1
|
Zocher AL, Ciesielski TM, Piarulli S, Farkas J, Bau M. Tracing emerging contaminants from the Baltic Sea and North Sea in fjord waters in southern Norway with rare earth elements as far-field tracers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126124. [PMID: 40157483 DOI: 10.1016/j.envpol.2025.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Knowledge of geogenic and anthropogenic rare earth elements and yttrium (REY) in fjords in Norway and elsewhere is still limited despite the importance of fjords for biodiversity and economy and the known ecotoxicity of the REY. We provide complete sets of REY data for fjord waters and a river in southern Norway and for several stations along the coasts of Denmark and Sweden, which characterise Baltic Sea outflow water. Shallow fjord waters show high REY concentrations and shale-normalised (SN) patterns that resemble those of the river water input. Deeper waters show lower concentrations, seawater-like REYSN patterns, and the PrSN/TbSN ratios (≥0.5) typical of fjord waters. Some of the samples show elevated Gd/Tb ratios and distinct positive Gd anomalies, revealing the presence of anthropogenic Gd originating from constrast agents used in magnetic resonance imaging (MRI). We emphasise that all water samples from the Baltic Sea outflow taken over a twelve months period show large positive Gd anomalies, suggesting a permanent flux of anthropogenic Gd from the Baltic Sea into the Skagerrak. Combined with literature data, our results suggest that the anthropogenic Gd in the fjords of southern Norway is not derived from local sources. It rather originates from the Baltic Sea and southern North Sea and is transported northward by currents along the coasts of Sweden, Denmark and Germany. If application of Gd-based contrast agents in MRI continues to increase, this signal will get stronger in the future and be transported even further north. Overall, our data for geogenic REY and anthropogenic Gd in fjord and bay waters from southern Norway and in the Baltic Sea outflow show that local hydrography exerts an important control on the concentration and distribution of trace elements which may be (micro)nutrients and/or (micro)pollutants in fjords. This needs to be considered in environmental impact studies.
Collapse
Affiliation(s)
- Anna-Lena Zocher
- Critical Metals for Enabling Technologies - CritMET, School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany.
| | - Tomasz Maciej Ciesielski
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, 7491, Trondheim, Norway; Department of Arctic Technology, The University Centre in Svalbard (UNIS), P.O. Box 156, 9171, Longyearbyen, Norway
| | | | - Julia Farkas
- SINTEF Ocean, Brattørkaia 17C, 7010, Trondheim, Norway
| | - Michael Bau
- Critical Metals for Enabling Technologies - CritMET, School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
2
|
Miao X, Wei X, Zhao X, Hao Y, Bao W. The Bioaccumulation, Fractionation and Health Risk of Rare Earth Elements in Wild Fish of Guangzhou City, China. Animals (Basel) 2024; 14:3567. [PMID: 39765471 PMCID: PMC11672526 DOI: 10.3390/ani14243567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
In this study, the total content of REEs ranged from 1.32 to 67.74 μg/kg, with a predominant presence of light REEs. The ΔEu and ΔCe values, which exceeded and approached 1, respectively, indicated positive Eu anomalies and low Ce anomalies. Wild fish were categorized into high-, medium-, and low-REEs-bioaccumulation groups using cluster analysis. Higher LRs/HRs and ΔEu values, coupled with lower ΔCe values, in fish from the high-bioaccumulation group suggested that increased bioaccumulation mitigated fractionation. Omnivorous fish with higher REEs levels and lower LRs/HRs indicated broader feeding sources may enhance REE bioaccumulation and diminish fractionation. Elevated REEs concentrations and LRs/HRs in demersal fish highlighted a preferential accumulation of light REEs in the benthic environment. Smaller fish with higher REEs levels but lower LRs/HRs were likely associated with complex feeding sources. Regression analysis revealed that fish with lengths and weights of less than 18 cm and 130 g, respectively, were more susceptible to REEs bioaccumulation. Despite higher ADI values indicating a greater risk for children and Pelteobagrus fulvidraco, all ADI values within 70 μg/(kg·d) suggested that fish consumption poses no risk. This study confirmed that the fractionation of REEs in fish can be used to trace their bioconversion.
Collapse
Affiliation(s)
- Xiongyi Miao
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (X.M.); (X.W.); (X.Z.)
- Yunan Provincial Bureau of Geology and Mineral Exploration and Development Center Laboratory, Kunming & Ministry of Natural and Resources Kunming Mineral Resource Supervision Inspecting Center, Kunming 650217, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Xueqin Wei
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (X.M.); (X.W.); (X.Z.)
| | - Xiqian Zhao
- School of Geography and Environmental Science & School of Karst Science, Guizhou Normal University, Guiyang 550001, China; (X.M.); (X.W.); (X.Z.)
| | - Yupei Hao
- Department of Modern Engineering, Anshun Technical College, Anshun 561000, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Wei Bao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Liu H, Guo H, Pourret O, Wang Z. Anthropogenic impact of rare earth elements on groundwater and surface water in the watershed of the largest freshwater lake in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175063. [PMID: 39067591 DOI: 10.1016/j.scitotenv.2024.175063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Limited knowledge exists regarding the potential risks associated with anthropogenic release of rare earth elements (REEs) in the environment. This study aimed to investigate REE signatures in the watershed Poyang Lake, the largest freshwater lake in China. Samples of surface water, wastewater, and groundwater were collected from five rivers discharging into the lake. Results revealed wastewater from wastewater treatment plants contained total REE concentrations from 231 to 904 μg/L, exceeding those found in surface water (0.4 to 1.3 μg/L) and groundwater (0.5 to 416 μg/L). Samples with elevated REE were found in Ca-Mg-Cl/SO4 type waters and exhibited an 18OD deviation from local meteoric water line. Wastewater exhibited a higher positive Gd anomaly compared to surface water and groundwater, attributed to anthropogenic input of Gd (Gdanth). The determined Gdanth concentration ranged from 0.04 to 0.21 μg/L, and from 0.06 to 0.37 μg/L, accounting for 4 % to 21 % and 49 % to 84 % of total Gd concentrations in groundwater and surface water, respectively. Gdanth concentration in wastewater (0.19 to 0.43 μg/L) remained constant in effluent after wastewater treatment. Surface water displayed relatively complex normalized REE patterns influenced by anthropogenic activities and natural processes (weathering and complexation), while groundwater exhibited heavy REEs enrichment, due to carbonate solution complexation. Additionally, Gdanth concentration showed a positive correlation with ΣREE, Pb, Ni, and Co concentrations in groundwater, indicating a good pollution tracing potential. Health risk assessment using the hazard quotient (HQ) suggested higher HQGd values in groundwater compared to surface water. Residents in the eastern part of Poyang Lake were found to face higher risks associated with Gd in groundwater compared to the western part, with infants and children at greater risk than adult males and females. These findings offer valuable insights into environmental behavior and health risks of REEs in aquatic systems impacted by human activities.
Collapse
Affiliation(s)
- Haiyan Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution and School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China.
| | - Huaming Guo
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | | | - Zhen Wang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, PR China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution and School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, PR China
| |
Collapse
|
4
|
Traore M, Zhang M, Gong A, Wang Y, Liu Y, Qiu L, Zhang Y, You Y, Bai Y, Gao G, Zhao W, Traore M, Hassan MA. Assessment of rare earth elements variations in five water systems in Beijing: Distribution, geochemical features, and fractionation patterns. ENVIRONMENTAL RESEARCH 2024; 252:118842. [PMID: 38583656 DOI: 10.1016/j.envres.2024.118842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
This study investigates the distribution of rare earth elements (REEs) within the Beijing water system, specifically examining the Yongding, Chaobai, Beiyun, Jiyun, and Daqing rivers. Results indicate that the Beiyun River exhibits the highest REE concentrations, ranging from 35.95 to 59.78 μg/mL, while the Daqing River shows the lowest concentrations, ranging from 15.79 to 17.48 μg/mL. LREEs (La to Nd) predominate with a total concentration of 23.501 μg/mL, leading to a notable LREE/HREE ratio of 7.901. Positive Ce anomalies (0.70-1.11) and strong positive Eu anomalies (1.38-2.49) were observed. The study suggests that the Beijing water system's REEs may originate from geological and anthropogenic sources, such as mining and industrial activities in neighboring regions, including Inner Mongolia. These findings underscore the importance of ongoing monitoring and effective water management strategies to address REE-related environmental concerns.
Collapse
Affiliation(s)
- Mory Traore
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Zhang
- Baotou Water Quality Detection Technology Co., Ltd, Baotou 014000, China
| | - Aijun Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yiwen Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Lina Qiu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuli Zhang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Yueyi You
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhen Bai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Ge Gao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Weiyu Zhao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Mariame Traore
- Guinean Agency of Environmental Evaluation (AGEE), Ministry of Environment and Durable Development, Conakry 761, Guinea
| | - Mahamat Abderamane Hassan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
El Ayari T, Ben Ahmed R, Hammemi Z, Kouki A, Chelb E, Nechi S, Trigui El Menif N. Effects of rare earth element samarium doped zinc oxide nanoparticles on Mytilus galloprovincialis (Lamarck, 1819): Filtration rates and histopathology. J Trace Elem Med Biol 2024; 81:127349. [PMID: 38006813 DOI: 10.1016/j.jtemb.2023.127349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Doping was reported to improve the photo catalytic performance, antioxidant, antibacterial and other biological properties of nanoparticles. While, improving the nanoparticle properties, doping could change toxicity profile to living organism. Hence, the aim of this work was to assess the effects of samarium doped zinc oxide nanoparticles (Sm doped ZnO NPs) on the edible mussel Mytilus galloprovincialis. METHODS Sm doped ZnO nanoparticles were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) techniques. 156 mussels were exposed during 7 days to a low, intermediate and high concentration of Sm doped ZnO NPs (0.5, 1 and 1.5 mg/L, respectively). The filtration rates were assessed after 1 and 2 h. Histopathological alterations were determined in gills, digestive glands and gonads using a quantitative analysis. RESULTS The filtration rates decreased in all individuals exposed to Sm doped ZnO NPs, a significant decrease was noted with the low and intermediate concentration (0.5 and 1 mg/L) of Sm doped ZnO NPs after 1 and 2 h, respectively. The histopathological index (Ih) estimated for gills, digestive glands and gonads showed differences depending on the organ and the nanoparticle concentration. The highest Ih were reported for digestive glands and female gonads exposed to the intermediate concentration (1 mg/L) of Sm doped ZnO NPs. As for gills and male gonads, the highest Ih were noted with the high concentration (1.5 mg/L) of Sm doped ZnO NPs. CONCLUSION Results from this study revealed the toxicity of Sm doped ZnO NPs in Mytilus galloprovincialis gills, digestive glands and gonads. The toxicity induced by this nanoparticle varies depending on the organ and the concentration.
Collapse
Affiliation(s)
- Tahani El Ayari
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia.
| | - Raja Ben Ahmed
- University of El Manar, Faculty of Sciences of Tunis, Department of Biology, Ecology, Biology and physiology of Aquatic Organisms Laboratory, Tunis, Tunisia
| | - Zaineb Hammemi
- Laboratoire des composes hétāéro-organiques et des matériaux nanostructurés, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Abdessalem Kouki
- Laboratoire de Microscopie électronique et de Microanalyse, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisia
| | - Emna Chelb
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Salwa Nechi
- Anatomy and Cytology Service, CHU Mohamed Taher Maamouri Hospital, University Tunis El Manar, 2092 Tunis, Tunisia
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerte, Laboratory of Environment Bio-Monitoring, Group of Fundamental and Applied Malacology (LEB/GFAM), University of Carthage, 7021 Zarzouna, Bizerte, Tunisia
| |
Collapse
|
6
|
Li D, Jiang C, Jiang C, Liu F, Zhu Q. Geochemical characteristics and migration patterns of rare earth elements in coal mining subsidence lakes under the influence of multiple factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166668. [PMID: 37660822 DOI: 10.1016/j.scitotenv.2023.166668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
Mining activities cause surface subsidence and the formation of subsidence lakes, which dynamically change with the continuous coal mining activities. Under the combined influence of various human activities such as agriculture, aquaculture, and floating photovoltaic (FPV), the lake environment undergoes continuous changes, thereby altering the geochemical characteristics of rare earth elements (REEs) in the sediment. This study focused on the subsidence lakes in the Huainan coalfield in eastern China to examine the REEs content in the sediment, elucidated the temporal variations and geochemical characteristics of REEs distribution, explored the main controlling factors of REEs in the sediment, and revealed the migration and transformation behavior of REEs during dynamic subsidence processes. The study revealed that the migration pattern of REEs in the sediment was closely related to the duration of subsidence. The average content of REEs in lake sediments with subsidence duration <5 years increased from 219 μg·g-1 to 248 μg·g-1 compared to the soil, showing an enrichment model primarily driven by rainwater runoff, groundwater input retention, and mineral dissolution. With further subsidence, the processes of reduction dissolution of Fe-Mn oxides/hydroxides, organic colloid adsorption, and hydraulic disturbance gradually replaced the aforementioned enrichment behavior as the main migration pathways, resulting in a decrease in the average REEs content in the sediment to 179 μg·g-1 for subsidence durations exceeding 10 years. There was no strong correlation between REEs fractionation and subsidence duration. Artificial activities, such as FPV, are important factors causing Cerium and Erbium anomalies in some subsidence lake sediments. This study was not only of significant importance for understanding the migration, distribution, and environmental behavior of pollutants in aquatic environments under the interference of human activities but also provided a solid theoretical foundation for the future management of coal mining subsidence lakes.
Collapse
Affiliation(s)
- Desheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Chunlu Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China; School of Resources and Geoscience, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China.
| | - Chenghong Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Feng Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| | - Qiyu Zhu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, Anhui, China
| |
Collapse
|
7
|
Traore M, He Y, Wang Y, Gong A, Qiu L, Bai Y, Liu Y, Zhang M, Chen Y, Huang X. Research progress on the content and distribution of rare earth elements in rivers and lakes in China. MARINE POLLUTION BULLETIN 2023; 191:114916. [PMID: 37058831 DOI: 10.1016/j.marpolbul.2023.114916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 05/13/2023]
Abstract
This study reviewed the content and distribution of rare earth elements (REE) in rivers and lakes in China based on the online literature. The sequence distribution of REE presented the decreasing trends in the order: of Ce > La > Nd > Pr > Sm > Gb > Dy>Er > Yb > Eu > Lu > Ho > Tb > Tm in rivers water. Pearl River and the Jiulong River constitute a significant sediments REE reservoir with an average value mean of 229.6 mg/kg and 266.86 mg/kg, respectively; both have higher concentrations than the global river average (174.8 mg/kg) and higher than the local soil background (Chinese soil background). The Liaohe River is one of China's most polluted rivers, with REE distribution ranging from 106.61 to 174.71 g/L (average 144.59 g/L in water). The total concentrations of dissolved REE in rivers near REE mining areas in China are higher than in other rivers. Increasing anthropogenic inputs to natural systems may permanently alter the natural signatures of REE. The distribution characteristics of REE in Chinese lakes (sediments) varied greatly, and the mean enrichment factor (EF) was sorted as follows: Ce > La > Nd > Pr > Sm > Gd > Dy>Er > Yb > Eu > Ho > Tb > Tm > Lu, where Ce was the most abundant followed by La, Nd, and Pr, and these four elements account for 85.39 % of the total concentration of REE. The REE in the sediments obtained from Poyang Lake and Dongting Lake had an average concentration respectively of 254.0 μg/g and 197.95 μg/g; both are considerably higher than the average upper continental crust (146.4 μg/g) and higher than in other lakes in China and around the world. The distribution and accumulation of LREE in most lake sediments result from the joint action of human activities and natural processes. It concluded that mining tailings were the primary cause of REE pollution in sediments, and industrial and agricultural activities are mainly responsible for water contamination.
Collapse
Affiliation(s)
- Mory Traore
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yafei He
- Tianjin College, University of Science and Technology Beijing, Tianjin 301830, China
| | - Yiwen Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Aijun Gong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lina Qiu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuzhen Bai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Zhang
- Baotou Water Quality Detection Technology Co., Ltd, Baotou 014000, China
| | - Yifan Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Xinyu Huang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|