1
|
Han Q, Wang Y, Shi C, Qian Y, Wang X, Wang S, Sun X, Yu Q, Li H. Urban landscape lakes with backwater hide higher antibiotic resistance risk than living water. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138101. [PMID: 40174457 DOI: 10.1016/j.jhazmat.2025.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/04/2025]
Abstract
The pollution of antibiotic resistance genes (ARGs) in urban landscape lakes threatens the aquatic ecosystems and public health. However, a comprehensive understanding of the fate of ARGs in different types of park landscape lakes (i.e., backwater and living water) remains deficient. Here, we profiled the distribution, diversity, origin and potential spread risk to human of ARGs in backwater and living water using metagenomics and 16S rRNA gene sequencing. Our results showed higher antibiotic resistance risk presented in backwater due to higher ARG diversity, while higher resistance transfer risk occurred in living water due to higher mobile genetic elements (MGEs) diversity. Source tracking analysis revealed Yellow River water was the main the dominant source of ARGs in both backwater and living water, with an average contribution of 41.06 % and 65.82 %, respectively. Notably, nine high-risk ARGs (such as mdtM and msrA) significantly enriched in human feces, implying possible spread risk from environment to human. Metagenomics binning revealed that MAGs carrying ARGs mainly belong to Actinobacteria, while MAGs carrying MGEs belong to Proteobacteria. Our study highlights the significance of healthy management of park landscape lakes to prevent the spread of resistomes to the public.
Collapse
Affiliation(s)
- Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yu Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Chenwei Shi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yuan Qian
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaofang Sun
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Wang YN, Cai TG, Li Y, Dai WC, Lin D, Zheng JT, Wang YF, Zhu D. Warming exacerbates the effects of pesticides on the soil collembolan gut microbiome and antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138294. [PMID: 40245716 DOI: 10.1016/j.jhazmat.2025.138294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/27/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
In the context of global climate warming, studies have yet to fully clarify how pollutants affect the gut microbiome and antibiotic resistance genes (ARGs) in nontarget soil fauna. This study investigates the interactive effects of pesticide exposure (imidacloprid) and elevated temperature on the gut bacterial community and ARGs in the model soil collembolan Folsomia candida. Our results demonstrate warming exacerbates the toxicity of imidacloprid in collembolans. While exposure to both warming and pesticide significantly altered the gut microbial composition of F. candida, impairing microbial metabolic diversity and potential host defense mechanisms, it also increased collembolan mortality. This combined exposure significantly enhanced the abundance and diversity of ARGs in the collembolan gut. A notable correlation between ARGs and mobile genetic elements (MGEs) underscores the potential risk of ARG transmission. Co-occurrence network analysis identified 52 bacterial genera as potential ARG hosts. Additionally, pure-culture exposure experiments with the isolated bacterium Serratia liquefaciens revealed the adaptability of ARG hosts to pesticide and warming stress plays an important role in driving the observed increase in ARGs. In conclusion, this study highlights the synergistic effects of climate warming and pesticide contamination on nontarget soil organisms, emphasizing the potential long-term risks to soil ecosystem health and stability.
Collapse
Affiliation(s)
- Ya-Ning Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Gui Cai
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR 999078, China
| | - Wen-Cai Dai
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Da Lin
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Ting Zheng
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Fei Wang
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Dong Zhu
- State Key Laboratory of Regional and Urban Ecology, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
3
|
Serrana JM, Nascimento FJA, Dessirier B, Broman E, Posselt M. Environmental drivers of the resistome across the Baltic Sea. MICROBIOME 2025; 13:92. [PMID: 40189545 PMCID: PMC11974054 DOI: 10.1186/s40168-025-02086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Antimicrobial resistance is a major global health concern, with the environment playing a key role in its emergence and spread. Understanding the relationships between environmental factors, microbial communities, and resistance mechanisms is vital for elucidating environmental resistome dynamics. In this study, we characterized the environmental resistome of the Baltic Sea and evaluated how environmental gradients and spatial variability, alongside its microbial communities and associated functional genes, influence resistome diversity and composition across geographic regions. RESULTS We analyzed the metagenomes of benthic sediments from 59 monitoring stations across a 1,150 km distance of the Baltic Sea, revealing an environmental resistome comprised of predicted antimicrobial resistance genes (ARGs) associated with resistance against 26 antibiotic classes. We observed spatial variation in its resistance profile, with higher resistome diversity in the northern regions and a decline in the dead zones and the southern areas. The combined effects of salinity and temperature gradients, alongside nutrient availability, created a complex environmental landscape that shaped the diversity and distribution of the predicted ARGs. Salinity predominantly influenced microbial communities and predicted ARG composition, leading to clear distinctions between high-saline regions and those with lower to mid-level salinity. Furthermore, our analysis suggests that microbial community composition and mobile genetic elements might be crucial in shaping ARG diversity and composition. CONCLUSIONS We presented that salinity and temperature were identified as the primary environmental factors influencing resistome diversity and distribution across geographic regions, with nutrient availability further shaping these patterns in the Baltic Sea. Our study also highlighted the interplay between microbial communities, resistance, and associated functional genes in the benthic ecosystem, underscoring the potential role of microbial and mobile genetic element composition in ARG distribution. Understanding how environmental factors and microbial communities modulate environmental resistomes will help predict the impact of future environmental changes on resistance mechanisms in complex aquatic ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Joeselle M Serrana
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden.
- Department of Environmental Science (ACES), Stockholm University, 106 91, Stockholm, Sweden.
| | - Francisco J A Nascimento
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
- Department of Ecology, Environment, and Plant Sciences (DEEP), Stockholm University, 106 91, Stockholm, Sweden
| | - Benoît Dessirier
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Elias Broman
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
- Department of Ecology, Environment, and Plant Sciences (DEEP), Stockholm University, 106 91, Stockholm, Sweden
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden
| | - Malte Posselt
- Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91, Stockholm, Sweden
- Department of Environmental Science (ACES), Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
4
|
Barrantes-Jiménez K, Lejzerowicz F, Tran T, Calderón-Osorno M, Rivera-Montero L, Rodríguez-Sánchez C, Wikmark OG, Eiler A, Grossart HP, Arias-Andrés M, Rojas-Jiménez K. Anthropogenic imprint on riverine plasmidome diversity and proliferation of antibiotic resistance genes following pollution and urbanization. WATER RESEARCH 2025; 281:123553. [PMID: 40184705 DOI: 10.1016/j.watres.2025.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
Plasmids are key determinants in microbial ecology and evolution, facilitating the dissemination of adaptive traits and antibiotic resistance genes (ARGs). Although the molecular mechanisms governing plasmid replication, maintenance, and transfer have been extensively studied, the specific impacts of urbanization-induced pollution on plasmid ecology, diversity, and associated ARGs in tropical regions remain underexplored. This study investigates these dynamics in a tropical aquatic ecosystem, providing novel insights into how pollution shapes plasmid composition and function. In contrast to the observed decrease in chromosomal diversity, we demonstrate that pollution associated with urbanization increases the diversity and taxonomic composition of plasmids within a bacterial community (plasmidome). We analyzed eighteen water and sediment metagenomes, capturing a gradient of pollution and ARG contamination along a tropical urban river. Plasmid and chromosomal diversity profiles were found to be anti-correlated. Plasmid species enrichment along the pollution gradient led to significant compositional differences in water samples, where differentially abundant species suggest plasmid maintenance within specific taxonomic classes. Additionally, the diversity and abundance of ARGs related to the plasmidome increased concomitantly with the intensity of fecal and chemical pollution. These findings highlight the critical need for targeted plasmidome studies to better understand plasmids' environmental spread, as their dynamics are independent of chromosomal patterns. This research is crucial for understanding the consequences of bacterial evolution, particularly in the context of environmental and public health.
Collapse
Affiliation(s)
- Kenia Barrantes-Jiménez
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional and Universidad Estatal a Distancia, San José, Costa Rica; Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica
| | - Franck Lejzerowicz
- Section for Aquatic Biology and Toxicology, Blindernveien 31 0371 Oslo, University of Oslo, Norway
| | - Tam Tran
- NORCE, Siva Innovasjonssenter, Sykehusvn 21, 9019 Tromsø, Norway
| | - Melany Calderón-Osorno
- Costa Rica National High Technology Center (CeNAT), P.O. Box: 1174-1200, San José, Costa Rica
| | - Luis Rivera-Montero
- Health Research Institute, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica
| | - César Rodríguez-Sánchez
- Faculty of Microbiology & Research Center for Tropical Diseases (CIET), University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica
| | | | - Alexander Eiler
- Section for Aquatic Biology and Toxicology, Blindernveien 31 0371 Oslo, University of Oslo, Norway
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Department 3, Plankton and Microbial Ecology, Zur Alten Fischerhuette 2, 16775 Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, D-14469 Potsdam, Germany
| | - María Arias-Andrés
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, Campus Omar Dengo, P.O. Box 86-3000, Heredia, Costa Rica.
| | - Keilor Rojas-Jiménez
- Biology School, University of Costa Rica, P.O. Box: 11501-2060, San José, Costa Rica.
| |
Collapse
|
5
|
Chen X, Gao L, Kou Y, Wang X, Li X, He H, Wang M. Composition, Distribution and Mobility Potential of the Antibiotic Resistome in Sediments from the East China Sea Revealed by Metagenomic Analysis. Microorganisms 2025; 13:697. [PMID: 40142589 PMCID: PMC11944410 DOI: 10.3390/microorganisms13030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Marine sediments are recognized as crucial reservoirs of antibiotic resistance genes (ARGs). However, the antibiotic resistome in sediments of the East China Sea, an area heavily impacted by human activities, has not been thoroughly studied. Here, we conducted a systematic investigation into the antibiotic resistome in these sediments using metagenomic analysis. Overall, we detected eighty ARG subtypes and nineteen ARG types. Beta-lactams were the dominant ARG type, and Gammaproteobacteria was the main ARG host in this study. Mobile genetic elements (MGEs) were not major drivers of ARG profiles. Although the ARG host communities significantly differed between the spring and autumn (p < 0.05), the antibiotic resistome remained stable across the two seasons. The assembly of ARGs and their hosts was governed by stochastic processes, and a high ratio of stochastic processes implied its crucial role in the assembly and stabilization of the antibiotic resistome. Co-occurrence network analysis revealed an important role of Deltaproteobacteria in the stabilization of ARG profiles across seasons. Environmental parameters (e.g., temperature and density) played certain roles in the stabilization of the antibiotic resistome between spring and autumn. Moreover, nine human pathogen bacteria (HPB) were detected in this study. We also found that the health risks caused by ARGs were relatively higher in the spring. Our results will provide a strong foundation for the development of targeted management strategies to mitigate the further dissemination and spread of ARGs in marine sediments.
Collapse
Affiliation(s)
- Xiaozhong Chen
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Long Gao
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Yanxue Kou
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Xiaoxuan Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Xintong Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Hui He
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Min Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
- Haide College, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Urrea V, Páez-Triana L, Velásquez-Ortiz N, Camargo M, Patiño LH, Vega L, Ballesteros N, Hidalgo-Troya A, Galeano LA, Ramírez JD, Muñoz M. Metagenomic Analysis of Surface Waters and Wastewater in the Colombian Andean Highlands: Implications for Health and Disease. Curr Microbiol 2025; 82:162. [PMID: 40021498 PMCID: PMC11870934 DOI: 10.1007/s00284-024-04019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
Urban water bodies serve as critical reservoirs of microbial diversity, with major implications for public health and environmental quality. This study aimed to characterize the microbial diversity of surface waters and wastewater from the Pasto River in the Colombian Andean Highlands, offering insights that may support water quality monitoring efforts. Sampling was conducted at three river sites and one wastewater location. Standard physicochemical and microbiological analyses were performed, including real-time PCR to detect protozoan pathogens Giardia spp. and Cryptosporidium spp. Metagenomic sequencing provided an in-depth taxonomic and functional profile of microbial communities through two complementary approaches: (i) read-based analysis to identify abundant families and species, both pathogenic and beneficial, and (ii) detection of health-related molecular markers, including antimicrobial resistance markers and virulence factors. Physicochemical analyses showed distinct profiles between wastewater and surface water, with wastewater exhibiting elevated levels of suspended solids (113.6 mg/L), biochemical oxygen demand (BOD, 311.2 mg/L), and chemical oxygen demand (COD, 426.7 mg/L). Real-time PCR detected Giardia spp. DNA in 75% (76/102) of the samples and Cryptosporidium spp. DNA in 94% (96/102) of samples. The metagenomic read-based profiling identified Aeromonas media as a prevalent pathogen and Polaromonas naphthalenivorans as a potential biodegradative agent. The metagenomic assembly produced 270 high-quality genomes, revealing 16 bacterial species (e. g., Acinetobacter johnsonii and Megamonas funiformis) that provided insights into fecal contaminants and native aquatic microbes. Functional profiling further revealed a high prevalence of antimicrobial resistance markers, particularly for tetracyclines, aminoglycosides, and macrolides, with the highest abundance found in wastewater samples. Additionally, virulence factors were notably present in Zoogloea ramigera. The findings underscore the value of metagenomic profiling as a comprehensive tool for water quality monitoring, facilitating the detection of pathogens, beneficial species, and molecular markers indicative of potential health risks. This approach supports continuous monitoring efforts, offering actionable data for water management strategies to safeguard public health and maintain ecological integrity.
Collapse
Affiliation(s)
- Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, 250027, Funza, Cundinamarca, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Arsenio Hidalgo-Troya
- Grupo de Investigación Salud Pública, Departamento de Matemáticas y Estadística, Universidad de Nariño, 520002, Pasto, Colombia
| | - Luis-Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, 520002, Pasto, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, 111321, Bogotá, Colombia.
| |
Collapse
|
7
|
Shen Z, Yu B, Chen X, Wang C, Li X, Gao G, Shao K, Tang X. Warming reduces bacterial diversity and stability in Lake Bosten. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124352. [PMID: 39904234 DOI: 10.1016/j.jenvman.2025.124352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Understanding the effects of warming on bacterial communities is essential for predicting microbial responses to climate change in aquatic ecosystems. However, the mechanisms through which warming influences bacterial diversity and stability in lake ecosystems remain poorly understood. To address this gap, we conducted a mesocosm experiment in Lake Bosten, a climate change hotspot, with three temperature scenarios (26 °C, 29 °C, and 32 °C), and investigated bacterial diversity, community composition, potential functions, and stability. Our findings revealed that temperature, time, and their interactions significantly reduced bacterial α-diversity (two-way ANOVA: P < 0.05). Warming altered bacterial potential metabolic functions, with decreases in methanotrophy and methylotrophy and increases in phototrophy and photoheterotrophy. Warming also increased species replacement within bacterial communities, indicating a dynamic shift in community composition. Network analysis indicated heightened complexity under higher temperatures but also a decrease in bacterial stability, evidenced by higher average variation degree (AVD), increased vulnerability, and reduced robustness. Overall, our study highlights the profound effects of warming on the ecological dynamics of lake bacterial communities, underscoring the need for further research to understand and mitigate the impacts of global climate change on aquatic ecosystems.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Chen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Wang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xingchen Li
- School of Earth and Environment, Anhui University of Science & Technology, Huainan, 232000, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Yu K, He B, Xiong J, Kan P, Sheng H, Zhi S, Zhu DZ, Yao Z. Deciphering basic and key traits of bio-pollutants in a long-term reclaimed water headwater urban stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177696. [PMID: 39577583 DOI: 10.1016/j.scitotenv.2024.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Reclaimed water has been recognized as a stable water resource for ecological replenishment in riverine environment. However, information about the bio-pollutants spatial and temporal distributions and the associated risk in this environment remains insufficient. Herein, the bio-pollutant profile in a long-term reclaimed water headwater urban stream, including antibiotic resistance genes (ARGs), mobile genetic elements and pathogens, were revealed by metagenomics. Notably, the temporal variation in bio-pollutant levels exceeded spatial fluctuations, possibly due to the varied rainfall intensity. Specially, multidrug resistance genes and Acinetobacter baumannii (A. baumannii) were the dominant ARGs and pathogens, respectively, exhibiting higher abundance in the dry season, especially in the downstream of the receiving point, where the bio-risk also peaked. A. baumannii and Ralstonia solanacearum were found to be the main plasmids contributors inducing the horizontal gene transfer process in this stream. Overall, A. baumannii contributed over 50 % bio-risk values in most samples, indicating that it was the "overlord" in this headwater urban stream. This study revealed characteristics of bio-pollutants in a typical long-term reclaimed water headwater urban stream, highlighting the superiority of A. baumannii in bio-pollutants, which should be a key consideration in the bio-pollutants surveillance for reclaimed waters.
Collapse
Affiliation(s)
- Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bin He
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
9
|
Wang F, Hu Z, Wang W, Wang J, Xiao Y, Shi J, Wang C, Mai W, Li G, An T. Selective enrichment of high-risk antibiotic resistance genes and priority pathogens in freshwater plastisphere: Unique role of biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135901. [PMID: 39305601 DOI: 10.1016/j.jhazmat.2024.135901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 12/01/2024]
Abstract
Microplastics (MPs) has been concerned as emerging vectors for spreading antibiotic resistance and pathogenicity in aquatic environments, but the role of biodegradable MPs remains largely unknown. Herein, field in-situ incubation method combined with metagenomic sequencing were employed to reveal the dispersal characteristics of microbial community, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and virulence factors (VFs) enriched by MPs biofilms. Results showed that planktonic microbes were more prone to enrich on biodegradable MPs (i.e., polyhydroxyalkanoate and polylactic acid) than non-biodegradable MPs (i.e., polystyrene, polypropylene and polyethylene). Distinctive microbial communities were assembled on biodegradable MPs, and the abundances of ARGs, MGEs, and VFs on biofilms of biodegradable MPs were much higher than that of non-biodegradable MPs. Notably, network analysis showed that the biodegradable MPs selectively enriched pathogens carrying ARGs, VFs and MGEs concurrently, suggesting a strong potential risks of co-spreading antibiotic resistance and pathogenicity through horizontal gene transfer. According to WHO priority list of Antibiotic Resistant Pathogens (ARPs) and ARGs health risk assessment framework, the highest abundances of Priority 1 ARPs and Rank I risk ARGs were found on polylactic acid and polyhydroxyalkanoate, respectively. These findings elucidate the unique and critical role of biodegradable MPs for selective enrichment of high-risk ARGs and priority pathogens in freshwater environments.
Collapse
Affiliation(s)
- Fan Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhixun Hu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; Shenzhen Water Group Co., Ltd., Shenzhen 518031, China
| | - Wanjun Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiaxin Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongyin Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialin Shi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chao Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weicong Mai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
10
|
Chen A, Zhang T, Cheng F, Yang H, Guo Z, Zhao S, Zhang YN, Qu J. Comprehensive analysis and risk assessment of Antibiotic contaminants, antibiotic-resistant bacteria, and resistance genes: Patterns, drivers, and implications in the Songliao Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124852. [PMID: 39216670 DOI: 10.1016/j.envpol.2024.124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The pervasive use of antibiotics has raised substantial environmental concerns, especially regarding their temporal and spatial distribution across diverse water systems. This study addressed the gap in comprehensive research on antibiotic contamination during different hydrological periods, focusing on the Jilin section of the Songliao Basin in Northeast China, an area with severe winter ice cover. The study examined the occurrence, distribution, influencing factors, and potential ecological risks of prevalent antibiotic contaminants. Findings revealed antibiotic concentrations ranging from 239.64 to 965.81 ng/L, with antibiotic resistance genes (ARGs) at 5.22 × 10-2 16S rRNA-1 and antibiotic-resistant bacteria (ARB) up to 5.76 log10 CFU/mL. Ecological risk assessments identified significant risks to algae from oxytetracycline, erythromycin, and amoxicillin. Redundancy analysis and co-occurrence networks with ordinary least squares (OLS) demonstrated that the dispersion of ARGs and ARB is significantly influenced by environmental factors such as total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), fluoride (F⁻), and nitrate (NO₃⁻). These elements, along with mobile genetic elements (MGEs), play crucial roles in ARG patterns (R2 = 0.94, p ≤ 0.01). This investigation offers foundational insights into antibiotic pollution dynamics in cold climates, supporting the development of targeted mitigation strategies for aquatic systems.
Collapse
Affiliation(s)
- Anjie Chen
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhengfeng Guo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
11
|
Zhang Y, Xia Z, Zuo Y, Ding J, Wang J, Qu W. The increase of particle size shifts the biogeochemical cycle functions of mineral-associated microorganisms and weakens the mineral-associated organic carbon sink in mangrove soils. Appl Environ Microbiol 2024; 90:e0127224. [PMID: 39254329 PMCID: PMC11497786 DOI: 10.1128/aem.01272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
Mineral-organic matter-microbe interactions greatly impact the biogeochemical processes and biodiversity in soils. An increasing trend of particle size (PS) in mangrove soils has been observed because of the relative sea level rise. However, the impacts of PS increase on the microbial biogeochemical functions and carbon sink in the mineral-associated microcosms are exceedingly nebulous. This work showed a remarkable difference in the communities of mineral-associated microorganisms (MMOs) in various PS fractions. Heavy metal contents and urease activity were the factors that mostly driven the MMO community variation in different PS fractions. Large PS fraction attenuated the stability of MMO communities according to the co-occurrence network characteristics. The PS increase significantly (P < 0.05) lowered the gene abundances for carbon input (e.g., carbon fixation) and raised the gene abundances for carbon loss (e.g., aerobic respiration). Combined with the significant decrease of mineral-associated organic carbon (MOC) in large PS fraction (P < 0.05), this work inferred that the PS increase could weaken the MOC sink partially due to the MMO function shift for carbon cycle. The current work indicated unhealthy changes of MMO communities and MOC storage in mangrove soils, and PS was of significance as an indicator for predicting the carbon sink function, especially for the stable form, such as MOC, in the soils of mangroves under the ecological background of climate migration. IMPORTANCE Carbon with stable forms, such as mineral-associated organic carbon (MOC), is crucial for the sink capabilities in mangrove soils, and mineral-associated microorganisms (MMOs) are important players for the formation and metabolism of MOC. Therefore, the future successions of the MMO functions and MOC contents under the background of climate change are of value for a deeper understanding of mangrove ecology. The relative sea level rise caused by the global warming results in the increase of mangrove soil particle size (PS), which provides distinct microcosms for MMOs and MOC. However, the responses of MMO functions and MOC content to the PS increase of mangrove soils are unknown. The current study aims to reveal the succession regulations of MMO functions and their potential ecological impacts for the storages of MOC in different PS fractions, therefore widening our knowledge of future function migration and promoting the research development of mangrove.
Collapse
Affiliation(s)
- Yixuan Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Ziqin Xia
- Zhejiang Ocean University-University of Pisa Marine Graduate School, Zhoushan, China
| | - Yaqiang Zuo
- Zhejiang Ocean University-University of Pisa Marine Graduate School, Zhoushan, China
| | - Junjie Ding
- Zhejiang Ocean University-University of Pisa Marine Graduate School, Zhoushan, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
12
|
Ding J, Yang W, Liu X, Zhao J, Fu X, Zhang F, Liu H. Hydraulic conditions control the abundance of antibiotic resistance genes and their potential host microorganisms in a frequently regulated river-lake system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174143. [PMID: 38908594 DOI: 10.1016/j.scitotenv.2024.174143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Antibiotic resistance genes (ARGs) are a growing problem that is widespread in river-lake ecosystems, where they pose a threat to the aquatic environment's health and public safety. These systems serve as critical nodes in water management, as they facilitate the equitable allocation of water resources through long-term and frequent water diversions. However, hydrological disturbances associated with water-regulation practices can influence the dynamics of their potential host microorganisms and associated resistance genes. Consequently, identifying the key ARGs and their resistance mechanisms in heavily regulated waters is vital for safeguarding human health and that of river-lake ecosystems. In this study, we examined the impact of water-regulation factors on ARGs and their hosts within a river-lake continuum using 16S rRNA and metagenomic sequencing. We found that a significant increase in ARG abundance during regulation periods (p < 0.05), especially in the aquatic environment. Key resistance genes were macB, tetA, evgS, novA, and msbA, with increased efflux pinpointed as their principal resistance mechanism. Network analysis identified Flavobacteriales, Acinetobacter, Pseudomonas, Burkholderiaceae, and Erythrobacter as key potential host microorganisms, which showed increased abundance within the water column during regulation periods (p < 0.05). Flow velocity and water depth both drove the host microorganisms and critical ARGs. Our findings underscore the importance of monitoring and mitigating the antibiotic resistance risk during water transfers in river-lake systems, thereby supporting informed management and conservation strategies.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiayue Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xianting Fu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fangfei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
13
|
Fernández Salgueiro M, Cernuda Martínez JA, Gan RK, Arcos González P. Climate change and antibiotic resistance: A scoping review. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70008. [PMID: 39267332 PMCID: PMC11393301 DOI: 10.1111/1758-2229.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024]
Abstract
This scoping review aimed to investigate the potential association between climate change and the rise of antibiotic resistance while also exploring the elements of climate change that may be involved. A scoping review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews, comprehensively searching scientific literature up to 31 January 2024. Multiple databases were utilized, including MEDLINE, Web of Science and SCOPUS. Various search strategies were employed, and selection criteria were established to include articles relevant to antibiotic resistance and climate change. The review included 30 selected articles published predominantly after 2019. Findings from these studies collectively suggest that rising temperatures associated with climate change can contribute to the proliferation of antibiotic resistance, affecting diverse ecosystems. This phenomenon is observed in soil, glaciers, rivers and clinical settings. Rising temperatures are associated with a rise in the prevalence of antibiotic resistance across various environments, raising concerns for global health. However, these studies provide valuable insights but do not establish a definitive causal link between environmental temperature and antibiotic resistance. The selective pressure exerted by antibiotics and their residues in ecosystems further complicates the issue.
Collapse
Affiliation(s)
| | | | - Rick Kye Gan
- Unit for Research in Emergency and DisasterUniversity of OviedoOviedoSpain
| | | |
Collapse
|
14
|
Zhang T, Gui Q, Gao Y, Wang Z, Kong M, Xu S. Seasonal hydrological dynamics affected the diversity and assembly process of the antibiotic resistome in a canal network. ENVIRONMENTAL RESEARCH 2024; 252:118841. [PMID: 38582418 DOI: 10.1016/j.envres.2024.118841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
The significant threat of antibiotic resistance genes (ARGs) to aquatic environments health has been widely acknowledged. To date, several studies have focused on the distribution and diversity of ARGs in a single river while their profiles in complex river networks are largely known. Here, the spatiotemporal dynamics of ARG profiles in a canal network were examined using high-throughput quantitative PCR, and the underlying assembly processes and its main environmental influencing factors were elucidated using multiple statistical analyses. The results demonstrated significant seasonal dynamics with greater richness and relative abundance of ARGs observed during the dry season compared to the wet season. ARG profiles exhibited a pronounced distance-decay pattern in the dry season, whereas no such pattern was evident in the wet season. Null model analysis indicated that deterministic processes, in contrast to stochastic processes, had a significant impact on shaping the ARG profiles. Furthermore, it was found that Firmicutes and pH emerged as the foremost factors influencing these profiles. This study enhanced our comprehension of the variations in ARG profiles within canal networks, which may contribute to the design of efficient management approaches aimed at restraining the propagation of ARGs.
Collapse
Affiliation(s)
- Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Qiyao Gui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; College of Environment, Hohai University, Nanjing, 210024, China
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Zhiyuan Wang
- The National Key Laboratory of Water Disaster Prevention, Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Sai Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
15
|
Zhang Y, Wang M, Zhou X, Cheng W, Ren J, Wan T, Liu X. Transmission mechanism of antibiotic resistance genes and their differences between water and sediment in the Weihe River Basin. ENVIRONMENTAL RESEARCH 2024; 252:119057. [PMID: 38705450 DOI: 10.1016/j.envres.2024.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Antibiotic resistance genes (ARGs) are emerging microbial pollutants that are regulated by many factors and pose potential threats to aquatic environments. In this study, we used network analysis, correlation analysis, and constructed models based on metagenomic sequencing results to explore the spatial patterns, impact mechanisms, transmission risks and differences in ARGs in the water and sediment of the Weihe River Basin. The findings revealed notable disparities in ARGs, mobile genetic elements (MGEs), and bacterial communities. In the sediment, the abundance of ARGs was considerably greater than that in water. Moreover, the percentage of ARGs shared by the two components reached a value of 85.8%. Through network analysis, it was determined that the presence of 16 MGEs and 20 bacterial phyla was strongly associated with ARGs (R2 > 0.7, P < 0.05). The Mantel test showed that abiotic factors including DO, pH, nutrients, and heavy metals played important roles in the distribution of ARGs (P < 0.05). A structural equation model revealed that the key factors influencing the distribution of ARGs in water were bacterial diversity and environmental parameters (standardized effects of -0.730 and -0.667), and those in sediment were bacterial diversity and MGEs (standardized effects of -0.751 and 0.851). Neutral modeling indicated that deterministic processes played an important role in the assembly of ARGs in the water of the Weihe River Basin, and stochastic processes were dominant in the sediment. There was a highly significant positive linear correlation between ARGs and pathogens, and there was more complex co-occurrence in the water than in the sediment (R2 > 0.9, P < 0.05), with stronger migration and transmission occurring. Exploring ARGs in large-scale watersheds is immensely important for elucidating their traits and transmission mechanisms and consequently paving the way for the formulation of efficient strategies to mitigate resistance threats.
Collapse
Affiliation(s)
- Yutong Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Min Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Xiaoping Zhou
- Power China Northwest Engineering Corporation Limited, Xi'an, Shaanxi, China
| | - Wen Cheng
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China.
| | - Jiehui Ren
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Tian Wan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| | - Xiaoyan Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China; Institute of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, China
| |
Collapse
|
16
|
Xu D, Zhang X, Usman S, Bai J, Sheoran N, Guo X. Reducing transmission of high-risk antibiotic resistance genes in whole-crop corn silage through lactic acid bacteria inoculation and increasing ensiling temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172114. [PMID: 38561127 DOI: 10.1016/j.scitotenv.2024.172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
The microbial hosts of antibiotic resistance genes (ARGs) found epiphytically on plant materials could grow and flourish during silage fermentation. This study employed metagenomic analysis and elucidated the occurrence and transmission mechanisms of ARGs and their microbial hosts in whole-crop corn silage inoculated with homofermentative strain Lactiplantibacillus plantarum or heterofermentative strain Lentilactobacillus buchneri ensiled under different temperature (20 and 30 °C). The results revealed that the corn silage was dominated by Lactobacillus, Leuconostoc, Lentilactobacillus, and Latilactobacillus. Both the ensiling temperature and inoculation had greatly modified the silage microbiota. However, regardless of the ensiling temperature, L. buchneri had significantly higher ARGs, while it only exhibited significantly higher mobile genetic elements (MGEs) in low temperature treatments. The microbial community of the corn silage hosted highly diverse form of ARGs, which were primarily MacB, RanA, bcrA, msbA, TetA (58), and TetT and mainly corresponded to macrolides and tetracyclines drug classes. Plasmids were identified as the most abundant MGEs with significant correlation with some high-risk ARGs (tetM, TolC, mdtH, and NorA), and their abundances have been reduced by ensiling process. Furthermore, higher temperature and L. buchneri reduced abundances of high-risk ARGs by modifying their hosts and reduced their transmission in the silage. Therefore, ensiling, L. buchneri inoculation and higher storage temperature could improve the biosafety of corn silage.
Collapse
Affiliation(s)
- Dongmei Xu
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Xia Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Samaila Usman
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Jie Bai
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Neha Sheoran
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Sikder S, Toha M, Anik AH, Sultan MB, Alam M, Parvin F, Tareq SM. A comprehensive review on the fate and impact of antibiotic residues in the environment and public health: A special focus on the developing countries. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e10987. [PMID: 38342763 DOI: 10.1002/wer.10987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
The widespread application of antibiotics in human and veterinary medicine has led to the pervasive presence of antibiotic residues in the environment, posing a potential hazard to public health. This comprehensive review aims to scrutinize the fate and impact of antibiotic residues, with a particular focus on the context of developing nations. The investigation delves into the diverse pathways facilitating the entry of antibiotics into the environment and meticulously examines their effects on human health. The review delineates the current state of antibiotic residues, evaluates their exposure in developing nations, and elucidates existing removal methodologies. Additionally, it probes into the factors contributing to the endurance and ecotoxicity of antibiotic residues, correlating these aspects with usage rates and associated mortalities in these nations. The study also investigates removal techniques for antibiotic residues, assessing their efficiency in environmental compartments. The concurrent emergence of antibiotic-resistant bacteria, engendered by antibiotic residues, and their adverse ecological threats underscore the necessity for enhanced regulations, vigilant surveillance programs, and the adoption of sustainable alternatives. The review underlines the pivotal role of public education and awareness campaigns in promoting responsible antibiotic use. The synthesis concludes with strategic recommendations, strengthening the imperative for further research encompassing comprehensive monitoring, ecotoxicological effects, alternative strategies, socio-economic considerations, and international collaborations, all aimed at mitigating the detrimental effects of antibiotic residues on human health and the environment. PRACTITIONER POINTS: Antibiotic residues are widely distributed in different environmental compartments. Developing countries use more antibiotics than developed countries. Human and veterinary wastes are one of the most responsible sources of antibiotic pollution. Antibiotics interact with biological systems and trigger pharmacological reactions at low doses. Antibiotics can be removed using modern biological, chemical, and physical-chemical techniques.
Collapse
Affiliation(s)
- Sadia Sikder
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
- Department of Environmental Science and Disaster Management, Daffodil International University, Birulia, Savar, Dhaka, Bangladesh
| | - Mohammad Toha
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
| | - Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Fahmida Parvin
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Shafi M Tareq
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Bangladesh
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
18
|
Jiang C, Zhao Z, Zhu D, Pan X, Yang Y. Rare resistome rather than core resistome exhibited higher diversity and risk along the Yangtze River. WATER RESEARCH 2024; 249:120911. [PMID: 38039820 DOI: 10.1016/j.watres.2023.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
As important freshwater ecosystems, the occurrence and distribution of antibiotic resistance genes (ARGs) in rivers are relevant to public health. However, studies investigating ARGs of different environmental media in river ecosystems are limited. In this study, we analyzed the ARGs of microbes in free-living setting, particle-associated setting, sediment and bank soil of the Yangtze River using metagenomics. Twenty-six ARGs were found in all samples regardless of media (core resistome) with a diversity of 8.6 %-34.7 %, accounting for 22.7 %-89.2 % of the relative abundance of the overall ARGs. The core resistome of the Yangtze River was dominated by multidrug resistance genes consisting mainly of efflux pumps and bacitracin resistance genes. The rare resistome was dominated by multidrug, sulfonamide, and aminoglycoside resistance genes. The core resistome was more prevalent in chromosomes, implying that these ARGs with low diversity and high relative abundance may be intrinsic to microbes in the Yangtze River. The rare resistome was more prevalent in plasmids, suggesting these ARGs with high diversity and low relative abundance were acquired under environmental stresses and had transfer potential. Additionally, we found that core and rare resistome were mainly carried by specific bacteria. Noteworthily, twenty-two ARGs of high clinical concern were identified in rare resistome, especially aac(6')-I, sul1, and tetM, which were plasmid-borne and hosted by clinically relevant pathogens. Both core and rare resistome hosts showed the highest niche breadths in particle-associated setting compared to other media, and particle-associated setting could provide more stable and ideal conditions for resistome hosts to survive. This study elucidated the genetic locations of ARGs and the community assembly mechanisms of ARG hosts in freshwater environments.
Collapse
Affiliation(s)
- Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Zelong Zhao
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic Animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan, 430014, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| |
Collapse
|
19
|
Ke Y, Sun W, Xue Y, Zhu Y, Yan S, Xie S. Effects of treatments and distribution on microbiome and antibiotic resistome from source to tap water in three Chinese geographical regions based on metagenome assembly. WATER RESEARCH 2024; 249:120894. [PMID: 38016224 DOI: 10.1016/j.watres.2023.120894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Antibiotic resistance genes (ARGs) represent emerging environmental pollutants that present health risks. Drinking water supply systems (DWSSs), including sources to tap water, play crucial roles in the dissemination and propagation of ARGs. However, there was a paucity of knowledge on the relative abundance, diversity, mobility, and pathogenic hosts of ARGs in DWSSs from source to tap. Therefore, the effects of treatments and distributions on the microbial community and ARGs from three geographical regions (downstream areas of the Yellow, Yangtze, and Pearl Rivers) were elucidated in the present study. Treatment processes lowered the complexity of the microbial community network, whereas transportation increased it. The assembly mechanisms of the microbial community and antibiotic resistome were primarily driven by stochastic processes. Distribution greatly increased the contribution of stochastic processes. Multidrug ARGs (for example, multidrug transporter and adeJ) and bacitracin ARG (bacA) were the primary mobile ARGs in drinking water, as identified by the metagenomic assembly. Achromobacter xylosoxidans, Acinetobacter calcoaceticus, and Acinetobacter junii harbored diverse multidrug ARGs and mobile genetic elements (MGEs) (recombinases, integrases, and transposases) as potential pathogens and were abundant in the disinfected water. Environmental factors, including pH, chlorine, latitude, longitude, and temperature, influenced the ARG abundance by directly regulating the MGEs and microbial community diversity. This study provides critical information on the fate, mobility, host pathogenicity, and driving factors of ARGs in drinking water, which is conducive to ARG risk assessment and management to provide high-quality drinking water to consumers.
Collapse
Affiliation(s)
- Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| | - Yanei Xue
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Hu X, Bi J, Yu Q, Li H. Metagenomics reveals the divergence of gut microbiome composition and function in two common pika species (Ochotona curzoniae and Ochotona daurica) in China. FEMS Microbiol Lett 2024; 371:fnae092. [PMID: 39500545 DOI: 10.1093/femsle/fnae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
Gut microbiome plays crucial roles in animal adaptation and evolution. However, research on adaptation and evolution of small wild high-altitude mammals from the perspective of gut microbiome is still limited. In this study, we compared differences in intestinal microbiota composition and function in Plateau pikas (Ochotona curzoniae) and Daurian pikas (O. daurica) using metagenomic sequencing. Our results showed that microbial community structure had distinct differences in different pika species. Prevotella, Methanosarcina, Rhizophagus, and Podoviridae were abundant bacteria, archaea, eukaryotes, and viruses in Plateau pikas, respectively. However, Prevotella, Methanosarcina, Ustilago, and Retroviridae were dominated in Daurian pikas. Functional pathways related to carbohydrate metabolism that refer to the utilization of pectin, hemicellulose, and debranching enzymes were abundant in Plateau pikas, while the function for degradation of chitin, lignin, and cellulose was more concentrated in Daurian pikas. Pika gut had abundant multidrug resistance genes, followed by glycopeptide and beta-lactamase resistance genes, as well as high-risk antibiotic resistance genes, such as mepA, tetM, and bacA. Escherichia coli and Klebsiella pneumoniae may be potential hosts of mepA. This research provided new insights for adaptation and evolution of wild animals from perspective of gut microbiome and broadened our understanding of high-risk antibiotic resistance genes and potential pathogens of wild animals.
Collapse
Affiliation(s)
- Xueqian Hu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jie Bi
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiota, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiota, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| |
Collapse
|
21
|
Shen Z, Yu B, Shao K, Gao G, Tang X. Warming reduces microeukaryotic diversity, network complexity and stability. ENVIRONMENTAL RESEARCH 2023; 238:117235. [PMID: 37775010 DOI: 10.1016/j.envres.2023.117235] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Unraveling how climate warming affects microorganisms and the underlying mechanisms has been a hot topic in climate change and microbial ecology. To date, many studies have reported microbial responses to climate warming, especially in soil ecosystems, however, knowledge of how warming influences microeukaryotic diversity, network complexity and stability in lake ecosystems, in particular the possible underlying mechanisms, is largely unknown. To address this gap, we conducted 20 mesocosms spanning five temperature scenarios (26 °C, 27.5 °C, 29 °C, 30.5 °C, and 32 °C) in Lake Bosten, a hotspot for studying climate change, and investigated microeukaryotic communities using 18S rRNA gene sequencing. Our results demonstrated that warming, time, and their interactions significantly reduced microeukaryotic α-diversity (two-way ANOVA: P<0.01). Although warming did not significantly affect microeukaryotic community structure (ANOSIM: P>0.05), it enhanced species turnover. Microeukaryotic networks exhibited distinct co-occurrence patterns and topological properties across temperature scenarios. Warming reduced network complexity and stability, as well as altered species interactions. Collectively, these findings are likely to have implications for ecological management of lake ecosystems, in particular semi-arid and arid regions, and for predicting ecological consequences of climate change.
Collapse
Affiliation(s)
- Zhen Shen
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bobing Yu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keqiang Shao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangming Tang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Li J, Yang Z, Zhu Q, Zhong G, Liu J. Biodegradation of soil agrochemical contamination mitigates the direct horizontal transfer risk of antibiotic resistance genes to crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166454. [PMID: 37607639 DOI: 10.1016/j.scitotenv.2023.166454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Microorganisms can drive a substrate-specific biodegradation process to mitigate soil contamination resulting from extensive agrochemical usage. However, microorganisms with high metabolic efficiency are capable of adapting to the co-occurrence of non-substrate contaminants in the soil (particularly antibiotics). Therefore, the utilization of active microorganisms for biodegradation raises concerns regarding the potential risk of antibiotic resistance development. Here, the horizontal transfer risk of antibiotic-resistance genes (ARGs) in the soil-plant biota was assessed during biodegradation by the newly isolated Proteus terrae ZQ02 (which shortened the half-life of fungicide chlorothalonil from 9.24 d to 2.35 d when exposed to tetracycline). Based on metagenomic analyses, the distribution of ARGs and mobile genetic elements (MGEs) was profiled. The ARGs shared with ∼118 core genes and mostly accumulated in the rhizosphere and maize roots. After ZQ02 was inoculated, the core genes of ARGs reduced significantly in roots. In addition, the Pseudomonas and Proteus genera were identified as the dominant microbial hosts of ARGs and MGEs after ZQ02 adoption. The richness of major ARG hosts increased in soil but barely changed in the roots, which contributed to the mitigation of hosts-mediated ARGs transfer from soil to maize. Finally, the risk of ARGs has been assessed. Compared with the regular planting system, the number of risky ARGs declined from 220 (occupied 4.77 % of the total ARGs) to 143 (occupied 2.67 %) after biodegradation. Among these, 23 out of 25 high-risk genes were aggregated in the soil whereas only 2 genes were identified in roots, which further verified the low antibiotic resistance risk for crop after biodegradation. In a nutshell, this work highlights the critical advantage of ZQ02-based biodegradation that alleviating the ARGs transfer risks from soil to crop, which offers deeper insights into the versatility and feasibility of bioremediation techniques in sustainable agriculture.
Collapse
Affiliation(s)
- Jinhong Li
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Zhengyi Yang
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Qi Zhu
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, Guangzhou, P.R. China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P.R. China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P.R. China.
| |
Collapse
|
23
|
Li J, Li L, Li Q, Fang W, Sun Y, Lu Y, Wang J, Zhu Y, Zhang Y. Distribution and relationship of antibiotics, heavy metals and resistance genes in the upstream of Hanjiang River Basin in Shiyan, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7115-7130. [PMID: 37453967 DOI: 10.1007/s10653-023-01683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The upstream basin of Hanjiang River is an important water source for the middle route of China's South-to-North Water Diversion Project. The quality of water and soil in the Hanjiang River have enormous biological and environmental impacts, and resistant genetic contamination has emerged, but only few studies are concerned the correlation between heavy metals and metal resistance genes (MRGs). In this study, 8 antibiotics and 19 heavy metals were analyzed, the results showed that the highest antibiotic content was tetracycline, with mean concentrations of 43.201 µg/kg and 0.022 µg/L. Mn was the highest heavy metal in soil with a content of 1408.284 µg/kg, and in water was Zn with a content of 10.611 µg/L. We found that the most abundant antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in the study area were bacA and arsT genes, coding for resistance mechanisms to bacitracin and arsenic, respectively. The data showed that heavy metals had a greater impact on antibiotic resistance genes than antibiotics, and the correlation between resistance genes was significantly positive. This work expands our understanding of the correlations of antibiotics, heavy metals, and resistance genes in the Hanjiang River, indicating that more attention should be paid to the effects of resistance genes and the quality of water.
Collapse
Affiliation(s)
- Jing Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Lijuan Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Qin Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Wen Fang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yonghao Sun
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yu Lu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Jing Wang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yanrong Zhu
- Hanjiang Bureau of Hydrology and Water Resources Survey, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang, 441022, People's Republic of China
| | - Yao Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|
24
|
Zhang MS, Liang SZ, Zhang WG, Chang YJ, Lei Z, Li W, Zhang GL, Gao Y. Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Front Microbiol 2023; 14:1135278. [PMID: 37007487 PMCID: PMC10065064 DOI: 10.3389/fmicb.2023.1135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems.
Collapse
Affiliation(s)
- Ming-Sha Zhang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Si-Zhou Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei-Guo Zhang
- School of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
- *Correspondence: Wei-Guo Zhang, ; Ya-Jun Chang,
| | - Ya-Jun Chang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing, China
- *Correspondence: Wei-Guo Zhang, ; Ya-Jun Chang,
| | - Zhongfang Lei
- School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Wen Li
- School of Life Sciences, Nanjing University, Nanjing, China
| | | | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|