1
|
Wang Y, Wang G, Liao F, Bi E, Mao H, Qiao Z, Wang H, Dou M, Wang C, Huang X. Sources and fate of nitrate in the unsaturated zone in an alluvial-lacustrine plain. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137721. [PMID: 40022928 DOI: 10.1016/j.jhazmat.2025.137721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
Nitrate pollution in terrestrial and aquatic ecosystems in global agricultural areas poses an environmental concern. However, there is limited understanding of hydrogeological controls on the behavior of nitrogen compounds in unsaturated zones. Here, Self-Organizing Map and multiple isotopes approaches (δ15N-NO3-, δ18O-NO3-, and δ15N-NH4+) were used to investigate the sources, transport and transformation of N-species in the unsaturated zone in an alluvial-lacustrine plain, southeast China. The results revealed significant spatial heterogeneity in soil texture and physicochemical properties with vertically four soil geochemical and N-species zones (high NO₃⁻, high Fe(Ⅲ) and Mn, low ionic, and high NH₄⁺ contents), dominated by agricultural input, soil minerals and redox conditions. Nitrate in the unsaturated zone primarily originated from fertilizers and soil nitrogen. Excess nitrogen fertilizers infiltrated into the soil, where mineralization, nitrification, and dissimilatory nitrate reduction to ammonium (DNRA) acted as key mechanisms for nitrogen transformation. The change in the depositional environment from the plain to the lakeshore area led to nitrification gradual decrease and DNRA significant increase. Consequently, a conceptual model of reactive transport of N-species, influenced by hydrogeologic conditions and biogeochemical processes, was proposed. This study provides a new insight into the nitrate behaviors in unsaturated zone and contributes to groundwater nitrogen management strategies.
Collapse
Affiliation(s)
- Yuqin Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Erping Bi
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hanxiao Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Minyue Dou
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Chenyu Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xujuan Huang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
2
|
Xu G, Liu X, Han J, Shao K, Yang H, Yuan J, Dou J. Insights into the enhanced uranium reduction efficiency through extracellular polymeric substances from Desulfovibrio vulgaris UR1 induced by mediating materials. BIORESOURCE TECHNOLOGY 2025; 421:132143. [PMID: 39892586 DOI: 10.1016/j.biortech.2025.132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/19/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Understanding the role of extracellular polymeric substances (EPS) in the microbial reduction of uranium accelerated by mediating materials is crucial for enhancing the bioremediation of uranium-contaminated wastewater. In this study, biochar- and magnetite-loaded Desulfovibrio vulgaris UR1 exhibited significantly higher uranium reduction efficiency, with increases of 1.52 and 1.44 times respectively within one day. After loading with mediating materials, the charge transfer resistance of EPS was reduced, facilitating the extracellular electron transfer process. The increase of redox components, such as aromatic compounds and flavins, in EPS explained the enhanced extracellular electron transfer capacity. Moreover, the higher α-helix content in extracellular proteins could promote electron hopping. Proteomics analysis showed that extracellular proteins involved in iron-sulfur cluster binding, oxidoreductase activity, and electron transfer were significantly up-regulated, which facilitated the rapid microbial reduction of uranium. These findings provide valuable insights into the in-depth development of bioremediation technology for uranium-contaminated wastewater.
Collapse
Affiliation(s)
- Guangming Xu
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Xinyao Liu
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Juncheng Han
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Kexin Shao
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Haotian Yang
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Jing Yuan
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education On Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
3
|
Cheng S, Chen H, Li H, Li L, Lu Y, Jin B, He X. Fast preparing bioelectrode with conductive bioink for nitrite detection in high sensitivity and stability. ENVIRONMENTAL RESEARCH 2024; 263:120093. [PMID: 39368596 DOI: 10.1016/j.envres.2024.120093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Electrochemically active biofilms (EABs) for nitrite detection have high specificity, rapid response, operational simplicity, and extended lifespan advantages. However, their scale production remains challenging due to time-consuming and uniform preparation. In this study, a novel approach was proposed to fast fabricate an EAB biosensor with a synthetic biofilm electrode for nitrite detection. The biofilm electrode was prepared by coating bioinks with varying conductive materials onto the surface of the graphite sheets, showing short incubation time and good reproducibility. Incorporating conductive materials into the bioinks remarkably enhanced the maximum voltage of the first cycle of bioelectrode incubation, with an increase of up to 633% for carbon nanofibers. The nitrite reduction current was amplified by a factor of 2.97, due to the enhancement of extracellular electron transfer (EET). The developed nitrite biosensor exhibited a detection range of 0.1-15 mg NO2--N L-1, with a high sensitivity of 610.8 μA mM-1 cm-2, and a stabilization operation time of at least 280 cycles. This study not only provided valuable insights into conductive materials for synthetic biofilms but also presented a practical approach for the rapid preparation, scale production, and optimization of highly sensitive and stable EAB sensors.
Collapse
Affiliation(s)
- Shaoan Cheng
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| | - Hua Chen
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Huahua Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Longxin Li
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yi Lu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Beichen Jin
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Xinyuan He
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
4
|
Niu J, Wan Y, Ma Z, Dong W, Su X, Zhai Y, Shen X, Yi X. Comparative impact analysis of nitrate reduction by typical components of natural organic compounds in magnetite-bearing riparian zones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117298. [PMID: 39536558 DOI: 10.1016/j.ecoenv.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
As the key interface, the nitrate removal capacity of riparian zones is receiving close attention. Although naturally occurring organic compounds in this environment play a pivotal role in shaping microbial communities and influencing the nitrate removal capacity, the relevant research is inadequate. Given the complexity of riparian environments, in this study, we added representative natural organic matter (fulvic acid, butyric acid, naphthalene, starch, and sodium bicarbonate) as carbon conditions and incorporated magnetite to simulate riparian zone components. The study investigated the nitrate degradation efficiency and microbial responses under different natural carbon conditions in real iron-containing environments. Butyric acid exhibited the most efficient nitrate reduction, followed in descending order by naphthalene, starch, sodium bicarbonate, and humic acid. However, this did not imply that butyric acid efficiently removed nitrogen; instead, the nitrogen would circulate in the environment in the form of ammonium. Denitrification and DNRA were the primary drivers of nitrate reduction in each system, while naphthalene and humic acid systems also exhibited nitrification and mineralization. Nitrogen-fixing bacteria represent a unique microbial community in the butyrate system. Further, the synergistic degradation of naphthalene and nitrate demonstrated significant potential applications. High-throughput sequencing revealed that carbon conditions exerted selective pressure on microorganisms, driving Fe (Ⅱ)/Fe (Ⅲ) transformation by shaping the microbial community structure and influencing the nitrogen cycling process.
Collapse
Affiliation(s)
- Jia Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuyu Wan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Zhe Ma
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weihong Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaosi Su
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaofang Shen
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaokun Yi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
5
|
Li Y, Zhang M, Li L, Gao W, Huang F, Lai G, Jia L, Liu R. Nutrient removal efficacy and microbial dynamics in constructed wetlands using Fe(III)-mineral substrates for low carbon-nitrogen ratio sewage treatment. Bioprocess Biosyst Eng 2024; 47:1707-1722. [PMID: 39023746 DOI: 10.1007/s00449-024-03063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
This study evaluated the roles of two common sources of Fe(III)-minerals-volcanic rock (VR) and synthetic banded iron formations from waste iron tailings (BIF-W)-in vertical flow-constructed wetlands (VFCWs). The evaluation was conducted in the absence of critical environmental factors, including Fe(II), Fe(III), and soil organic matter (SOM), using metagenomic analysis and integrated correlation networks to predict nitrogen removal pathways. Our findings revealed that Fe(III)-minerals enhanced metabolic activities and cellular processes related to carbohydrate decomposition, thereby increasing the average COD removal rates by 10.7% for VR and 5.90% for BIF-W. Notably, VR improved nitrogen removal by 1.70% and 5.40% compared to BIF-W and the control, respectively. Fe(III)-mineral amendment in bioreactors also improved the retention of denitrification and nitrification bacteria (phylum Proteobacteria) and anammox bacteria (phylum Planctomycetes), with increases of 3.60% and 3.20% using VR compared to BIF-W. Metagenomic functional prediction indicated that the nitrogen removal mechanisms in VFCWs with low C/N ratios involve simultaneous partial nitrification, ANAMMOX, and denitrification (SNAD). Network-based analyses and correlation pathways further suggest that the advantages of Fe(III)-minerals are manifested in the enhancement of denitrification microorganisms. Microbial communities may be activated by the functional dissolution of Fe(III)-minerals, which improves the stability of SOM or the conversion of Fe(III)/Fe(II). This study provides new insights into the functional roles of Fe(III)-minerals in VFCWs at the microbial community level, and provides a foundation for developing Fe-based SNAD enhancement technologies.
Collapse
Affiliation(s)
- Yu Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Mengyue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Liang Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Wenyuan Gao
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Fei Huang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, People's Republic of China.
| | - Guanming Lai
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, People's Republic of China
| | - Liping Jia
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, People's Republic of China
| | - Rui Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, People's Republic of China
| |
Collapse
|
6
|
Wu P, Yang F, Lian J, Chen B, Wang Y, Meng G, Shen M, Wu H. Elucidating distinct roles of chemical reduction and autotrophic denitrification driven by three iron-based materials in nitrate removal from low carbon-to-nitrogen ratio wastewater. CHEMOSPHERE 2024; 361:142470. [PMID: 38810802 DOI: 10.1016/j.chemosphere.2024.142470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Effective nitrate removal is a key challenge when treating low carbon-to-nitrogen ratio wastewater. How to select an effective inorganic electron donor to improve the autotrophic denitrification of nitrate nitrogen has become an area of intense research. In this study, the nitrate removal mechanism of three iron-based materials in the presence and absence of microorganisms was investigated with Fe2+/Fe0 as an electron donor and nitrate as an electron acceptor, and the relationship between the iron materials and denitrifying microorganisms was explored. The results indicated that the nitrogen removal efficiency of each iron-based material coupled sludge systems was higher than that of iron-based material. Furthermore, compared with the sponge iron coupled sludge system (60.6%-70.4%) and magnetite coupled sludge (56.1%-65.3%), the pyrite coupled sludge system had the highest removal efficiency of TN, and the removal efficiency increased from 62.5% to 82.1% with time. The test results of scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction indicated that iron-based materials promoted the attachment of microorganisms and the chemical reduction of nitrate in three iron-based material coupled sludge systems. Furthermore, the pyrite coupled sludge system had the highest nitrite reductase activity and can induce microorganisms to secrete more extracellular polymer substances. Combined with high-throughput sequencing and PICRUSt2 functional predictive analysis software, the total relative abundance of the dominant bacterial in pyrite coupled sludge system was the highest (72.06%) compared with the other iron-based material systems, and the abundance of Blastocatellaceae was relatively high. Overall, these results suggest that the pyrite coupled sludge system was more conducive to long-term stable nitrate removal.
Collapse
Affiliation(s)
- Pei Wu
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, PR China.
| | - Jianjun Lian
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Bo Chen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Yulai Wang
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Guanhua Meng
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Maocai Shen
- College of Energy and Environment, Anhui University of Technology, Anhui, 243002, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
7
|
Niu J, Wan Y, Ma Z, Wang Z, Dong W, Su X, Shen X, Zhai Y. Driving mechanism of different nutrient conditions on microbial mediated nitrate reduction in magnetite-present river infiltration zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171963. [PMID: 38537835 DOI: 10.1016/j.scitotenv.2024.171963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
Significant research is focused on the ability of riparian zones to reduce groundwater nitrate contamination. Owing to the extremely high redox activity of nitrate, naturally existing electron donors, such as organic matter and iron minerals, are crucial in facilitating nitrate reduction in the riparian zone. Here, we examined the coexistence of magnetite, an iron mineral, and nitrate, a frequently observed coexisting system in sediments, to investigate nitrate reduction features at various C/N ratios and evaluate the response of microbial communities to these settings. Additionally, we aimed to use this information as a foundation for examining the effect of nutritional conditions on the nitrate reduction process in magnetite-present environments. These results emphasise the significance of organic matter in enabling dissimilatory nitrate reduction to ammonium (DNRA) and enhancing the connection between nitrate reduction and iron in sedimentary environments. In the later phases of nitrate reduction, nitrogen fixation was the prevailing process in low-carbon environments, whereas high-carbon environments tended to facilitate the breakdown of organic nitrogen. High-throughput sequencing analysis revealed a robust association between C/N ratios and alterations in microbial community composition, providing insights into notable modifications in essential functioning microorganisms. The nitrogen-fixing bacterium Ralstonia is more abundant in ecosystems with scarce organic matter. In contrast, in settings rich in organic matter, microorganisms, such as Acinetobacter and Clostridia, which may produce ammonia, play crucial roles. Moreover, the population of iron bacteria grows in such an environment. Hence, this study proposes that C/N ratios can influence Fe(II)/Fe(III) conversions and simultaneously affect the process of nitrate reduction by shaping the composition of specific microbial communities.
Collapse
Affiliation(s)
- Jia Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuyu Wan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Zhe Ma
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Zhen Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weihong Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaosi Su
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaofang Shen
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
8
|
Li Z, Feng Q, Zhang F, Zhao F, Lu M, Qin F, Guo R. Simultaneous denitrification enhancement and sludge reduction based on novel suspended carrier modified using activated carbon and magnetite at low carbon/nitrogen ratio. BIORESOURCE TECHNOLOGY 2024; 395:130360. [PMID: 38266786 DOI: 10.1016/j.biortech.2024.130360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
A novel suspended carrier was prepared by sticking activated carbon (AC) and magnetite (Fe3O4) onto polypropylene slices. Although this carrier could not reverse the decreased denitrification capacity trends under anoxic conditions at an influent carbon/nitrogen (C/N) ratio of 2, it enhanced denitrification by stimulating sludge reduction and accelerating electron transfer to certain extent. The carrier stuck by mixed AC/Fe3O4 exhibited better performance in terms of sludge reduction, extracellular polymeric substances (EPS) secretion, and denitrification than that merely stuck by AC and Fe3O4 at an influent C/N ratio of 2. The carrier stuck by mixed AC/Fe3O4 increased the total nitrogen removal efficiency by 24.6 % ± 12.5 % in a 72-h denitrification batch experiment compared to the common polypropylene carrier. Moreover, the carrier improved EPS secretion and nitrogen metabolism and promoted the growth of Trichococcus and some denitrifying genera. This study provides a reference for the treatment of low C/N ratio sewage.
Collapse
Affiliation(s)
- Zhiwei Li
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China.
| | - Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China
| |
Collapse
|
9
|
Su JF, Ahmad MS, Kuan WF, Chen CL, Rasheed T. Electrochemical nitrate reduction over bimetallic Pd-Sn nanocatalysts with tunable selectivity toward benign nitrogen. CHEMOSPHERE 2024; 350:141182. [PMID: 38211795 DOI: 10.1016/j.chemosphere.2024.141182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Nitrate is recognized as a highly impactful water contaminant among various pollutants in water. To address the ever-growing demand for water purification, this work investigates the bimetallic palladium (Pd) and tin (Sn) catalysts, which are electrochemically deposited on stainless steel mesh support (Pd-Sn/SS) for the selective conversion of harmful nitrate (NO3-) into benign nitrogen (N2) gas. Results indicate that the bimetallic composition in Pd-Sn/SS electrodes substantially influenced the reaction route for nitrate reduction as well as the performance of nitrate transformation and nitrogen selectivity. It is found that the electrode prepared from Pd:Sn = 1:1 (mole ratio) demonstrates an outstanding nitrate conversion of 95%, nitrogen selectivity of 88%, and nitrogen yield of 82%, which outperform many reported values in the literature. The electrochemically synthesized bimetallic electrode proposed herein enables a new insight for promoting the reactivity and selectivity of nitrate reduction in water.
Collapse
Affiliation(s)
- Jenn Fang Su
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, 23600, Taiwan; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Muhammad Sheraz Ahmad
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Wei-Fan Kuan
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, 23600, Taiwan; Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan; College of Environment and Resources, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Ching-Lung Chen
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan, 33302, Taiwan; Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
10
|
Ahn Y, Park S, Kim HH, Basak B, Yun ST, Jeon BH, Choi J. Field evaluation of carbon injection method for in-situ biological denitrification in groundwater using geochemical and metataxonomic analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122719. [PMID: 37866751 DOI: 10.1016/j.envpol.2023.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023]
Abstract
This study focuses on the bioremediation of nitrate-contaminated groundwater, which has become a significant environmental problem due to the increasing usage of fertilizers and sewage disposal. The nitrate reduction efficiencies of biological denitrification by injection of carbon source in a pilot-scale treatment system setup were investigated at a groundwater contamination site. The field test was conducted using acetate as a carbon source for 22 days to assess the nitrate reduction efficiencies of in-situ treatment. Geochemical parameters and microbial community analysis using next-generation sequencing were performed before and after carbon source injection. After 12 h of reaction time, nitrate concentration decreased from 31.6 to 4.2 mg-N/L at PC-2, and then remained stable at 3.9 mg-N/L. The nitrate reduction rate when acetate was injected was 29.0 mg-N/L/day. Aquabacterium commune, pseudomonas brassicacearum, dechloromonas denitrificans, and Massilia FAOS were dominant species after acetate injection. Predictive metabolic pathway analysis indicated that nitrate reduction metabolisms during injection of acetate were denitrification and assimilatory nitrate reduction to ammonium. The evaluated hazard quotient of nitrate-contaminated groundwater significantly decreased after acetate injection (non-carcinogenic risk decreased from 1.176 to 0.134 for children). This research could provide fundamental information for decision-makers in nitrate-contaminated groundwater quality protection and management.
Collapse
Affiliation(s)
- Yongtae Ahn
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, Republic of Korea; Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Sanghyun Park
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea; Green School, Korea University, Seoul, 02841, Republic of Korea
| | - Hoo Hugo Kim
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, Republic of Korea; Center for Water Cycle Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Bikram Basak
- Center for Creative Convergence Education, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seong-Taek Yun
- Green School, Korea University, Seoul, 02841, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jaeyoung Choi
- Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Hwarang-ro 14, Seongbuk-gu, Seoul 02792, Republic of Korea.
| |
Collapse
|
11
|
Wang D, Li P, Mu D, Liu W, Chen Y, Fida M. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167481. [PMID: 37788773 DOI: 10.1016/j.scitotenv.2023.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Clarifying the biogeochemical mechanism of nitrate (NO3-) in the vadose zone-groundwater system, particularly in agricultural contexts, is crucial for mitigating groundwater NO3- pollution. However, comprehensive studies on the impacts of changes in chemical indicators and microbial communities on NO3- are still lacking. This paper aims to address this gap by employing hydrogeochemistry, stable isotopes, and microbial techniques to assess the NO3- biogeochemical processes in the vadose zone-groundwater system. The findings suggested that NO3- in upper soil layers was primarily influenced by plant root absorption, assimilation, and nitrification processes. The oxygen contents gradually decreased with the nitrification process, resulting in the occurrence of the denitrification. However, denitrification predominantly occurred in the 60-80 cm soil layer in the study area. The limited thickness of the denitrification layer results in less NO3- consumption, leading to increased NO3- leaching into groundwater. Hydrochemical and isotopic characteristics further indicated that groundwater NO3- concentrations were mainly controlled by nitrification, followed by denitrification and mixing processes. The 16S rRNA sequencing analysis revealed great influences of soil sampling depths and groundwater NO3- concentrations on the microbial community structure. Additionally, the PICRUSt2-based prediction results demonstrated a stronger potential for dissimilatory reduction of NO3- to ammonium (DNRA) in both soil and groundwater compared to the other processes, potentially due to the widespread presence of the nrfH functional genes. However, the chemical indicators and isotopes used in this study did not support the occurrence of DNRA process in the vadose zone-groundwater system. This finding highlights the importance of an integrated approach combining microbiological, isotopic, and hydrogeochemical data to comprehensive understanding biogeochemical processes. The study developed a conceptual model elucidating the NO3- biogeochemical processes in the vadose zone-groundwater system within an agricultural area, contributing to enhanced comprehension and advancement of sustainable management practices for groundwater nitrogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Weichao Liu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yinfu Chen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|
12
|
Zhang F, Chen Y, Zhao F, Yuan P, Lu M, Qin K, Qin F, Fu S, Guo R, Feng Q. Use of magnetic powder to effectively improve the denitrification employing the activated sludge fermentation liquid as carbon source. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119049. [PMID: 37837762 DOI: 10.1016/j.jenvman.2023.119049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Nitrogen removal is often limited in municipal wastewater treatment due to the lack of sufficient carbon source. Utilizing volatile fatty acids (VFAs) from waste activated sludge (WAS) fermentation broth as a carbon source is an ideal alternative to reduce the cost for wastewater treatment plants (WWTPs) and improve denitrification efficiency simultaneously. In this study, an anaerobic system was applied for simultaneous denitrification and WAS fermentation and the addition of magnetic microparticles (MMP) were confirmed to enhance both denitrification and WAS fermentation. Firstly, the addition of MMP increased the nitrate reduction rate by over 25.36% and improve the production of N2. Additionally, the equivalent chemical oxygen demand (COD) of the detected VFAs increased by 7.06%-14.53%, suggesting that MMP promoted the WAS fermentation. The electron transfer efficiency of denitrifies was accelerated by MMP via electron-transporting system (ETS) activity and cyclic voltammetry (CV) experiments, which might result in the promotional denitrification and WAS fermentation performance. Furthermore, the high-throughput sequencing displayed that, MMP enriched key microbes capable of degrading the complex organics (Chloroflexi, Synergistota and Spirochaetota) as well as the typical denitrifies (Bacteroidetes_vadinHA17 and Denitratisoma). Therefore, this study provides a novel strategy to realize simultaneous WAS utilization and denitrification for WWTPs.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Ying Chen
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Feng Zhao
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Peiyao Yuan
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Mingyi Lu
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Kang Qin
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Fan Qin
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Shanfei Fu
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China
| | - Rongbo Guo
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
| | - Quan Feng
- Shandong Engineering Research Center for Biogas, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China; Shandong Energy Institute, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao, 266101, PR China.
| |
Collapse
|
13
|
Qiao Z, Sheng Y, Wang G, Chen X, Liao F, Mao H, Zhang H, He J, Liu Y, Lin Y, Yang Y. Deterministic factors modulating assembly of groundwater microbial community in a nitrogen-contaminated and hydraulically-connected river-lake-floodplain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119210. [PMID: 37801950 DOI: 10.1016/j.jenvman.2023.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|
14
|
Wang H, Huang J, Cai J, Wei Y, Cao A, Liu B, Lu S. In Situ/Operando Methods for Understanding Electrocatalytic Nitrate Reduction Reaction. SMALL METHODS 2023:e2300169. [PMID: 37035954 DOI: 10.1002/smtd.202300169] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/09/2023] [Indexed: 06/19/2023]
Abstract
With the development of industrial and agricultural, a large amount of nitrate is produced, which not only disrupts the natural nitrogen cycle, but also endangers public health. Among the commonly used nitrate treatment techniques, the electrochemical nitrate reduction reaction (eNRR) has attracted extensive attention due to its mild conditions, pollution-free nature, and other advantages. An in-depth understanding of the eNRR mechanism is the prerequisite for designing highly efficient electrocatalysts. However, some traditional characterization tools cannot comprehensively and deeply study the reaction process. It is necessary to develop in situ and operando techniques to reveal the reaction mechanism at the time-resolved and atomic level. This review discusses the eNRR mechanism and summarizes the possible in situ techniques used in eNRR. A detailed introduction of various in situ techniques and their help in understanding the reaction mechanism is provided. Finally, the current challenges and future opportunities in this research area are discussed and highlighted.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingjing Huang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinmeng Cai
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yingying Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Cao
- Department of Physics, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|