1
|
Ma X, Yang W, Zhao H, Tan Q. Effects of aeration control strategies on nitrous oxide emissions in alternating anoxic-oxic sequencing batch reactor systems. ENVIRONMENTAL RESEARCH 2024; 260:119591. [PMID: 39002633 DOI: 10.1016/j.envres.2024.119591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Reducing N2O emissions is key to controlling greenhouse gases (GHG) in wastewater treatment plants (WWTPs). Although studies have examined the effects of dissolved oxygen (DO) on N2O emissions during nitrogen removal, the precise effects of aeration rate remain unclear. This study aimed to fill this research gap by investigating the influence of dynamic aeration rates on N2O emissions in an alternating anoxic-oxic sequencing batch reactor system. The emergence of DO breakthrough points indicated that the conversion of ammonia nitrogen to nitrite and the release of N2O were nearly complete. Approximately 91.73 ± 3.35% of N2O was released between the start of aeration and the DO breakthrough point. Compared to a fixed aeration rate, dynamically adjusting the aeration rates could reduce N2O production by up to 48.6%. Structural equation modeling revealed that aeration rate and total nitrogen directly or indirectly had significant effects on the N2O production. A novel regression model was developed to estimate N2O production based on energy consumption (aeration flux), water quality (total nitrogen), and GHG emissions (N2O). This study emphasizes the potential of optimizing aeration strategies in WWTPs to significantly reduce GHG and improve environmental sustainability.
Collapse
Affiliation(s)
- Xiao Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wei Yang
- Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China
| | - Haixiao Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qian Tan
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Hootmirdoosti S, Okati N, Nowrouzi M, Erfani M. Life cycle analysis of the wastewater treatment system in Zabol Industrial Town: Environmental impacts, energy demand, and greenhouse gas emissions. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1747-1758. [PMID: 38695639 DOI: 10.1002/ieam.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/12/2024] [Indexed: 08/13/2024]
Abstract
Use of effective environmental remediation facilities represents a crucial strategy for water reclamation and addressing the challenges of water scarcity. The objective of this study was to assess the wastewater treatment system (WWTS) in Zabol Industrial Town using the life cycle assessment method. Primary data, collected annually for a functional unit of 1 m3 of wastewater treatment, were subjected to analysis using the ReCiPe, Cumulative Energy Demand, and Intergovernmental Panel on Climate Change (IPCC) methods. Human carcinogenic toxicity (50%), freshwater ecotoxicity (13%), and marine ecotoxicity (10%) were the primary environmental impacts due to the WWTS performance. The discharge of heavy metals during sludge generation, coupled with the consumption of natural gas and oil, especially for electricity production, were pivotal factors contributing to the environmental burdens observed. Furthermore, chemical oxygen demand (COD) (56.34%), electricity consumption (>15.47%), and total phosphorous (>4.49%) significantly threatened human health and ecosystem categories, while fossil fuel consumption had the greatest impact on resources. Nonrenewable fossil fuels, namely, natural gas (47.2%) and oil (38.27%), played a predominant role in the energy provision of the system. The IPCC analysis depicted the emissions of CO2 (86.77%) and CH4 (12.16%) stemming from the process of electricity generation. Based on the outcomes of the sensitivity analysis, implementing a 10% increase in COD yielded an increment in all impacts within the range of 1.40% to 6.83%. Given Iran's geographic location and the unique climatic conditions in Zabul, use of solar and wind energy to energize the WWTS can substantially alleviate its environmental burdens. This study presents a comprehensive framework for evaluating the environmental impact, energy consumption, and carbon footprint of a WWTS. Integr Environ Assess Manag 2024;20:1747-1758. © 2024 SETAC.
Collapse
Affiliation(s)
- Simineh Hootmirdoosti
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Narjes Okati
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Mohsen Nowrouzi
- Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
| | - Malihe Erfani
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| |
Collapse
|
3
|
Shahraki H, Einollahipeer F, Abyar H, Erfani M. Assessing the environmental impacts of copper cathode production based on life cycle assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1180-1190. [PMID: 37888492 DOI: 10.1002/ieam.4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The demand for copper is growing considerably in parallel with economic and technological development. The rate increase in copper consumption in Iran increases pressure on the numerous unexploited mines in southeast Iran and causes the environmental crisis alongside the northern Levar wind in this area. Given this, this study systematically explored the environmental impacts of a one-ton copper cathode processing operation from a cradle-to-gate perspective, using life cycle assessment (LCA). Moreover, the release of greenhouse gases and the energy consumption during the copper cathode production were also assessed. The results indicated that sulfuric acid use in the smelting and extraction stages, metal leaching from tailings, and CO2 dominated more than 50% of contributions to freshwater and marine ecotoxicity, human toxicity, and global warming. The energy analysis revealed 88.92% of crude oil use especially for the electrowinning stage, which should be promoted technologically. For global warming, the indirect CO2 emission from electricity consumption using fossil fuels was the main contributor (94.56%). Therefore, shifting from conventional energy systems to renewable energy systems could alleviate the overall environmental impact. For a 0.57-ton sulfuric acid effluent per one ton of copper cathode production, its treatment and reuse in the process is recommended. Summing up, the results of this study provide the environmental hot spots for copper cathode production for further investigation. Integr Environ Assess Manag 2024;20:1180-1190. © 2023 SETAC.
Collapse
Affiliation(s)
- Hamed Shahraki
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Fatemeh Einollahipeer
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| | - Hajar Abyar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Malihe Erfani
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| |
Collapse
|
4
|
Mao J, Chen H, Xu X, Zhu L. Assessing greenhouse gas emissions from the printing and dyeing wastewater treatment and reuse system: Potential pathways towards carbon neutrality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172301. [PMID: 38599411 DOI: 10.1016/j.scitotenv.2024.172301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The urgency of achieving carbon neutrality needs a reduction in greenhouse gas (GHG) emissions from the textile industry. Printing and dyeing wastewater (PDWW) plays a crucial role in the textile industry. The incomplete assessment of GHG emissions from PDWW impedes the attainment of carbon neutrality. Here, we firstly introduced a more standardized and systematic life-cycle GHG emission accounting method for printing and dyeing wastewater treatment and reuse system (PDWTRS) and proposed possible low-carbon pathways to achieve carbon neutrality. Utilizing case-specific operational data over 12 months, the study revealed that the PDWTRS generated 3.49 kg CO2eq/m3 or 1.58 kg CO2eq/kg CODrem in 2022. This exceeded the GHG intensity of municipal wastewater treatment (ranged from 0.58 to 1.14 kg CO2eq/m3). The primary contributor to GHG emissions was energy consumption (33 %), with the energy mix (sensitivity = 0.38) and consumption (sensitivity = 0.33) exerting the most significant impact on GHG emission intensity respectively. Employing prospective life cycle assessment (LCA), our study explored the potential of the anaerobic membrane bioreactor (AnMBR) to reduce emissions by 0.54 kg CO2eq/m3 and the solar-driven photocatalytic membrane reactor (PMR) to decrease by 0.20 kg CO2eq/m3 by 2050. Our projections suggested that the PDWTRS could achieve net-zero emissions before 2040 through an adoption of progressive transition to low-carbon management, with a GHG emission intensity of -0.10 kg CO2eq/m3 by 2050. Importantly, the study underscored the escalating significance of developing sustainable technologies for reclaimed water production amid water scarcity and climate change. The study may serve as a reminder of the critical role of PDWW treatment in carbon reduction within the textile industry and provides a roadmap for potential pathways towards carbon neutrality for PDWTRS.
Collapse
Affiliation(s)
- Jiaer Mao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haoyu Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiangyang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China
| | - Liang Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100. China; Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou 310058, China.
| |
Collapse
|
5
|
Pakzad Toochaei S, Abyar H, Einollahipeer F. Comprehensive life cycle assessment of NH 2-functionalized magnetic graphene oxide for mercury removal: Carbon emissions and economic evaluation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123737. [PMID: 38462190 DOI: 10.1016/j.envpol.2024.123737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Heavy metals contamination critically affects human health and ecosystems, necessitating pioneering approaches to diminish their adverse impacts. Hence, this study synthesized aminated magnetic graphene oxide (mGO-NH2) for the removal of mercury (Hg) from aqueous solutions. Although functionalized GO is an emerging technology at the early stages of development, its synthesis and application require special attention to the eco-environmental assessment. Therefore, the life cycle assessment and life cycle cost of mGO-NH2 were investigated from the cradle-to-gate approach for the removal of 1 kg Hg. The adsorption process was optimized based on pH, Hg concentration, adsorbent dose, and contact time at 6.48, 40 mg/l, 150 mg/l, and 35 min, respectively, resulting in an adsorption capacity of 184.17 mg/g. Human carcinogenic toxicity with a 40.42% contribution was the main environmental impact, relating to electricity (35.76%) and ethylenediamine (31.07%) usage. The endpoint method also revealed the pivotal effect of the mGO-NH2 synthesis on human health (90.52%). The most energy demand was supplied by natural gas and crude oil accounting for 70.8% and 22.1%, respectively. A 99.02% CO2 emission originated from fossil fuels consumption based on the greenhouse gas protocol (GGP). The cost of mGO-NH2 was about $143.7/kg with a net present value of $21064.8 per kg Hg removal for a 20-year lifetime. Considering the significant role of material cost (>70%), the utilization of industrial-grade raw materials is recommended to achieve a low-cost adsorbent. This study demonstrated that besides the appropriate performance of mGO-NH2 for Hg removal, it is essential that further studies evaluate eco-friendly approaches to decrease the adverse impacts of this emerging product.
Collapse
Affiliation(s)
- Sahel Pakzad Toochaei
- Department of Natural Ecosystems, Hamoun International Wetland Research Institute, Research Institute of Zabol, Zabol, Sistan and Baluchestan, Iran.
| | - Hajar Abyar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Fatemeh Einollahipeer
- Department of Environment, Faculty of Natural Resources, University of Zabol, Zabol, Sistan and Baluchestan, Iran
| |
Collapse
|
6
|
Abyar H, Nowrouzi M. A comprehensive framework for eco-environmental impact evaluation of wastewater treatment plants: Integrating carbon footprint, energy footprint, toxicity, and economic assessments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119255. [PMID: 37847937 DOI: 10.1016/j.jenvman.2023.119255] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/23/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
The need for clear and straightforward guidelines for carbon footprint (CFP) and energy footprint (EFP) evaluations is critical due to the non-transparent and misleading results that have been reported. This study aims to address this gap by integrating CFP, EFP, toxicity, and economic assessments to evaluate the eco-environmental impacts of wastewater treatment plants (WWTPs). The results indicate that the total CFP was below 0.6 kg CO2/kg COD removed, which is attributed to CO2 offset and biogas recovery. However, site-specific EFP varied considerably from 482.7 to 2294 kgCO2/kWh due to design differences of WWTPs and their aeration and mixing energy demand (46.96-66.1%). The use of crude oil and natural gas for electricity generation significantly increased EFP, CFP, and carcinogenic human toxicity. In contrast, a combined heat and power (CHP) installation enabled energy recovery ranging from 12.09% to 65.65%. Construction costs dominated the highest share of total costs (85.43%), with indirect construction costs (42.9%) and operation labor costs (61.4%) being the primary elements in the total net costs. It is worth noting that site-specific CO2 emission factors were used in the calculations to decrease model uncertainty. However, to improve modeling reliability, we recommend modifying the regional CO2 emission factor and focusing on emerging technologies to recover energy and biogas.
Collapse
Affiliation(s)
- Hajar Abyar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Mohsen Nowrouzi
- Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169-13798, Iran.
| |
Collapse
|
7
|
Abyar H, Nowrouzi M. Trickling filter systems for sustainable water supply: An evaluation of eco-environmental burdens and greenhouse gas emissions. ENVIRONMENTAL RESEARCH 2023; 237:117011. [PMID: 37648187 DOI: 10.1016/j.envres.2023.117011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Despite the global water crisis, the significant potential of trickling filter systems as a crucial auxiliary option for sustainable water supply has received insufficient attention. Therefore, this study presents the first-ever evaluation of the environmental impacts of trickling filter application in wastewater treatment, focusing on eco-environmental burdens. Additionally, the study explores greenhouse gas emissions, energy, and exergy footprints, providing novel insights into the environmental implications of using trickling filters for wastewater treatment. The study's findings indicate that the consumption of heat and electricity in trickling filters has significant environmental impacts, particularly on land use (93.24%), freshwater/marine eutrophication (∼81.98%), and human health (45.36%). The majority of the energy required for trickling filter operation is supplied by fossil fuels (96.02%), resulting in increased greenhouse gas emissions (65.58%). The exergy of trickling filters is highly efficient, accounting for over 95% of the system's energy. Mathematical modeling reveals that anaerobic digestion and secondary clarifier have the highest energy consumption, with contributions of 94.65% and 2.63%, respectively. Construction expenses account for almost 88% of the total cost, with anaerobic digestion (42.15%) and trickling filters (35.39%) being the most costly components. The cost of treating 1 m3 of wastewater is estimated at 0.52 $/m3. Sensitivity analysis demonstrates that electricity (14.66%) and heat (18.65%) significantly impact terrestrial ecotoxicity and land use, respectively. This study presents a framework for future investigations in this field.
Collapse
Affiliation(s)
- Hajar Abyar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Mohsen Nowrouzi
- Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169-13798, Iran.
| |
Collapse
|