1
|
Kiskó G, Bajramović B, Elzhraa F, Erdei-Tombor P, Dobó V, Mohácsi-Farkas C, Taczman-Brückner A, Belák Á. The Invisible Threat of Antibiotic Resistance in Food. Antibiotics (Basel) 2025; 14:250. [PMID: 40149061 PMCID: PMC11939317 DOI: 10.3390/antibiotics14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Belma Bajramović
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Fatma Elzhraa
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Patrícia Erdei-Tombor
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Viktória Dobó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| |
Collapse
|
2
|
Cook K, Premchand-Branker S, Nieto-Rosado M, Portal EAR, Li M, Rubio CO, Mathias J, Aziz J, Iregbu K, Afegbua SL, Aliyu A, Mohammed Y, Nwafia I, Oduyebo O, Ibrahim A, Tanko Z, Walsh TR, Achi C, Sands K. Flies as carriers of antimicrobial resistant (AMR) bacteria in Nigerian hospitals: A workflow for surveillance of AMR bacteria carried by arthropod pests in hospital settings. ENVIRONMENT INTERNATIONAL 2025; 196:109294. [PMID: 39862724 DOI: 10.1016/j.envint.2025.109294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The dissemination of antimicrobial resistant (AMR) bacteria by flies in hospitals is concerning as nosocomial AMR infections pose a significant threat to public health. This threat is compounded in low- and middle-income countries (LMICs) by several factors, including limited resources for sufficient infection prevention and control (IPC) practices and high numbers of flies in tropical climates. In this pilot study, 1,396 flies were collected between August and September 2022 from eight tertiary care hospitals in six cities (Abuja, Enugu, Kaduna, Kano, Lagos and Sokoto) in Nigeria. Flies were screened via microbiological culture and bacterial isolates were phenotypically and genetically characterised to determine carriage of clinically important antibiotic resistance genes (ARGs). Several clinically relevant ARGs were found in bacteria isolated from flies across all hospitals. blaNDM was detected in 8% of flies and was predominantly carried by Providencia spp. alongside clinically relevant Enterobacter spp, Escherichia coli and Klebsiella pneumoniae isolates, which all exhibited a multidrug resistant phenotype. mecA was detected at a prevalence of 6.4%, mostly in coagulase-negative Staphylococci (CoNS) as well as some Staphylococcus aureus, of which 86.8% were multidrug resistant. 40% of flies carried bacteria with at least one of the two ESBL genes tested (blaOXA-1 and blaCTX-M-15). This multi-site study emphasised that flies in hospital settings carry bacteria that are resistant to multiple classes of antibiotics, including both routinely used and reserve antibiotics. A greater understanding of the global clinical significance and burden of AMR attributable to insect pests is required.
Collapse
Affiliation(s)
- Kate Cook
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Shonnette Premchand-Branker
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom.
| | - Maria Nieto-Rosado
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Edward A R Portal
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Mei Li
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Claudia Orbegozo Rubio
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jordan Mathias
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Jawaria Aziz
- Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom
| | - Kenneth Iregbu
- Department of Medical Microbiology, National Hospital Abuja, Nigeria
| | - Seniyat Larai Afegbua
- Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria; Department of Biotechnology, Nigerian Defence Academy, Kaduna, Nigeria
| | - Aminu Aliyu
- Department of Medical Microbiology, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Yahaya Mohammed
- Department of Medical Microbiology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Ifeyinwa Nwafia
- Department of Medical Microbiology, University of Nigeria Teaching Hospital Ituku-Ozalla, Enugu, Nigeria
| | - Oyinlola Oduyebo
- Department of Medical Microbiology, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Abdulrasul Ibrahim
- Department of Medical Microbiology, Ahmadu Bello University, Zaria, Nigeria
| | - Zainab Tanko
- Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Medicine, Kaduna State University, Kaduna State, Nigeria
| | - Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chioma Achi
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Kirsty Sands
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, United Kingdom; Division of Infection and Immunity, Department of Medical Microbiology, Heath Campus, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
3
|
Singh S, Rawat N, Kaushik A, Chauhan M, Devi PP, Sabu B, Kumar N, Rajagopal R. Houseflies (Musca domestica) as vectors of multidrug-resistant, ESBL-producing Escherichia coli in broiler poultry farms of North India: implications for antibiotic resistance transmission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3664-3678. [PMID: 39820970 DOI: 10.1007/s11356-025-35921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
The transmission of antibiotic resistance (AR) from farm animals to healthy human communities, beyond the food chain, is often facilitated by biological vectors, notably houseflies (Musca domestica). This study aimed to evaluate the role of M. domestica collected from commercial broiler chicken farms as a carrier of multidrug-resistant (MDR), extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. E. coli were isolated separately from the housefly's external surface (ES) and internal homogenate (IH) to determine the primary AR transmission route within houseflies. Remarkably, 68.6% houseflies harboured E. coli. Isolated E. coli were evaluated for susceptibility to clinically relevant antibiotics and screened for the presence of 22 plasmid-borne AR genes (ARGs) using PCR. Results revealed significant resistance to key antibiotics, with > 70% of isolates resistant to ampicillin and > 50% resistant to tetracycline and nalidixic acid in both ES- and IH-derived E. coli. Notably, a significant prevalence of resistance was observed to third-generation cephalosporins. Additionally, > 80% of E. coli isolates were MDR. A statistically significant difference (unpaired t-test, p < 0.05) was observed in the presence of ESBL-producing E. coli between the houseflies' ES (28.14%) and IH (38.14%). ARGs such as, ampC, tetA, qnrS, strA, strB, and sul3 were frequently detected in both ES- and IH-derived E. coli isolates. Among the ESBL-producing genes, blaCTX-M was the most abundant. Pearson's correlation analysis predicted the ARGs responsible for phenotypic resistance to specific antibiotics. Farm-derived flies harboured a significantly higher number of MDR E. coli (unpaired t-test, p < 0.05) than the ones isolated from flies housing a distant non-farm environment. Conclusively, this study illustrates the role of houseflies as vectors for AR transmission from AR hotspots to human communities.
Collapse
Affiliation(s)
- Shreyata Singh
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Nitish Rawat
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Anjali Kaushik
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Department of Zoology, Deen Dayal Upadhyay College, University of Delhi, New Delhi, 110078, India
| | - Mehul Chauhan
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pukhrambam Pushpa Devi
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, 110007, India
| | - Benoy Sabu
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Narendra Kumar
- Department of Zoology, Shaheed Mangal Pandey Government Girls Post Graduate College, Meerut, Uttar Pradesh, 250002, India
| | - Raman Rajagopal
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
4
|
Wang Y, Li R, Wang C, Sun T, Zhang H, Zhao F, Liu J, Hao Y, Xie X. The intestinal microbial community and function of Riptortus pedestris at different developmental stages and its effects on development. Front Microbiol 2025; 16:1517280. [PMID: 39935633 PMCID: PMC11813222 DOI: 10.3389/fmicb.2025.1517280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
Introduction Riptortus pedestris is a destructive pest that threatens multiple leguminous crops in China. The intestinal microbiota plays a crucial role in the growth and reproduction of host insects. However, the composition and function of the gut microbiota at different developmental stages remain unclear. Methods Here, metagenomic sequencing was performed to clarify the gut microbial diversity and function in 2nd-, 3rd-, 4th-, and 5th- instar nymphs (2 N-5 N) and female adults (FAs) of R. pedestris and the effects of vital gut bacteria on development was detected. The gut bacteria have the stage specificity, indicating their function in the development of R. pedestris. Results Enterococcus and Caballerronia were the predominant bacteria present during the development of the 2 N-FAs. In addition, the microbial abundances in the 3 N and 4 N guts were significantly greater than those in the others guts. Furthermore, 5 N harbored the abundant microbiota Burkholderia-Paraburkholderia-Caballeronia. The metabolic pathways were significantly enriched from 2 N to FAs. Carbohydrate metabolism, including glycoside hydrolases (GHs) and glycosyl transferases (GTs), occurs throughout the entire developmental stage. Many antibiotic resistance genes (ARGs) were detected from 2 N to FAs. The bacteria from Pseudomonadota and Bacillota presented a broad spectrum of antibiotic resistance. Excitingly, Burkholderia bacteria eliminated by antibiotic treatment were unable to molt normally, and their lifespan was shortened in nymphs, indicating that the gut microbiota had a significant effect on nymph development. Conclusion In summary, our results, for the first time, systematically illustrate the abundance and function across the gut microbiota from the different developmental stages of R. pedestris and demonstrate that the genera Burkholderia are crucial during the development of R. pedestris. This study provides the basis for stinkbug management strategies that focus on the pivotal gut microbiota.
Collapse
Affiliation(s)
- Yanbin Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Rong Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Chunjing Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ting Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hongjuan Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Fang Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Jiehui Liu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Yuqiong Hao
- Key Laboratory of Sustainable Dryland Agriculture (Coconstruction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| | - Xiansheng Xie
- Institute of Wheat Research, Shanxi Agricultural University, Linfen, Shanxi, China
| |
Collapse
|
5
|
Yuan S, Jin G, Cui R, Wang X, Wang M, Chen Z. Transmission and control strategies of antimicrobial resistance from the environment to the clinic: A holistic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177461. [PMID: 39542270 DOI: 10.1016/j.scitotenv.2024.177461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The environment serves as a significant reservoir of antimicrobial resistance (AMR) microbes and genes and is increasingly recognized as key source of clinical AMR. Modern human activities impose an additional burden on environmental AMR, promoting its transmission to clinical setting and posing a serious threat to human health and welfare. Therefore, a comprehensive review of AMR transmission from the environment to the clinic, along with proposed effective control strategies, is crucial. This review systematically summarized current research on the transmission of environmental AMR to clinical settings. Furthermore, the transmission pathways, horizontal gene transfer (HGT) mechanisms, as well as the influential drivers including triple planetary crisis that may facilitate AMR transfer from environmental species to clinical pathogens are highlighted. In response to the growing trend of AMR transmission, we propose insightful mitigation strategies under the One Health framework, integrating advanced surveillance and tracking technologies, interdisciplinary knowledge, multisectoral interventions, alongside multiple antimicrobial use and stewardship approaches to tacking development and spread of AMR.
Collapse
Affiliation(s)
- Shengyu Yuan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Guomin Jin
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Rongxin Cui
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xingshuo Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Meilun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
6
|
Turchi B, Mancini S, Pedonese F, Resci I, Torracca B, Marconi F, Barone C, Nuvoloni R, Fratini F. Antibiotic Resistance in Enterococci and Enterobacteriaceae from Laboratory-Reared Fresh Mealworm Larvae ( Tenebrio molitor L.) and Their Frass. Pathogens 2024; 13:456. [PMID: 38921754 PMCID: PMC11206916 DOI: 10.3390/pathogens13060456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024] Open
Abstract
The occurrence of antibiotic-resistant bacteria in foodstuff involves a human health risk. Edible insects are a precious resource; however, their consumption raises food safety issues. In this study, the occurrence of antibiotic resistant bacteria in laboratory-reared fresh mealworm larvae (Tenebrio molitor L.) and frass was assessed. Antibiotics were not used during the rearing. Enterobacteriaceae and enterococci were isolated from 17 larvae and eight frass samples. In total, 62 and 69 isolates presumed to belong to Enterobacteriaceae and Enterococcus spp., respectively, were obtained and tested for antibiotic susceptibility via disk diffusion. Based on the results, isolates were grouped, and representative resistant isolates were identified at species level through 16S rRNA gene sequencing. For enterococci resistance, percentages higher than 15% were observed for vancomycin and quinupristin-dalfopristin, whereas Enterobacteriaceae resistance higher than 25% was found against cefoxitin, ampicillin, and amoxicillin-clavulanic acid. Based on the species identification, the observed resistances seemed to be intrinsic both for enterococci and Enterobacteriaceae, except for some β-lactams resistance in Shigella boydii (cefoxitin and aztreonam). These could be due to transferable genetic elements. This study suggests the need for further investigations to clarify the role of edible insects in the spreading of antibiotic resistance determinants through the food chain.
Collapse
Affiliation(s)
- Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
- Interdepartmental Center ‘NUTRAFOOD’, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
- Interdepartmental Center ‘NUTRAFOOD’, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Pedonese
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
- Interdepartmental Center ‘NUTRAFOOD’, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Ilaria Resci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
| | - Beatrice Torracca
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
| | - Francesca Marconi
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
| | - Chiara Barone
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
| | - Roberta Nuvoloni
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
- Interdepartmental Center ‘NUTRAFOOD’, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (B.T.); (S.M.); (I.R.); (B.T.); (F.M.); (C.B.); (R.N.); (F.F.)
- Interdepartmental Center ‘NUTRAFOOD’, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
7
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Amalia Bogri
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | | | - Asbjørn Vedel Borchert
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| |
Collapse
|
8
|
Gómez-Brandón M, Beesigamukama D, Probst M, Klammsteiner T, Zhou Y, Zhu YG, Mbi Tanga C. Garden fruit chafer (Pachnoda sinuata L.) accelerates recycling and bioremediation of animal waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 173:131-140. [PMID: 37989012 DOI: 10.1016/j.wasman.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Bioconversion of livestock wastes using insect larvae represents an emerging and effective strategy for waste management. However, knowledge on the role of the garden fruit chafer (Pachnoda sinuataL.) in waste recycling and influence on the diversity ofmicrobial community infrass fertilizeris limited. Here, we determined whether and to what extent the conversion of cattle dung into insect frass fertilizer byP. sinuatainfluences the frass' microbial community and its associated antibiotic resistance genes abundance. Pachnoda sinuata larvae were used to valorise cattle dung into frass fertilizer; samples were collected weekly to determine the composition of bacteria and fungi, and antibiotic resistant genes using molecular tools. Results revealed that bioconversion of cattle dung byP. sinuatalarvae significantly increased the richness of beneficial bacteria in the frass fertilizer by 2.5-folds within 28 days, but fungal richness did not vary during the study. Treatment of cattle dung withP. sinuatalarvae caused 2 - 3-folds decrease in the genes conferring resistance to commonly used antibiotics such as aminoglycoside, diaminopyrimidine, multidrug, sulfonamide and tetracycline within 14 days. Furthermore, the recycling cattle dung using considerably reduced the abundance of mobile genetic elements known to play critical roles in the horizontal transfer of antibiotic resistance genes between organisms. This studyhighlights the efficiency ofsaprohytic insects in recycling animal manure and suppressing manure-borne pathogens in the organic fertilizer products, opening new market opportunities for innovative and safe bio-based products and achieving efficient resource utilization in a circular and green economy.
Collapse
Affiliation(s)
- María Gómez-Brandón
- Grupo de Ecología Animal (GEA), University of Vigo, Vigo 36310, Galicia, Spain
| | - Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Maraike Probst
- Universität Innsbruck, Department of Microbiology, Technikerstraβe 25d, Innsbruck, A-6020, Austria
| | - Thomas Klammsteiner
- Universität Innsbruck, Department of Microbiology, Technikerstraβe 25d, Innsbruck, A-6020, Austria; Universität Innsbruck, Department of Ecology, Technikerstraße 25, Innsbruck, A-6020, Austria
| | - YanYan Zhou
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chrysantus Mbi Tanga
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
9
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
10
|
Ha HTA, Nguyen PTL, Hung TTM, Tuan LA, Thuy BT, Lien THM, Thai PD, Thanh NH, Bich VTN, Anh TH, Hanh NTH, Minh NT, Thanh DP, Mai SNT, The HC, Trung NV, Thu NH, Duong TN, Anh DD, Ngoc PT, Bañuls AL, Choisy M, van Doorn HR, Suzuki M, Hoang TH. Prevalence and Associated Factors of optrA-Positive- Enterococcus faecalis in Different Reservoirs around Farms in Vietnam. Antibiotics (Basel) 2023; 12:954. [PMID: 37370273 PMCID: PMC10294904 DOI: 10.3390/antibiotics12060954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Linezolid is an antibiotic of last resort for the treatment of infections caused by Gram-positive bacteria, including vancomycin-resistant enterococci. Enterococcus faecalis, a member of enterococci, is a significant pathogen in nosocomial infections. E. faecalis resistance to linezolid is frequently related to the presence of optrA, which is often co-carried with fex, phenicol exporter genes, and erm genes encoding macrolide resistance. Therefore, the common use of antibiotics in veterinary might promote the occurrence of optrA in livestock settings. This is a cross-sectional study aiming to investigate the prevalence of optrA positive E. faecalis (OPEfs) in 6 reservoirs in farms in Ha Nam province, Vietnam, and its associated factors and to explore genetic relationships of OPEfs isolates. Among 639 collected samples, the prevalence of OPEfs was highest in flies, 46.8% (51/109), followed by chickens 37.3% (72/193), dogs 33.3% (17/51), humans 18.7% (26/139), wastewater 16.4% (11/67) and pigs 11.3%, (14/80). The total feeding area and total livestock unit of the farm were associated with the presence of OPEfs in chickens, flies, and wastewater. Among 186 OPEfs strains, 86% were resistant to linezolid. The presence of optrA was also related to the resistant phenotype against linezolid and levofloxacin of E. faecalis isolates. Close genotypic relationships identified by Pulsed Field Gel Electrophoresis between OPEfs isolates recovered from flies and other reservoirs including chickens, pigs, dogs, and wastewater suggested the role of flies in the transmission of antibiotic-resistant pathogens. These results provided warnings of linezolid resistance although it is not used in livestock.
Collapse
Affiliation(s)
- Hoang Thi An Ha
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
- Department of Microbiology, Vinh Medical University, Vinh 431000, Vietnam
| | - Phuong Thi Lan Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Tran Thi Mai Hung
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Le Anh Tuan
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Bui Thanh Thuy
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Tran Hoang My Lien
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Pham Duy Thai
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Nguyen Ha Thanh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Vu Thi Ngoc Bich
- Oxford University Clinical Research Unit, Hanoi 100000, Vietnam; (V.T.N.B.); (H.R.v.D.)
| | - Tran Hai Anh
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
| | - Ngo Thi Hong Hanh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Nguyen Thi Minh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Duy Pham Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Si-Nguyen T. Mai
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
| | - Nguyen Vu Trung
- Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam;
| | | | - Tran Nhu Duong
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| | - Pham Thi Ngoc
- National Institute of Veterinary Research, Hanoi 100000, Vietnam;
| | - Anne-Laure Bañuls
- MIVEGEC (IRD-CNRS-Université de Montpellier), LMI DRISA, Centre IRD, 34394 Montpellier, France;
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City 700000, Vietnam; (D.P.T.); (S.-N.T.M.); (H.C.T.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi 100000, Vietnam; (V.T.N.B.); (H.R.v.D.)
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX1 4BH, UK
| | - Masato Suzuki
- National Institute of Infectious Diseases, Tokyo 162-0052, Japan;
| | - Tran Huy Hoang
- Hanoi Medical University, Hanoi 100000, Vietnam; (H.T.A.H.); (T.H.A.)
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam; (P.T.L.N.); (T.T.M.H.); (L.A.T.); (B.T.T.); (T.H.M.L.); (P.D.T.); (N.H.T.); (N.T.H.H.); (N.T.M.); (T.N.D.); (D.D.A.)
| |
Collapse
|