1
|
Queiroz LG, Barreto LM, Manoel de Lima Júnior J, Maricato G, Nomura CS, Pompêo M, Ando RA, Desbiez ALJ, Rani-Borges B. Unveiling microplastic and metal pollution in giant armadillos (Priodontes maximus) from areas impacted by human activities in the Rio Doce Basin, Brazil. ENVIRONMENTAL RESEARCH 2025; 275:121380. [PMID: 40081644 DOI: 10.1016/j.envres.2025.121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The giant armadillo (Priodontes maximus) is the largest armadillo species, inhabiting vast areas of South America, including forests, savannas, and grasslands. The Rio Doce State Park (RDSP) is an important conservation unit that harbors P. maximus individuals. The largest environmental disaster in Brazil occurred in 2015 when a dam collapse released tons of iron ore tailings into the Rio Doce basin. In addition to this tragedy, plastic pollution is a growing concern for the conservation of this area and raises an alert for microplastic pollution. In the present study, we investigated the presence of microplastics and heavy metals (Al, Cd, Fe, Pb, Cr, Cu, Ni, Mn, Ti, and Zn) in the feces of the giant armadillo from Rio Doce State Park to understand the invisible threats to which this species is susceptible in two areas (North and South) of RDSP. All feces samples were positive for the tested heavy metals and microplastics. Cr, Mn, and Pb levels were significantly higher in the North area, while microplastics were more abundant in the South area. The most common microplastic types identified were polypropylene (PP, 32.5 %), polyethylene terephthalate (PET, 22.5 %), and polyethylene (PE, 15.0 %). Several studies have reported the harmful effects of heavy metals and microplastics on mammals. The simultaneous presence of both contaminants highlights significant concerns for conserving this species and underscores the need for greater attention to the human impacts on RDSP's biota. This study represents an initial approach seeking to understand the exposure levels of a threatened mammal species to two relevant pollutants allowing it to offer support for new strategies for mammal conservation.
Collapse
Affiliation(s)
- Lucas Gonçalves Queiroz
- University of São Paulo, Institute of Chemistry, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil.
| | - Lucas M Barreto
- Wild Animal Conservation Institute, Rua Afonso Lino Barbosa, 79040-290, Mato Grosso do Sul, MS, Brazil
| | - João Manoel de Lima Júnior
- University of São Paulo, Institute of Chemistry, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil
| | - Guilherme Maricato
- Federal University of Rio de Janeiro, Institute of Biology, 373 Carlos Chagas Filho Avenue, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Cassiana Seimi Nomura
- University of São Paulo, Institute of Chemistry, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil
| | - Marcelo Pompêo
- University of São Paulo, Institute of Biosciences, Rua do Matão 321, 05508-090, São Paulo, SP, Brazil
| | - Rômulo Augusto Ando
- University of São Paulo, Institute of Chemistry, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil
| | - Arnaud L J Desbiez
- Wild Animal Conservation Institute, Rua Afonso Lino Barbosa, 79040-290, Mato Grosso do Sul, MS, Brazil
| | - Bárbara Rani-Borges
- University of São Paulo, Institute of Chemistry, Av. Prof. Lineu Prestes, 748, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Bhattacharjee S, Ghosh PK, Basu S, Mukherjee T, Mandal B, Sinha P, Mukherjee A. Microplastic contamination in threatened wild felids of India: Understanding environmental uptake, feeding implications, and associated risks. ENVIRONMENTAL RESEARCH 2025; 273:121218. [PMID: 40015425 DOI: 10.1016/j.envres.2025.121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
While the presence of microplastics (MPs, <5 mm) in various aquatic organisms is well-documented, studies on the accumulation of MPs in terrestrial predators remain limited worldwide, including in India. This study aims to evaluate, for the first time, the occurrence of MPs in the scat of mid-sized felids-fishing cat and jungle cat-from their overlapping habitat in the Gangetic Estuary of India. The risk assessment of MPs and management recommendation for MP mitigation was also discussed in this context. Notably, our study is the first to report the presence of MPs and mesoplastics in fishing cat from India and jungle cat globally. The abundance of MPs was found to be higher in jungle cat (12.6 ± 1.93 MP/g d.w) compared to fishing cat (10.5 ± 2.12 MP/g d.w) in the Gangetic estuary. Furthermore, fiber-shaped (70.37%) and 1-5 mm-sized (47.73%) MPs predominated in both felid species, while fiber bundles were observed only in jungle cat. Red-colored MPs (27.62%) were predominantly found in fishing cat, whereas transparent MPs (33.33%) were more common in jungle cat. Scanning electron microscopy revealed possible environmental and digestive degradation marks on the MPs. A total of seven synthetic and one natural polymer were identified, with Ethylene Vinyl Alcohol (55.56%) being predominant in fishing cat and Polyethylene (33.33%) more common in jungle cat. Polymer risk assessment indicated that the MPs in fishing cat fall into the danger category, Group IV (PHI 100-1000), while jungle cat possess high threat under extreme danger category, Group V (PHI >1000). The observed MPs and mesoplastics in felids probably come from adjacent environmental uptake and/or accumulate through trophic transfer from prey items. The evidence of MPs in felids may pose a threat to the big cat-Royal Bengal tigers in the Sundarbans. Therefore, various landscape-based policy implementations are recommended to mitigate MP pollution.
Collapse
Affiliation(s)
- Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Pradipta Kumar Ghosh
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Shambadeb Basu
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, 700108, India.
| | - Banani Mandal
- Department of Zoology, Jogesh Chandra Chaudhuri College, Kolkata, 700033, India
| | - Pritam Sinha
- Department of Physical Science, Bose Institute, Kolkata, 700091, India
| | - Arunava Mukherjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
3
|
Deoniziak K, Winiewicz A, Nartowicz M, Mierzejewska W, Niedźwiecki S, Pol W, Dubis AT. Microscopic anthropogenic waste ingestion by small terrestrial European passerines: evidence from finch and tit families. Sci Rep 2025; 15:16631. [PMID: 40360584 PMCID: PMC12075826 DOI: 10.1038/s41598-025-01608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
Microscopic anthropogenic waste (MAW) has become a major environmental concern worldwide. Our study aimed to assess the accumulation of MAW in the gastrointestinal tracts of nine common European passerine species from finch (Fringillidae) and tit (Paridae) families, and evaluate their suitability for environmental monitoring. We searched for MAW in the birds' stomachs and intestines and identified suspected particles using Raman microspectroscopy. In total, we found 57 MAW particles in 31 out of 149 analyzed individuals, 7 of which were microplastics (polyethylene, polyethylene terephthalate, polystyrene), 1 was identified as carbon nanotube, while 49 were cellulosic-based (cotton, cellulose, rayon, viscose). The generalized linear mixed models identified bird family and time in season as significant predictors of MAW ingestion. Finches ingested more MAW than tits, and higher ingestion rates were observed during the non-breeding period. Other predictors, including bird sex, age, gastrointestinal tract section, and site, showed varying but non-significant effects. As predicted, the studied species exhibited a lower ingestion rate of MAW compared to terrestrial birds studied so far, possibly due to their diet and feeding behavior. Given that these species are prey for many avian and non-avian predators, they may contribute to the transfer of MAW to higher trophic levels.
Collapse
Affiliation(s)
- Krzysztof Deoniziak
- Division of Biodiversity and Behavioural Ecology, Faculty of Biology, University of Bialystok, Konstantego Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Anna Winiewicz
- The Włodzimierz Chętnicki Biological Science Club, Faculty of Biology, University of Bialystok, Konstantego Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Marta Nartowicz
- The Włodzimierz Chętnicki Biological Science Club, Faculty of Biology, University of Bialystok, Konstantego Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Weronika Mierzejewska
- The Włodzimierz Chętnicki Biological Science Club, Faculty of Biology, University of Bialystok, Konstantego Ciołkowskiego 1J, 15-245, Białystok, Poland
| | | | - Wojciech Pol
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245, Białystok, Poland
| | - Alina T Dubis
- Faculty of Chemistry, University of Bialystok, Konstantego Ciołkowskiego 1K, 15-245, Białystok, Poland
| |
Collapse
|
4
|
Papp PP, Hoffmann OI, Libisch B, Keresztény T, Gerőcs A, Posta K, Hiripi L, Hegyi A, Gócza E, Szőke Z, Olasz F. Effects of Polyvinyl Chloride (PVC) Microplastic Particles on Gut Microbiota Composition and Health Status in Rabbit Livestock. Int J Mol Sci 2024; 25:12646. [PMID: 39684357 DOI: 10.3390/ijms252312646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The widespread use of polyvinyl chloride (PVC) and its entry into humans and livestock is of serious concern. In our study, we investigated the impact of PVC treatments on physiological, pathological, hormonal, and microbiota changes in female rabbits. Trend-like alterations in weight were observed in the spleen, liver, and kidney in both low (P1) and high dose (P2) PVC treatment groups. Histopathological examination revealed exfoliation of the intestinal mucosa in the treated groups compared to the control, and microplastic particles were penetrated and embedded in the spleen. Furthermore, both P1 and P2 showed increased 17-beta-estradiol (E2) hormone levels, indicating early sexual maturation. Moreover, the elevated tumor necrosis factor alpha (TNF-α) levels suggest inflammatory reactions associated with PVC treatment. Genus-level analyses of the gut microbiota in group P2 showed several genera with increased or decreased abundance. In conclusion, significant or trend-like correlations were demonstrated between the PVC content of feed and physiological, pathological, and microbiota parameters. To our knowledge, this is the first study to investigate the broad-spectrum effects of PVC microplastic exposure in rabbits. These results highlight the potential health risks associated with PVC microplastic exposure, warranting further investigations in both animals and humans.
Collapse
Affiliation(s)
- Péter P Papp
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Balázs Libisch
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Tibor Keresztény
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Annamária Gerőcs
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Katalin Posta
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - László Hiripi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Anna Hegyi
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Zsuzsanna Szőke
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Ferenc Olasz
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
5
|
Dueñas-Moreno J, Mora A, Capparelli MV, González-Domínguez J, Mahlknecht J. Potential ecological risk assessment of microplastics in environmental compartments in Mexico: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124812. [PMID: 39182811 DOI: 10.1016/j.envpol.2024.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Microplastic (MP) environmental contamination has been widely studied in Mexico. However, the evaluation of the associated risk to MPs in environmental compartments is scarce. Therefore, this study addresses this issue using diverse indicators such as the Pollution Load Index (PLI), the Polymer Risk Index (PRI), and the Potential Ecological Risk Index (PERI). The results of a meta-analysis revealed high MP contamination levels in most of the studied compartments, which included marine and estuarine waters, beach sand, freshwater, sediments, and biota. Regarding the risk assessment indicators, PLIs indicated low (56%), dangerous (22%), moderate (12%), and high (10%) levels across compartments. Meanwhile, PRIs displayed concerning values, with 36%, 35%, 20%, and 9% exhibiting dangerous, high, moderate, and low levels, respectively. Thus, high PRI values emphasized the significant rise in MP pollution, largely attributed to high-hazard polymer compositions. Otherwise, PERIs showed low (56%), very dangerous (29%), moderate (6%), high (5%), and dangerous (4%) levels. Thus, the ecological risk in Mexico is widespread and mainly linked to MP abundance, polymer type, environmental matrix, and characteristics of organisms. This study represents the first attempt at MP ecological risk assessment in Mexico, providing crucial insights for developing mitigation strategies to address concerns about MP contamination.
Collapse
Affiliation(s)
- Jaime Dueñas-Moreno
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Abrahan Mora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico.
| | - Mariana V Capparelli
- Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Universidad Nacional Autónoma de México, Ciudad del Carmen, 24157, Mexico
| | - Janeth González-Domínguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| | - Jürgen Mahlknecht
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., 64700, Mexico
| |
Collapse
|
6
|
Pérez-Flores J, Borges-Ramírez MM, Vargas-Contreras JA, Osten JRV. Inter-annual variation in the microplastics abundance in feces of the Baird's tapir (Tapirus bairdii) from the Selva Maya, México. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173659. [PMID: 38839015 DOI: 10.1016/j.scitotenv.2024.173659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Microplastics (MPs) are found in a wide range of ecosystems, from the Arctic to the deep ocean. However, there is no data on their presence in terrestrial mammals that inhabit the Selva Maya. The aim of this study is to detect the presence of MPs in the feces of the Baird's tapir (Tapirus bairdii) from the region of Calakmul, located in the Yucatan Peninsula, Mexico. We analyzed 129 fecal samples collected during 2017 and 2018, obtaining 57 and 72 samples during the rainy and dry seasons respectively. Sixty-eight percent of the samples contained 743 MPs with a mean of 19.3 ± 28.1 MPs/kg of dry weight (DW) feces in both years. An inter-annual variation in the average abundance of microplastic was observed during the two-year period (2017-2018), with a 72 % increase in these plastic particles in feces. Fourteen polymers were identified, with ethylene vinyl acetate (EVA), polypropylene (PP) and polyester (PES) being the most abundant during both years. Although the effects of MPs on the health of tapirs are not known, their presence is cause for concern. There is an urgent need for the implementation of appropriate plastic waste management programs in communities of the Selva Maya to diminish the consumption of MPs in species including humans where they pose a significant risk to health. ENVIRONMENTAL IMPLICATIONS: The use of plastics worldwide is increasing every day, so the presence of microplastics is and will continue to be a major environmental problem. It is known that contaminants can adhere to plastics, making them hazardous materials. Microplastics can contaminate remote areas such as Biosphere Reserves. Terrestrial species such as the tapir can ingest microplastics, putting their health at risk. Knowing the dispersion of microplastics is very important in order to manage them properly, taking into account their emission sources and type of polymer.
Collapse
Affiliation(s)
- Jonathan Pérez-Flores
- Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT), Av. Insurgentes Sur 1582, CP 03940 Ciudad de México, Ciudad de México, Mexico; El Colegio de La Frontera Sur (ECOSUR), Unidad de Chetumal, Avenida Centenario Km 5.5, CP 77014 Chetumal, Quintana Roo, Mexico
| | - Merle M Borges-Ramírez
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, Campus VI, Av. Héroe de Nacozari 480, CP 24070, Campeche, Campeche, Mexico
| | - Jorge A Vargas-Contreras
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Campus V, Av. Ex Hacienda Kalá S/N, CP 24085 Campeche, Campeche, Mexico
| | - Jaime Rendón-von Osten
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Universidad Autónoma de Campeche, Campus VI, Av. Héroe de Nacozari 480, CP 24070, Campeche, Campeche, Mexico.
| |
Collapse
|
7
|
Jiang H, Cheng H, Wu S, Li H, Chen H, Li Z, Yao X, Zhang Y, Chen Y, Chen S, Chen S, Zheng L, Sui Y, Shao R. Microplastics footprint in nature reserves-a case study on the microplastics in the guano from Yancheng Wetland Rare Birds National Nature Reserve, China. ENVIRONMENTAL RESEARCH 2024; 256:119252. [PMID: 38815716 DOI: 10.1016/j.envres.2024.119252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Bio-ingestion of microplastics poses a global threat to ecosystems, yet studies within nature reserves, crucial habitats for birds, remain scarce despite the well-documented ingestion of microplastics by avian species. Located in Jiangsu Province, China, the Yancheng Wetland Rare Birds Nature Reserve is home to diverse bird species, including many rare ones. This study aimed to assess the abundance and characteristics of microplastics in common bird species within the reserve, investigate microplastic enrichment across different species, and establish links between birds' habitat types and microplastic ingestion. Microplastics were extracted from the feces of 110 birds, with 84 particles identified from 37.27% of samples. Among 8 species studied, the average microplastic abundance ranged from 0.97 ± 0.47 to 43.43 ± 61.98 items per gram of feces, or 1.5 ± 0.87 to 3.4 ± 1.50 items per individual. The Swan goose (Anser cygnoides) exhibited the highest microplastic abundance per gram of feces, while the black-billed gull (Larus saundersi) had the highest abundance per individual. The predominant form of ingested microplastics among birds in the reserve was fibers, with polyethylene being the most common polymer type. Significant variations in plastic exposure were observed among species and between aquatic and terrestrial birds. This study represents the first quantitative assessment of microplastic concentrations in birds within the reserve, filling a crucial gap in research and providing insights for assessing microplastic pollution and guiding bird conservation efforts in aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Huimin Jiang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Hai Cheng
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Shiyue Wu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Hongshan Li
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Hao Chen
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Zhenghao Li
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Xinyun Yao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Yanan Zhang
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Yaqin Chen
- Yancheng National Nature Reserve for Rare Birds, Administrative Bureau, Yancheng, China
| | - Shuyi Chen
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Shihao Chen
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Liang Zheng
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yanming Sui
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China; Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| | - Rong Shao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, China.
| |
Collapse
|
8
|
Teampanpong J, Duengkae P. Using feces to indicate plastic pollution in terrestrial vertebrate species in western Thailand. PeerJ 2024; 12:e17596. [PMID: 38948236 PMCID: PMC11212639 DOI: 10.7717/peerj.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
Plastic pollution is a widespread and growing concern due to its transformation into microplastics (MPs), which can harm organisms and ecosystems. This study, aimed to identify plastic pollution in the feces of terrestrial vertebrates using convenience sampling both inside and outside protected areas in Western Thailand. We hypothesized that MPs are likely to be detectable in the feces of all vertebrate species, primarily in the form of small black fragments. We predicted varying quantities of MPs in the feces of the same species across different protected areas. Furthermore, we expected that factors indicating human presence, landscape characteristics, scat weight, and the MP abundance in water, soils, and sediments would influence the presence of plastics in feces. Among 12 terrestrial species studied, potential MPs were found in 41.11% of 90 samples, totaling 83 pieces across eight species including the Asian elephant (Elephas maximus), Eld's deer (Rucervus eldii), Dhole (Cuon alpinus), Gaur (Bos gaurus), Sambar deer (Rusa unicolor), Wild boar (Sus scrofa), Northern red muntjac (Muntiacus vaginalis), and Butterfly lizard (Leiolepis belliana). Specifically, 3.61% of all potential MPs (three pieces) were macroplastics, and the remaining 96.39% were considered potential MPs with the abundance of 0.92 ± 1.89 items.scat-1 or 8.69 ± 32.56 items.100 g-1 dw. There was an association between the numbers of feces with and without potential plastics and species (χ2 = 20.88, p = 0.012). Most potential plastics were fibers (95.18%), predominantly black (56.63%) or blue (26.51%), with 74.70% smaller than two millimeters. Although there were no significant associations between species and plastic morphologies, colors, and sizes, the abundance classified by these characteristics varied significantly. FTIR identified 52.38% as natural fibers, 38.10% as synthetic fibers (rayon, polyurethane (PUR), polyethylene terephthalate (PET), polypropylene (PP), and PUR blended with cotton), and 9.52% as fragments of PET and Polyvinyl Chloride (PVC). Human-related factors were linked to the occurrence of potential plastics found in the feces of land-dwelling wildlife. This study enhances the understanding of plastic pollution in tropical protected areas, revealing the widespread of MPs even in small numbers from the areas distant from human settlements. Monitoring plastics in feces offers a non-invasive method for assessing plastic pollution in threatened species, as it allows for easy collection and taxonomic identification without harming live animals. However, stringent measures to assure the quality are necessitated to prevent exogenous MP contamination. These findings underscore the importance of raising awareness about plastic pollution in terrestrial ecosystems, especially regarding plastic products from clothing and plastic materials used in agriculture and irrigation systems.
Collapse
Affiliation(s)
- Jiraporn Teampanpong
- Department of Conservation, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Prateep Duengkae
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok, Thailand
| |
Collapse
|
9
|
Song X, Chen T, Chen Z, Du L, Qiu X, Zhang Y, Li Y, Zhu Y, Tan Z, Mo Y, Feng X. Micro(nano)plastics in human urine: A surprising contrast between Chongqing's urban and rural regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170455. [PMID: 38286288 DOI: 10.1016/j.scitotenv.2024.170455] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Microplastics (100 nm-5 mm) and nanoplastics (<100 nm) collectively referred to as micro(nano)plastics (MNPs), which are emerging pollutants all over the world. Environmental differences affect its distribution. The content of MNPs differs between urban and rural environments, according to previous studies. To understand the actual situation of human exposure to MNPs in various environments, this study collected 12 urine samples from volunteers in urban and rural regions of Chongqing and used pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and laser direct infrared spectroscopy (LDIR) to detect and analyze MNPs in urine. With an average abundance of 1.50 (2.31) mg/kg, MNPs were found in 9 samples by Py-GC/MS. Polyethylene (PE), polyvinyl chloride (PVC) and polyamide 66 (PA66), three different types of MNPs were found, with PE content being the highest among them. By using LDIR, MNPs were found in 7 samples, with an average abundance of 15.17 (23.13) particles/kg. Five different types of MNPs were found, with acrylates (ACR) being the main type, followed by polymethylmethacrylate (PMMA), polyurethane (PU), polypropylene (PP), polyethylene terephthalate (PET). The findings demonstrated that urban region had much greater levels and more types of MNPs in human urine than rural. Additionally, regular contact with plastic toys and the use of personal care products are linked to the presence of MNPs. The influence of environmental factors on the actual exposure of the human body to MNPs was preliminary explored in this study, and two different methods were used for the first time to simultaneously detect and analyze MNPs in human urine. This allowed for the feasibility of comprehensively and effectively quantitatively analyzing the actual exposure of the human body to MNPs, and also provided the theoretical foundation for further research on the harm of MNPs to human health in different environments.
Collapse
Affiliation(s)
- Xuan Song
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu 610219, China
| | - Tian Chen
- Health Management Center, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Zongwen Chen
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Lixia Du
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Xihong Qiu
- Department of Obstetrics and Gynecology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Yuxin Zhang
- Department of Obstetrics and Gynecology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Yan Li
- Health Management Center, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Yu Zhu
- Department of Radiology, Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Zhongyou Tan
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Yunbo Mo
- Department of Pediatric Respiratory Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Xiaoqian Feng
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
| |
Collapse
|
10
|
Kong J, Lee J, Jeong S. Distribution of microplastics in rainfall and their control by a permeable pavement in low-impact development facility. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119710. [PMID: 38061101 DOI: 10.1016/j.jenvman.2023.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
Microplastics (MPs) released from plastic products in daily life are present in the air and could be transported to freshwater environments along with rain. Recently, low-impact development (LID) facilities, such as permeable pavements, have been used to treat non-point source pollutants, including rainfall runoff. While runoff is treated by LID facilities, the periodic monitoring of MPs in rainfall and the efficiency of removal of MPs through LID facilities have rarely been investigated. Therefore, this case study focused on monitoring MPs in rainwater runoff and permeate from a permeable pavement in Busan, South Korea, thus evaluating the removal efficiency of MPs by a LID system. The initial rainfall runoff and permeate through the LID system were sampled, and the amounts, types, sizes, and shapes of MPs in the samples were analyzed using micro-Fourier Transform Infrared (FTIR) spectroscopy. The results showed that the distribution of MPs in the initial rainfall was affected by population in tested area. Polyethylene was the most common type of MPs in all the samples. Polyamide was only found in the LID samples because of the pollution caused by water flows and pavement materials. Fragment type MPs was most commonly observed and consisted of relatively small-sized (under 100 μm) particles. LID facilities were able to capture approximately 98% of MPs in the rainfall through a filtration process in the permeable pavement.
Collapse
Affiliation(s)
- Jiwon Kong
- Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Jieun Lee
- Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sanghyun Jeong
- Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|