1
|
Hu S, Liu R, Huang C, Xie X, Wu Y, Luo Z. Impact of the Madden-Julian oscillation on boreal autumn surface ozone in Guangdong Province, China. ENVIRONMENTAL RESEARCH 2025; 270:121009. [PMID: 39892809 DOI: 10.1016/j.envres.2025.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
This study uses the Real-time Multivariate Madden-Julian Oscillation (MJO) index (RMM), along with meteorological data from NCEP/NCAR reanalysis datasets, to conduct a synthetic analysis of the MJO and surface ozone (O3) concentration in Guangdong Province, southern China during the boreal autumn months (September-October-November, SON) from 2015 to 2023. The MJO is classified into strong MJO (S-MJO) and weak MJO (W-MJO) using a RMM amplitude threshold of 1. The findings reveal a significant positive correlation between the intensity of the MJO, as indicated by the RMM index, and the SON surface O3 concentration in Guangdong Province over these nine years; specifically, the greater the MJO intensity, the higher the SON surface O3 concentration, whereas the smaller the MJO intensity, the lower the concentration. The probability of O3 exceedance (O3 > 160 μg m-3) during S-MJO is higher than that during W-MJO, and the probability of having S-MJO occurrence with O3 exceedance is also higher than when O3 concentrations are low. The meteorological conditions associated with S-MJO are more conducive to the formation and accumulation of O3, whereas W-MJO promotes the dispersion and reduction of O3. Furthermore, there is a tendency for higher O3 concentrations during MJO phases 1, 6 and 8, and lower O3 concentrations during MJO phases 3 and 4. This study enhances the understanding of the relationship between the MJO and surface ozone, demonstrating that both the intensity of the MJO and the position of its convective center can influence O3 concentrations in Guangdong Province. Our findings offer a novel framework for studying the relationship of regional surface O3 and large-scale climate modes.
Collapse
Affiliation(s)
- Sijia Hu
- Institute for Environmental and Climate Research, College of Environmental and Climate, Jinan University, Guangzhou, China
| | - Run Liu
- Institute for Environmental and Climate Research, College of Environmental and Climate, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, China.
| | - Caixian Huang
- Institute for Environmental and Climate Research, College of Environmental and Climate, Jinan University, Guangzhou, China
| | - Xiangqin Xie
- Institute for Environmental and Climate Research, College of Environmental and Climate, Jinan University, Guangzhou, China
| | - Yanxing Wu
- Institute for Environmental and Climate Research, College of Environmental and Climate, Jinan University, Guangzhou, China
| | - Zheng Luo
- Institute for Environmental and Climate Research, College of Environmental and Climate, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Wang M, Wang S, Zhang R, Yuan M, Xu Y, Shang L, Song X, Zhang X, Zhang Y. Exploring the HONO source during the COVID-19 pandemic in a megacity in China. J Environ Sci (China) 2025; 149:616-627. [PMID: 39181672 DOI: 10.1016/j.jes.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 08/27/2024]
Abstract
HONO is a critical precursor of •OH, but its sources are controversial due to its complex formation mechanism. This study conducted comprehensive observations in Zhengzhou from April 26 to May 11, 2022. Low NOx concentrations were observed during the Covid epidemic period (EP) (10.4 ± 3.0 ppb), compared to the pre-epidemic period (PEP) (12.5 ± 3.8 ppb). The mean HONO concentration during EP (0.53 ± 0.34 ppb) was 0.09 ppb lower than that during PEP (0.62 ± 0.53 ppb). The decrease in HONO concentration during EP came mainly at night due to the reduction in the direct emission (Pemi) (0.03 ppb/hr), the homogeneous reaction between •OH and NO (POH+NO) (0.02 ppb/hr), and the heterogeneous conversion of NO2 on the ground (0.01 ppb/hr). Notably, there was no significant change in daytime HONO concentration. The daytime HONO budget indicated that the primary HONO sources during PEP were the nitrate photolysis (Pnitrate), followed by the POH+NO, Pemi, the photo-enhanced reaction of NO2 on the ground (Pground+hv) and aerosol surface (Paerosol+hv). The primary HONO sources were Pnitrate, POH+NO, Pemi, and Paerosol+hv during EP, respectively. The missing source has a high correlation with solar radiation, there might be other photo-related HONO sources or the contributions of photosensitized reactions were underestimated. In the extremely underestimated cases, HONO production rates from the Pnitrate, Pground+hv, and Paerosol+hv increased by 0.17, 0.10, and 0.10 ppb/hr during PEP, 0.23, 0.13, and 0.16 ppb/hr during EP, and Pnitrate was still the primary source during both PEP and EP.
Collapse
Affiliation(s)
- Mingkai Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Shenbo Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Ruiqin Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China.
| | - Minghao Yuan
- Zhengzhou Ecological Environment Monitoring Center of Henan Province, Zhengzhou 450000, China
| | - Yifei Xu
- Zhengzhou Ecological Environment Monitoring Center of Henan Province, Zhengzhou 450000, China
| | - Luqi Shang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Xinshuai Song
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xinyuan Zhang
- Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China; College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Yunxiang Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450000, China; Research Institute of Environmental Sciences, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
3
|
Peng J, Feng Y, Xiao A, Li B, Ding D, Wang G, Dong R. A review of emission characteristics and risk assessments of volatile organic compounds in petrochemical industry areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125576. [PMID: 39722310 DOI: 10.1016/j.envpol.2024.125576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
As the petrochemical industry grows, environmental and human health issues associated with petroleum refining and chemical processes also increase. Consequently, several studies have been conducted on this topic. However, the results of the current research vary, and a comprehensive review is lacking. This study summarized the volatile organic compounds (VOCs) emission and risk assessments in the petrochemical industry based on data collected from previous studies. A discussion of VOC emission characteristics is provided. The effects of VOCs on human health, ozone formation potential (OFP), and secondary organic aerosol (SOA) are also reviewed. According to this review, the VOC emission characteristics are related to the raw materials and processes. Moreover, research methods can lead to certain biases. In entire petrochemical plants, alkanes were the largest contributors to VOC emissions, with n-pentane, n-butane, and propane frequently appearing in the top five emission lists. Among the process unit areas, alkanes were the major contributors, except for the delayed coking unit, where aromatics significantly contributed. Regarding the risks associated with VOC emissions, benzene, and 1,3-butadiene are common carcinogens impacting human health. 1,3-Butadiene, benzene, and acrolein are major contributors to noncarcinogenic risk. OFP is related to VOC emissions and their corresponding reactivities. Alkenes, alkanes, and aromatics are major contributors to OFP. Aromatics were the largest contributors to SOA concentration. In the future, research methods on the characteristics and risks of VOC emissions need to be further improved. More precise sampling techniques and advanced analytical instruments should be employed to better characterize VOC emissions. Overall, this study considered the characteristics of VOC emissions from petrochemical industrial areas, as well as the risks to the environment and health to provide a reference for the control of VOCs.
Collapse
Affiliation(s)
- Jinchan Peng
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China.
| | - Yunxia Feng
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Anshan Xiao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Bo Li
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Dewu Ding
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Guolong Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| | - Rui Dong
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, 266071, PR China
| |
Collapse
|
4
|
Chen D, Zhou L, Wang W, Lian C, Liu H, Luo L, Xiao K, Chen Y, Song D, Tan Q, Ge M, Yang F. Integrating Chemical Mechanisms and Feature Engineering in Machine Learning Models: A Novel Approach to Analyzing HONO Budget. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22267-22277. [PMID: 39636185 DOI: 10.1021/acs.est.4c06486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nitrous acid (HONO) serves as the primary source of OH radicals in the atmosphere, exerting significant impacts on atmospheric secondary pollution. The heterogeneous reactions of NO2 on surfaces and photolysis of particulate nitrate or adsorbed nitric acid are important sources of atmospheric HONO, yet the corresponding kinetic parameters based on laboratory investigations and field observations exhibit considerable variations. In this study, we developed an explainable machine learning model to analyze the HONO budget using two years of summer urban supersite observations. By integrating chemical mechanisms and feature engineering into our machine learning model, we assessed the contributions of different sources to HONO and inferred the kinetic parameters for the primary HONO formation pathways, thereby partially addressing the limitations associated with predetermined rate coefficients. Our findings revealed that the primary source of daytime HONO in the summer was the photolysis of nitric acid adsorbed on both aerosol and ground surfaces, accounting for over 40% of its unknown sources. This was followed by the photoenhanced heterogeneous conversion of NO2 and the photolysis of particulate nitrate. Additionally, we derived the corresponding kinetic parameters, analyzed their influencing factors, and confirmed that machine learning methods hold great potential for the study of the HONO budget.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644600, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644600, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Tianfu Yongxing Laboratory, Chengdu 610213, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Lan Luo
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Kuang Xiao
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yong Chen
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Danlin Song
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China
- Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin 644600, China
| |
Collapse
|
5
|
Ni X, Sun C, Ling Z, Li Y, Zhang Y, Ou H, Liang B, Sun Q, Mai S, Zhou S, Zhao J. Origins of atmospheric nitrous acid and their contributions to OH radical from ship plumes, marine atmosphere, and continental air masses over South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175841. [PMID: 39214361 DOI: 10.1016/j.scitotenv.2024.175841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Nitrous acid (HONO) is an important source of atmospheric hydroxyl radical (OH). However, HONO abundance in the marine boundary layer remain largely unknown. Here, ship-based measurements were performed to characterize the origins of HONO from ship plumes, marine atmosphere, and continental emissions over South China Sea (SCS) during September 2021. The results showed that the HONO concentrations were measured at substantial levels (1.0 ± 0.8 ppbv) in polluted plumes due to generally high NOx concentrations (52.3 ± 52.5 ppbv). Comparably, much lower HONO concentrations (0.086 ± 0.102 ppbv) were observed for marine atmosphere. During nighttime, the heterogeneous conversion of NO2 was the predominant source of HONO and occurred mainly on the sea surfaces through NO2 deposition. The HONO yield from this deposition (the proportion of NO2 that was converted to HONO) was 0.08 and 0.06 for the marine atmosphere and continental emissions, respectively. In contrast, daytime known HONO formation of marine atmospheric origins was mainly attributed to homogeneous OH + NO reaction, although the contribution of heterogeneous NO2 conversion might not be negligible. Approximately half of HONO sources during daytime are unknown, which were likely from photo-enhanced NO2 conversation on the sea surfaces. Our results showed that for marine atmosphere and ship plumes, the daily contributions of HONO photolysis to OH radical formation were about 20.8 % and 72.2 %, respectively, while the contributions from ozone photolysis were 79.2 % and 27.8 %. An average HONO concentration of 0.17 ppbv was measured in close shore regions when air masses originated from mainland China, with the contributions from HONO and ozone to OH radical of 21.4 % and 78.6 % respectively, similar to those for the marine atmosphere. This study suggests that HONO in the SCS has various sources (e.g., marine atmosphere, ship plumes, and continental emissions) and makes significant contributions to the OH abundance which affects the oxidation capacity in this area.
Collapse
Affiliation(s)
- Xue Ni
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangzhou Climate and Agrometeorology Center, Guangzhou 511430, China
| | - Cuizhi Sun
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Zhenhao Ling
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, Guangdong 519082, China.
| | - Yao Li
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Yongyun Zhang
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Hengjia Ou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Baoling Liang
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Qibin Sun
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Shixin Mai
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, Guangdong 519082, China
| | - Jun Zhao
- School of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Zhuhai, Guangdong 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai, Guangdong 519082, China.
| |
Collapse
|
6
|
Yang W, Xia Z, Zheng J, Li F, Nan X, Du T, Han C. Reactive oxygen species play key roles in the nitrite formation by the inorganic nitrate photolysis in the presence of urban water-soluble organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174203. [PMID: 38909793 DOI: 10.1016/j.scitotenv.2024.174203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
Inorganic nitrates were considered to be a potential source of atmospheric NO2-/HONO during the daytime. To better evaluate the contribution of nitrate photochemistry on NO2-/HONO formation, the photolysis of nitrates in the real atmospheric environment needs to be further explored. Here, the NO2- generation by the photolysis of inorganic nitrates in the presence of total water-soluble organic carbon (WSOC) was quantified. The physicochemical properties of WSOC were measured to understand the underlying mechanism for the photolysis of inorganic nitrates with WSOC. WSOC enhanced or suppressed the photochemical conversion of nitrates to NO2-, with the quantum yield of NO2- (ΦNO2-) varying from (0.07 ± 0.02)% to (3.11 ± 0.04)% that depended on the light absorption properties of WSOC. Reactive oxygen species (ROS) generated from WSOC, including O2-/HO2 and OH, played a dual role in the NO2- formation. Light-absorbing substances in WSOC, such as N-containing and carbonyl aromatics, produced O2-/HO2 that enhanced the secondary conversion of NO2 to NO2-. On the other hand, OH deriving from the WSOC photochemistry inhibited the nitrate photodegradation and the NO2- formation. HONO source strength by the aqueous photolysis of nitrates with WSOC was estimated to be lower than 100 ppt h-1, which may partly contribute to the atmospheric HONO source in some cases.
Collapse
Affiliation(s)
- Wangjin Yang
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Zhifu Xia
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Jianwei Zheng
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Fu Li
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiangli Nan
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Tao Du
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chong Han
- School of Metallurgy, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
7
|
Fan W, Zhu Z, Liu X, Zhang H, Qiu Y, Yin D. Effect of nitrogen oxides and sulfur oxides to triphenyl phosphate degradation and cytotoxicity on surface of different transition metal salts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174422. [PMID: 38964400 DOI: 10.1016/j.scitotenv.2024.174422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Xiaochang Liu
- School of Urban and Regional Science, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Wang F, Zhang C, Ge Y, Zhang Z, Shi G, Feng Y. Multi-scale analysis of the chemical and physical pollution evolution process from pre-co-pollution day to PM 2.5 and O 3 co-pollution day. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173729. [PMID: 38839009 DOI: 10.1016/j.scitotenv.2024.173729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
PM2.5 and O3 are two of the main air pollutants that have adverse impacts on climate and human health. The evolution process of PM2.5 and O3 co-pollution are of concern because of the increased frequency of PM2.5 and O3 co-pollution days. Here, we examined the chemical coupling and revealed the driving factors of the PM2.5 and O3 co-pollution evolution process from cleaning day, PM2.5 pollution day, or O3 pollution day, applied by theoretical analysis and model calculation methods. The results demonstrate that PM2.5 and O3 co-pollution day frequently occurred with high concentrations of gaseous precursors and higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), which we attribute to the enhancement of atmospheric oxidation capacity (AOC). The AOC is positively correlated with O3 and weakly correlated with PM2.5. In addition, we found that the correlation coefficients of PM2.5-NO2 (0.62) were higher than that of PM2.5-SO2 (0.32), highlighting the priority of NOx controlling to mitigate PM2.5 pollution. Overall, our discovery can provide scientific evidence to design feasible solutions for the controlling PM2.5 and O3 co-pollution process.
Collapse
Affiliation(s)
- Feng Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chun Zhang
- Shaanxi Province Environmental Monitoring Center, Xi'an 710054, China
| | - Yi Ge
- Shaanxi Province Environmental Monitoring Center, Xi'an 710054, China
| | - Zhang Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
9
|
Liu C, Lu B, Wang Q, Zhang Z, Meng X, Huo J, Herrmann H, Li X. High-level HONO exacerbates double high pollution of O 3 and PM 2.5 in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174066. [PMID: 38897469 DOI: 10.1016/j.scitotenv.2024.174066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Double high pollution (DHP) of ozone (O3) and fine particulate matter (PM2.5) has frequently been observed in China in recent years. Numerous studies have speculated that DHP might be related to nitrous acid (HONO), but the chemical mechanism involved remains unclear. Field observation results of DHP in Shanghai indicate that the high concentration of HONO produced by nitrogen dioxide (NO2) heterogeneous reactions under conditions of high temperature and high humidity promotes an increase in PM2.5 and O3 concentrations. The box model combined with field observations to reconstruct pollution events indicates that HONO photolysis generates abundant hydroxyl (OH) radicals that rapidly oxidize volatile organic compounds (VOCs), which in turn accelerates the ROx (OH, hydroperoxyl (HO2), and organic peroxy (RO2) radicals) cycle and causes the accumulation of O3. This elevated O3 along with high concentrations of HONO, produces particulate nitrate (pNO3) by encouraging the NO2 + OH reaction. This process strengthens the chemical coupling between O3 and PM2.5, which can exacerbate the DHP of O3 and PM2.5. Sensitivity analysis of pNO3/O3-NOx-VOCs suggests that under nitrogen oxides (NOx = NO + NO2) reduction conditions, simultaneous control of pNO3 and O3 can be expected to be successfully achieved through emission reduction of alkanes and oxygenated VOCs (OVOCs). Therefore, the present research will facilitate the design of appropriate PM2.5 and O3 control strategies for high HONO concentration conditions, and thus alleviate the current stresses of air pollution.
Collapse
Affiliation(s)
- Chao Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Qian Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China; Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Zekun Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Xue Meng
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Hartmut Herrmann
- Leibniz-Institut für Troposphärenforschung (IfT), Permoserstr. 15, 04318 Leipzig, Germany
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China.
| |
Collapse
|
10
|
Fan W, Zhu Z, Zhang H, Qiu Y, Yin D. Degradation, transformation and cytotoxicity of triphenyl phosphate on surface of different transition metal salts in atmospheric environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173462. [PMID: 38797399 DOI: 10.1016/j.scitotenv.2024.173462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Triphenyl phosphate (TPhP) and transition metal elements have been ubiquitously detected in the atmosphere, which can participate in atmospheric chemical reactions and induce damage to human health. Currently the understanding of TPhP degradation, transformation and cytotoxicity on atmospheric particles surface are still limited. Therefore, this study used laboratory simulation methods to investigate the influence of irradiation time, transition metal salts, relative humidity (RH) to TPhP degradation, transformation and relative cytotoxicity. TPhP was coated on particle surfaces of four transition metal salts (MnSO4, CuSO4, FeSO4 and Fe2(SO4)3) in the experiment. Within 12 h irradiation, the significant TPhP photodegradation can be observed on all particles surface. Among these influence factors, the irradiation and RH were the crucial aspects to TPhP degradation, which primarily affect the OH concentration in the atmosphere. The transition metal elements only exhibited slightly catalytic effect to TPhP degradation. The mechanism study indicated that the major degradation products of TPhP are diphenyl hydrogen phosphate (DPhP) and OH-DPhP, which originated from the phenoxy bond cleavage and hydroxylation of TPhP induced by OH. As for the cytotoxicity to A549 cells, all the transition metal particles coated with TPhP can cause cellular injury, which was chiefly induced by the transition metal salt. The possible cytotoxicity mechanism of these particles to A549 cells can be attributed to the excessive reactive oxygen species (ROS) production. This study may provide a further understanding of TPhP degradation and related cytotoxicity with the coexistent transition metal salts in the atmosphere.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| |
Collapse
|
11
|
Liu C, Liang L, Xu W, Ma Q. A review of indoor nitrous acid (HONO) pollution: Measurement techniques, pollution characteristics, sources, and sinks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171100. [PMID: 38387565 DOI: 10.1016/j.scitotenv.2024.171100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Indoor air quality is of major concern for human health and well-being. Nitrous acid (HONO) is an emerging indoor pollutant, and its indoor mixing ratios are usually higher than outdoor levels, ranging from a few to tens of parts per billion (ppb). HONO exhibits adverse effects to human health due to its respiratory toxicity and mutagenicity. Additionally, HONO can easily undergo photodissociation by ultraviolet light to produce hydroxyl radicals (OH•), which in turn trigger a series of further photochemical oxidation reactions of primary or secondary pollutants. The accumulation of indoor HONO can be attributed to both direct emissions from combustion sources, such as cooking, and secondary formation resulting from enhanced heterogeneous reactions of NOx on indoor surfaces. During the day, the primary sink of indoor HONO is photolysis to OH• and NO. Moreover, adsorption and/or reaction on indoor surfaces, and diffusion to the outside atmosphere contribute to HONO loss both during the day and at night. The level of indoor HONO is also affected by human occupancy, which can influence household factors such as temperature, humidity, light irradiation, and indoor surfaces. This comprehensive review article summarized the research progress on indoor HONO pollution based on indoor air measurements, laboratory studies, and model simulations. The environmental and health effects were highlighted, measurement techniques were summarized, pollution levels, sources and sinks, and household influencing factors were discussed, and the prospects in the future were proposed.
Collapse
Affiliation(s)
- Chang Liu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Linlin Liang
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Wanyun Xu
- Key Laboratory of Atmospheric Chemistry of China Meteorological Administration, State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Niu Y, Yan Y, Xing Y, Duan X, Yue K, Dong J, Hu D, Wang Y, Peng L. Analyzing ozone formation sensitivity in a typical industrial city in China: Implications for effective source control in the chemical transition regime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170559. [PMID: 38336071 DOI: 10.1016/j.scitotenv.2024.170559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
Volatile organic compounds (VOCs) play a major role in O3 formation in urban environments. However, the complexity in the emissions of VOCs and nitrogen oxides (NOx) in industrial cities has made it challenging to identify the key factors influencing O3 formation. This study used observation-based-model (OBM) to analyze O3 sensitivities to VOCs and NOx during summer in a typical industrial city in China. The OBM model results were coupled with a receptor model to analyze the sources of O3. Higher concentrations of O3 precursors were observed during polluted periods indicating that precursor accumulation contributed to the higher maxima of the net ozone formation rate and HOx concentrations. Analyses of ROx· budgets and relative incremental reactivity (RIR) indicated that O3 production is in a chemical transition regime and was sensitive to both VOCs and NOx. Results from Positive Matrix Factorization (PMF) analysis indicated that gasoline vehicle emissions, industrial processes, and coal combustion were major sources of O3 precursors. The sensitivities of O3 production to these sources depend on if both VOC and NOx sensitivities are considered. If only VOCs sensitivity is considered, in contrast, the contribution of anthropogenic sources to O3 production was significantly underestimated. This study highlights the importance of accounting for both VOCs and NOx sensitivities when O3 chemistry is in a transition regime in O3 production attribution studies.
Collapse
Affiliation(s)
- Yueyuan Niu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yulong Yan
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| | - Yiran Xing
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolin Duan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ke Yue
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Jiaqi Dong
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China
| | - Dongmei Hu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuhang Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lin Peng
- Engineering Research Center of Clean and Low-carbon Technology for Intelligent Transportation, Ministry of Education, School of Environment, Beijing Jiaotong University, Beijing 100044, China; School of Environment, Beijing Jiaotong University, Beijing 100044, China.
| |
Collapse
|
13
|
Chen D, Zhou L, Liu S, Lian C, Wang W, Liu H, Li C, Liu Y, Luo L, Xiao K, Chen Y, Qiu Y, Tan Q, Ge M, Yang F. Primary sources of HONO vary during the daytime: Insights based on a field campaign. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166605. [PMID: 37640078 DOI: 10.1016/j.scitotenv.2023.166605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Nitrous acid (HONO) is an established precursor of hydroxyl (OH) radical and has significant impacts on the formation of PM2.5 and O3. Despite extensive research on HONO observation in recent years, knowledge regarding its sources and sinks in urban areas remains inadequate. In this study, we monitored the atmospheric concentrations of HONO and related pollutants, including gaseous nitric acid and particulate nitrate, simultaneously at a supersite in downtown Chengdu, a megacity in southwestern China during spring, when was chosen due to its tolerance for both PM2.5 and O3 pollution. Furthermore, we employed the random forest model to fill the missing data of HONO, which exhibited good predictive performance (R2 = 0.96, RMSE = 0.36 ppbv). During this campaign, the average mixing ratio of HONO was measured to be 1.0 ± 0.7 ppbv. Notably, during periods of high O3 and PM2.5 concentrations, the mixing ratio of HONO was >50 % higher compared to the clean period. We developed a comprehensive parameterization scheme for the HONO budget, and it performed well in simulating diurnal variations of HONO. Based on the HONO budget analysis, we identified different mechanisms that dominate HONO formation at different times of the day. Vehicle emissions and NO2 heterogeneous conversions were found to be the primary sources of HONO during nighttime (21.0 %, 30.2 %, respectively, from 18:00 to 7:00 the next day). In the morning (7:00-12:00), NO2 heterogeneous conversions and the reaction of NO with OH became the main sources (35.0 %, 32.2 %, respectively). However, in the afternoon (12:00-18:00), the heterogeneous photolysis of HNO3 on PM2.5 was identified as the most substantial source of HONO (contributing 52.5 %). This study highlights the significant variations in primary HONO sources throughout the day.
Collapse
Affiliation(s)
- Dongyang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China.
| | - Song Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hefan Liu
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Chunyuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Yuelin Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Lan Luo
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Kuang Xiao
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yong Chen
- Sichuan province Chengdu Ecological Environment Monitoring Center Station, Chengdu 610066, China
| | - Yang Qiu
- Department of Industrial Engineering, The Pittsburgh Institute, Sichuan University, Chengdu 610065, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610000, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| |
Collapse
|
14
|
Feng J, Ren E, Hu M, Fu Q, Duan Y, Huang C, Zhao Y, Wang S. Budget of atmospheric nitrous acid (HONO) during the haze and clean periods in Shanghai: Importance of heterogeneous reactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165717. [PMID: 37482358 DOI: 10.1016/j.scitotenv.2023.165717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Nitrous acid (HONO) plays a significant role in radical cycling and atmospheric oxidative chemistry. While the source and evolution of HONO in the Yangtze River Delta (YRD) region of China after 2018 remains largely unknown, this work monitored HONO and other air pollutants throughout 2019 at an urban site (Pudong, PD) and a suburban site (Qingpu, QP) in Shanghai. Episodes with high HONO mixing ratios but different PM2.5 levels, namely haze and clean episodes, were chosen for HONO budget analysis. Using an observation-based photochemical box model, relative importance of different sources and sinks of HONO were evaluated. Gas-phase reaction of NO with OH was found to be one of the most important daytime HONO formation sources, especially during the QPhaze period (accounting for 40.3 % of daytime HONO formation). In particular, heterogeneous conversion of NO2 on ground and aerosol surface was found to be the dominant source for nocturnal HONO. Photo-enhanced NO2 conversion on ground surface plays an important role in daytime HONO production (19.4 % in PDhaze vs. 27.6 % in PDclean, and 19.8 % in QPhaze vs. 25.9 % in QPclean). In addition, photo-enhanced NO2 conversion at the aerosol surface during haze episodes made more significant contributions to HONO formation compared to the clean periods (20.9 % in PDhaze vs. 17.1 % in PDclean, and 19.7 % in QPhaze vs. 11.2 % in QPclean). The role of multiphase reactions was found to be increasingly important in HONO generation with enhanced relative humidity (RH) during daytime. Significant unknown HONO source was further analyzed and found to be positively related with photolytic as well as multiphase pathways. Overall, our study sheds light on the budget of HONO in one of the biggest megacities in east China, which would help developing future mitigation strategies for urban HONO and atmospheric oxidation capacity.
Collapse
Affiliation(s)
- Jialiang Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ensi Ren
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ming Hu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of the Cause and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai, China
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shunyao Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Li J, Zhang N, Tian P, Zhang M, Shi J, Chang Y, Zhang L, Liu Z, Wang Y. Significant roles of aged dust aerosols on rapid nitrate formation under dry conditions in a semi-arid city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122395. [PMID: 37595735 DOI: 10.1016/j.envpol.2023.122395] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Mineral dust can accelerate secondary aerosol formation under humid conditions. However, it is unclear whether it can promote secondary aerosol formation under dry conditions. To investigate this issue, two years of comprehensive observations was conducted at a semi-arid site, near the dust source regions. Three types of episodes were selected: dust, anthropogenic-dominated, and mixed (mixed with dust and anthropogenic aerosols). Compared to anthropogenic-dominated episodes under humid conditions, rapid nitrate formation was still observed in mixed episodes under dry conditions, suggesting that active metallic oxides in dust, such as titanium dioxide, could promote photochemical reactions of nitrogen dioxide. The detailed evolutionary processes are further illustrated by a typical dust-to-mixed episode. After the arrival of the dust, titanium sharply increased ten-fold and rapid nitrate formation was observed, together with a rapid increase in the two most important photochemical pollutants, ozone and peroxyacetyl nitrate. The increased secondary organic carbon further illustrated that the suspended dust particles accelerated the atmospheric oxidative capacity, thereby enhancing secondary aerosol formation and eventually leading to haze pollution. These results differ from those in humid regions and therefore expand the scientific understanding of the impact of dust aerosols on haze pollution under dry conditions.
Collapse
Affiliation(s)
- Jiayun Li
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Naiyue Zhang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Tian
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Min Zhang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinsen Shi
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, 730000, China
| | - Yi Chang
- Gansu Province Environmental Monitoring Center, Lanzhou, 730020, China
| | - Lei Zhang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou, 730000, China
| | - Zirui Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yuesi Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| |
Collapse
|