
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yinghao Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Zongzhi Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tang Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Yichu Wang
- College of Water Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Zhang J, Lin X, Zhang X, Huang H, Qi Y, Zhang Z, Chen B, Morriën E, Zhu Y. Bacterial and fungal keystone taxa play different roles in maintaining community resistance and driving soil organic carbon dynamics in response to Solidago Canadensis invasion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176664. [PMID: 39362557 DOI: 10.1016/j.scitotenv.2024.176664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The invasion of alien plants has significant implications for vegetation structure and diversity, which could lead to changes in the carbon (C) input from vegetation and change the transformation and decomposition processes of C, thereby altering the dynamics of soil organic carbon (SOC) within ecosystems. Whether alien plant invasion increases the SOC stock and changes SOC fractions consistently within regional scales, and the underlying mechanisms driving these SOC dynamics remain poorly understood. This study investigated SOC dynamics by comparing the plots that suffered invasion and non-invasion of Solidago Canadensis across five ecological function areas in Anhui Province, China, considering climate, edaphic factors, vegetation, and soil microbes. The results demonstrated that the impact of S. Canadensis invasion on SOC storage was not consistent at each site in the 0-20 cm soil layer, as indicated by the range of SOC content (5.94-12.45 g kg-1) observed at non-invaded plots. Stable SOC exhibited similar response patterns with SOC to plant invasion, whereas labile SOC did not. In addition, bacterial and fungal communities were shifted in structure at each site by plant invasion. Bacterial communities exhibited greater resistance to S. Canadensis invasion than did fungal communities, as evidenced by three aspects of the resistance indices-community resistance, phylogenetic conservation, and network complexity. The mechanisms driving SOC dynamics under S. Canadensis invasion were explored using structural equation models. This revealed that fungal keystone taxa responsible for community resistance controlled stable SOC fractions. In contrast, bacterial keystone taxa had the opposite effect on labile and stable SOC. Climatic and edaphic factors were also involved in the labile and stable SOC dynamics. Overall, this study provides novel insights into the dynamics of SOC under S. Canadensis invasion on a regional scale.
Collapse
Affiliation(s)
- Jiaoyang Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, PR China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiao Lin
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Xinyu Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Hui Huang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, PR China
| | - Yueling Qi
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, PR China
| | - Zhen Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, PR China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Elly Morriën
- Department of Ecosystem and Landscape Dynamics, Institute of Biodiversity and Ecosystem Dynamics (IBED-ELD), University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
5
|
Yan Z, Chen Y, Su P, Liu S, Jiang R, Wang M, Zhang L, Lu G, Yuan S. Microbial carbon metabolism patterns of microplastic biofilm in the vertical profile of urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122422. [PMID: 39243653 DOI: 10.1016/j.jenvman.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Pengpeng Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
6
|
Ullah S, Han X, Deng R, Ali I, Li W, Xu Y, Yang M. Impacts of shifting from single-species pine forests to distinct agroforestry models on soil fertility, exchangeable cations, and microbial functions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122823. [PMID: 39369525 DOI: 10.1016/j.jenvman.2024.122823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/26/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The transition from monoculture to mixed-species agroforestry systems affects soil organic matter and microbial activity. However, the specific dynamics of these changes, particularly within medicinal plant-based agroforestry, remain underexplored. This study investigates the impact of monoculture Pine (Pinus massoniana) forests and four agroforestry models: (M1) Pinus massoniana and Alpina oxyphylla, (M2) Pinus massoniana and Ficus simplicissima, (M3) Pinus massoniana and Amomum villosum, and (M4) Pinus massoniana and Curcuma longa on soil properties and microbial activity in rhizosphere and non-rhizosphere environments. Our results showed significantly higher pH (4.80) and total nitrogen (N) content (1.77 g kg-1) in the rhizosphere of model (M4) compared to (CK). Total organic carbon (TOC) and carbon fractions (POC, DOC, and MBC) also differed significantly across monoculture and agroforestry models, with highest TOC concentrations (31.70 g kg⁻1) in rhizosphere of CK. Exchangeable cations, including Ca2⁺, and Mg2⁺ were significantly higher in the rhizosphere of agroforestry models compared to CK, particularly in M4, where Ca2⁺ was recorded at 12.03 cmol kg-1 with the highest percent base saturation (PBS) at 90.17%. Enzymes leucine aminopeptidase and polyphenol oxidase varied significantly, with higher activity in the rhizosphere of agroforestry models and greater activity in non-rhizosphere of monoculture. Soil microbial respiration (MRes) revealed substantial differences, with an average 17% decrease in rhizosphere soil for models M2 and M4 and a 20.83% reduction in non-rhizosphere soil for model M1 compared to CK. Generalized Linear Model (GLM) demonstrated a significant positive correlation between TOC and MRes (R2 = 0.885, p < 0.01), indicating that higher TOC levels are linked with increased MRes. In conclusion, model M4 most effectively enhanced soil fertility and nutrient availability followed by the other agroforestry models tested. This suggests that integrating medicinal plants into agroforestry systems is a viable strategy for improving ecosystem functioning compared to monoculture practices.
Collapse
Affiliation(s)
- Saif Ullah
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiaomei Han
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Rongyan Deng
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Izhar Ali
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Wannian Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yuanyuan Xu
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Mei Yang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China; Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
7
|
Huang L, Chen W, Wei L, Li X, Huang Y, Huang Q, Liu C, Liu Z. Biochar Blended with Alkaline Mineral Can Better Inhibit Lead and Cadmium Uptake and Promote the Growth of Vegetables. PLANTS (BASEL, SWITZERLAND) 2024; 13:1934. [PMID: 39065461 PMCID: PMC11280933 DOI: 10.3390/plants13141934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Three successive vegetable pot experiments were conducted to assess the effects on the long-term immobilization of heavy metals in soil and crop yield improvement after the addition of peanut shell biochar and an alkaline mineral to an acidic soil contaminated with lead and cadmium. Compared with the CK treatment, the change rates of biomass in the edible parts of the three types of vegetables treated with B0.3, B1, B3, B9, R0.2 and B1R0.2 were -15.43%~123.30%, 35.10%~269.09%, 40.77%~929.31%, -26.08%~711.99%, 44.14%~1067.12% and 53.09%~1139.06%, respectively. The cadmium contents in the edible parts of the three vegetables treated with these six additives reduced by 2.08%~13.21%, 9.56%~24.78%, 9.96%~35.61%, 41.96%~78.42%, -4.19%~57.07% and 12.43%~65.92%, respectively, while the lead contents in the edible parts reduced by -15.70%~59.47%, 6.55%~70.75%, 3.40%~80.10%, 55.26%~89.79%, 11.05%~70.15% and 50.35%~79.25%, respectively. Due to the increases in soil pH, soil cation-exchange capacity and soil organic carbon content, the accumulation of Cd and Pb in the vegetables was most notably reduced with a high dosage of 9% peanut shell biochar alone, followed by the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral. Therefore, the addition of a low dosage of 1% peanut shell biochar blended with 0.2% alkaline mineral was the best additive in increasing the vegetable biomass, whereas the addition of 9% peanut shell biochar alone was the worst. Evidently, the addition of 0.2% alkaline mineral can significantly reduce the amount of peanut shell needed for passivating heavy metals in soil, while it also achieves the effect of increasing the vegetable yield.
Collapse
Affiliation(s)
- Lianxi Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Weisheng Chen
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Lan Wei
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Xiang Li
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Yufen Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Qing Huang
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| | - Chuanping Liu
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China;
| | - Zhongzhen Liu
- Laboratory of Plant Nutrition and Fertilizer in South Region, Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Key, Ministry of Agriculture, Guangzhou 510640, China; (L.H.); (W.C.); (X.L.); (Y.H.); (Q.H.)
| |
Collapse
|
8
|
Shi G, Hou R, Fu Q, Li T, Chen Q. Effects of biochar and compost on microbial community assembly and metabolic processes in glyphosate, imidacloprid and pyraclostrobin polluted soil under freezethaw cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134397. [PMID: 38677114 DOI: 10.1016/j.jhazmat.2024.134397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Biochar and organic compost are widely used in agricultural soil remediation as soil immobilization agents. However, the effects of biochar and compost on microbial community assembly processes in polluted soil under freezingthawing need to be further clarified. Therefore, a freezethaw cycle experiment was conducted with glyphosate (herbicide), imidacloprid (insecticide) and pyraclostrobin (fungicide) polluted to understand the effect of biochar and compost on microbial community assembly and metabolic behavior. We found that biochar and compost could significantly promote the degradation of glyphosate, imidacloprid and pyraclostrobin in freezethaw soil decrease the half-life of the three pesticides. The addition of immobilization agents improved soil bacterial and fungal communities and promoted the transformation from homogeneous dispersal to homogeneous selection. For soil metabolism, the combined addition of biochar and compost alleviated the pollution of glyphosate, imidacloprid and imidacloprid to soil through up-regulation of metabolites (DEMs) in amino acid metabolism pathway and down-regulation of DEMs in fatty acid metabolism pathway. The structural equation modeling (SEM) results showed that soil pH and DOC were the main driving factors affecting microbial community assembly and metabolites. In summary, the combined addition of biochar and compost reduced the adverse effects of pesticides residues.
Collapse
Affiliation(s)
- Guoxin Shi
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Renjie Hou
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qiang Fu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Tianxiao Li
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Key Laboratory of Effective Utilization of Agricultural Water Resources of Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Provincial Key Laboratory of Water Resources and Water Conservancy Engineering in Cold Region, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
9
|
Liao YCZ, Pu HX, Jiao ZW, Palviainen M, Zhou X, Heinonsalo J, Berninger F, Pumpanen J, Köster K, Sun H. Enhancing boreal forest resilience: A four-year impact of biochar on soil quality and fungal communities. Microbiol Res 2024; 283:127696. [PMID: 38518453 DOI: 10.1016/j.micres.2024.127696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.5 kg·m-2 and 1.0 kg·m-2), on soil property, soil enzyme activity, and fungal community dynamics in a boreal forest over a span of two to four years. Our results showed that, four-year post-application of biochar produced at 650 °C and applied at 1.0 kg·m-2, significantly increased the relative abundance of Mortierellomycota and enhanced fungal species richness, α-diversity and evenness compared to the control (CK) (P < 0.05). Notably, the abundance of Phialocephala fortinii increased with the application of biochar produced at 500 °C and applied at 0.5 kg·m-2, exhibiting a positively correlation with the carbon cycling-related enzyme β-cellobiosidase. Functionally, distinct fungal gene structures were formed between different biochar pyrolysis temperatures, and between application amounts in four-year post-biochar application (P < 0.05). Additionally, correlation analyses revealed the significance of the duration post-biochar application on the soil properties, soil extracellular enzymes, soil fungal dominant phyla, fungal community and gene structures (P < 0.01). The interaction between biochar pyrolysis temperature and application amount significantly influenced fungal α-diversity (P < 0.01). Overall, these findings provide theoretical insights and practical application for biochar as soil amendment in boreal forest ecosystems.
Collapse
Affiliation(s)
- Yang-Chun-Zi Liao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Xiu Pu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zi-Wen Jiao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Marjo Palviainen
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland
| | - Xuan Zhou
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Jussi Heinonsalo
- Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland
| | - Frank Berninger
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Jukka Pumpanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Kajar Köster
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, P. O. Box 1627, Kuopio 70211, Finland
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, P. O. Box 27, Helsinki 00014, Finland.
| |
Collapse
|
10
|
Zeng K, Huang X, Dai C, He C, Chen H, Guo J, Xin G. Bacterial community regulation of soil organic matter molecular structure in heavy metal-rich mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133086. [PMID: 38035526 DOI: 10.1016/j.jhazmat.2023.133086] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Heavy metals (HMs) profoundly impact soil carbon storage potential primarily through soil carbon structure. The association between HM content and soil carbon structure in mangrove sediments remains unclear, likely due to the involvement of microorganisms. In this study, surface sediments in the Futian National Mangrove Nature Reserve were sampled to investigate the chemical structure of soil organic carbon (SOC), the molecular composition of dissolved organic matter (DOM), and potential interactions with microorganisms. HMs, except for Ni, were positively correlated with soil carbon. HMs significantly reduced the alkyl C/O-alkyl C ratio, aromaticity index, and aromatic C values, but increased the labile carboxy/amide C and carbonyl C ratio in SOC. HMs also increased DOM stability, as reflected by the reduced abundance of labile DOM (lipids and proteins) and increased proportion of stable DOM (tannins and condensed aromatics). Bacteria increased the decomposition of labile DOM components (unsaturated hydrocarbons) and the accumulation of stable DOM components (lignins) under HM enrichment. In addition, the association between the bacterial groups and DOM molecules was more robust than that with fungal groups, indicating bacteria had a more significant impact on DOM molecular composition. These findings help in understanding the molecular mechanisms of soil carbon storage in HM-rich mangroves.
Collapse
Affiliation(s)
- Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chuanshun Dai
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junjie Guo
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
11
|
Zhang H, Zhang K, Duan Y, Sun X, Lin L, An Q, Altaf MM, Zhu Z, Liu F, Jiao Y, Yin J, Xie C, Wang B, Feng H, Zhang X, Li D. Effect of EDDS on the rhizosphere ecology and microbial regulation of the Cd-Cr contaminated soil remediation using king grass combined with Piriformospora indica. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133266. [PMID: 38118201 DOI: 10.1016/j.jhazmat.2023.133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
The negative impacts of soil heavy metals composite pollution on agricultural production and human health are becoming increasingly prevalent. The applications of green chelating agents and microorganisms have emerged as promising alternate methods for enhancing phytoremediation. The regulatory effects of root secretion composition, microbial carbon source utilization, key gene expression, and soil microbial community structure were comprehensively analyzed through a combination of HPLC, Biolog EcoPlates, qPCR, and high-throughput screening techniques. The application of EDDS resulted in a favorable rhizosphere ecological environment for the king grass Piriformospora indica, characterized by a decrease in soil pH by 0.41 units, stimulation of succinic acid and fumaric acid secretion, and an increase in carbon source metabolic activity of amino acids and carbohydrates. Consequently, this improvement enhanced the bioavailability of Cd/Cr and increased the biomass of king grass by 25.7%. The expression of dissimilatory iron-reducing bacteria was significantly upregulated by 99.2%, while there was no significant difference in Clostridium abundance. Furthermore, the richness of the soil rhizosphere fungal community (Ascomycota: 45.8%, Rozellomycota: 16.7%) significantly increased to regulate the proportion of tolerant microbial dominant groups, promoting the improvement of Cd/Cr removal efficiency (Cd: 23.4%, Cr: 18.7%). These findings provide a theoretical basis for the sustainable development of chelating agent-assisted plants-microorganisms combined remediation of heavy metals in soil.
Collapse
Affiliation(s)
- Haixiang Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kailu Zhang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yali Duan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoyan Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Li Lin
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi) / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture and Rural Affairs, Nanning 530007, China
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Muhammad Mohsin Altaf
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Fan Liu
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yangqiu Jiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jing Yin
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Can Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Baijie Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huiping Feng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory for Environmental Toxicology of Haikou / Center for Eco-Environmental Restoration aboratory of Marine Resource Utilization in South China Sea / Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
12
|
Qi X, Zhu M, Yuan Y, Dang Z, Yin H. Bioremediation of PBDEs and heavy metals co-contaminated soil in e-waste dismantling sites by Pseudomonas plecoglossicida assisted with biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132408. [PMID: 37647661 DOI: 10.1016/j.jhazmat.2023.132408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Biochar-assisted microbial remediation has been proposed as a promising strategy to eliminate environmental pollutants. However, studies on this strategy used in the remediation of persistent organic pollutants and heavy metals co-contaminated soil are lacking, and the effect of the combined incorporation of biochar and inoculant on the assembly, functions, and microbial interactions of soil microbiomes are unclear. Here, we studied 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47) degradation and heavy metal immobilization by and biochar-based bacterial inoculant (BC/PP) in an e-waste contaminated soil, and corresponding microbial regulation mechanisms. Results showed that BC/PP addition was more effective in reducing Cu and Pb availability and degrading BDE-47 than inoculant alone. Notably, BC/PP facilitated bound-residue formation of BDE-47, reducing the ecological risk of residual BDE-47. Meanwhile, microbial carbon metabolism and enzyme activities (related to C-, N-, and P- cycles) were enhanced in soil amended with BC/PP. Importantly, biochar played a crucial role in inoculant colonization, community assembly processes, and microbiome multifunction. In the presence of biochar, positive interactions in co-occurrence networks of the bacterial community were more frequent, and higher network stability and more keystone taxa were observed (including potential degraders). These findings provide a promising strategy for decontaminating complex-polluted environments and recovering soil ecological functions.
Collapse
Affiliation(s)
- Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|