1
|
Olivera-Begué E, González D, Kaal J, Camps-Arbestain M, Sánchez A. Commercial-scale co-composting of wood-derived biochar with source-selected organic fraction of municipal solid waste. BIORESOURCE TECHNOLOGY 2025; 431:132595. [PMID: 40300730 DOI: 10.1016/j.biortech.2025.132595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
This full-scale trial aims to systematically examine the effect of the addition (10 % DW ratio) of wood-derived biochar produced at 700 °C on the composting of source-selected organic fraction of municipal solid waste (OFMSW) and compare it with an identical treatment without biochar addition. The study mainly focused on (i) composting process performance, including compost quality, and (ii) gaseous emissions (ammonia, methane, nitrous oxide, volatile organic compounds (VOC) and odor emissions) from the two experimental piles, in which representative areas within each pile were identified as independent regions (n = 6) for sampling, obtaining over 1300 independent gas sampling data points. During the first 50 days, biochar contributed to a more sustained thermophilic temperature compared to the control (average 47 and 38 °C, respectively). Over the 80 days of composting, biochar significantly (p < 0.003) decreased methane (from 0.17 to 0.05 kg CH4 Mg-1 OFMSW) and ammonia (from 0.57 to 0.35 kg NH3 Mg-1 OFMSW) emissions. The differences in VOC emission from the two treatments were only significant (p < 0.001) during the maturation phase (from day 50 onwards) with average values of 35 and 175 g C-VOC day-1, for the biochar and control treatments, respectively. Odor emissions were smaller in the presence of biochar (1.1E + 0.6 vs. 1.9E + 0.6 ou Mg-1 OFMSW). The agronomic value of the resultant biochar co-compost was similar to that of the control compost. Biochar can thus contribute to climate change mitigation, not only through CO2 removal, but also through the reduction of non-CO2 greenhouse gases emissions during composting, while also decreasing the odor impact of the plant on nearby residents.
Collapse
Affiliation(s)
- Elena Olivera-Begué
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Daniel González
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Joeri Kaal
- Pyrolyscience, 15707 Santiago de Compostela, Spain
| | - Marta Camps-Arbestain
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam, Grasweg 31, 1031 HW Amsterdam, the Netherlands
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
2
|
Chen Z, Gao P, Lu Y, Cui X, Peng F. Hydrogen peroxide-aged biochar mitigating greenhouse gas emissions during co-composting of swine manure with rice bran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126255. [PMID: 40239939 DOI: 10.1016/j.envpol.2025.126255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/23/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Compared to fresh biochar, aged biochar has a more significant effect on mitigating greenhouse gas (GHG) emissions in farmland soil. However, there is a relative scarcity of research addressing this effect in aerobic composting. In this study, a co-composting of swine manure and rice bran (NBC), with the addition of fresh biochar (FBC) and hydrogen peroxide-aged biochar (ABC), was conducted to investigate the dynamic changes in physicochemical properties, microbial communities, GHG emissions and related functional genes during different periods. In comparison to NBC, FBC led to a 32 % decrease in total GHG emissions (CO2-equiv), including a 29 % reduction in CO2 emissions, a 45 % reduction in CH4 emissions, and a 35 % decrease in N2O emissions. Furthermore, ABC resulted in a 14 % decrease in GHG emission (CO2-equiv), comprising a 47 % reduction in CH4 emissions and a 23 % decrease in N2O emissions compared to FBC. These findings indicated that the addition of aged biochar has a more significant impact on GHG reduction during composting. Network analyses, Mantel tests and redundancy analyses suggested that the mechanism behind the lowest GHG emissions in ABC is the reduction of the relative abundance of fungi associated with CH4 emissions, along with the nirS and nirK genes associated with denitrification. This reduction is associated with the decreasing anaerobic zones resulting from the increased pore volume in biochar after aging. Overall, this study demonstrates that hydrogen peroxide aging enhances the GHG-reducing efficiency in biochar, and provides new insights into the development of GHG-reducing technologies in composting.
Collapse
Affiliation(s)
- Zixun Chen
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Peng Gao
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Yaoxiong Lu
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China
| | - Xinwei Cui
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| | - Fuyuan Peng
- Hunan Cultivated Land and Agricultural Eco-Environment Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, 410125, China.
| |
Collapse
|
3
|
Woldeyohans AM, Alemayehu E, Rousseau DPL, Mereta ST, Dong P, Linnemann V, Van Hulle SWH. Characteristics and management of fecal sludge in Ethiopia with a focus on resource recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178633. [PMID: 39889580 DOI: 10.1016/j.scitotenv.2025.178633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
To gain a comprehensive understanding of the potential environmental and public health implications of current fecal sludge (FS) handling practices in developing countries, investigating its composition is crucial. This study addresses quantitatively the variability of common water and wastewater parameters, parasite eggs and pollutants of concern, such as heavy metals, across different FS handling technologies. Additionally, it presents a qualitative screening of other micropollutants such as pharmaceuticals, hormones and pesticides, along with an assessment of resource recovery potential. Based on sanitation records provided by the local government, FS dislodging practices were categorized into six types (septic tanks and pits for institutions, septic tanks and pits for private houses and septic tank and pit for communal latrines). The quality of FS across these dislodging types was evaluated using 31 FS samples directly obtained from FS dislodging trucks in Ethiopia. The study found that the average moisture content of the sludge was 98.7 %, with a calorific value of 16 MJ/kg of total solids (TS), indicating its potential for water and energy recovery. Furthermore, the study revealed a prevalence ranking of Ascaris lumbricoides egg > Taenia egg > Hookworm egg> Hymenolepis nana egg> Enterobius vermicularis egg> Trichuris trichiura egg, with a mean value of 689 eggs/L of fecal sludge and a 100 % prevalence of Ascaris lumbricoides eggs. Additionally, 14 heavy metals with mean concentrations ranging between 0.002 and 6.25 mg/L were identified. For most of these metals, the concentration was significantly positively correlated with the TS content. Moreover, in this study 32 drugs and their derivatives, 6 hormones, and 1 insecticide have been detected. Overall, the compositional profile of the FS in this study indicates that improper handling of the sludge may pose potential public health and environmental threats. However, it also highlights the valuable potential of water and energy recovery from FS.
Collapse
Affiliation(s)
- Akalu Melketsadik Woldeyohans
- Faculty of Civil and Environmental Engineering, Jimma University Institute of Technology (JIT), Jimma University, Jimma, Ethiopia; Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk B-8500, Belgium; Department of Environmental Health, Wollo University College of Medicine and Health Sciences, Dessie, Ethiopia.
| | - Esayas Alemayehu
- Faculty of Civil and Environmental Engineering, Jimma University Institute of Technology (JIT), Jimma University, Jimma, Ethiopia
| | - Diederik P L Rousseau
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk B-8500, Belgium
| | - Seid Tiku Mereta
- School of Environmental Health and Technology, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Pengyu Dong
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk B-8500, Belgium
| | - Volker Linnemann
- Institute of Environmental Engineering, RWTH Aachen University, Germany
| | - Stijn W H Van Hulle
- Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University Campus Kortrijk, Sint Martens-Latemlaan 2B, Kortrijk B-8500, Belgium
| |
Collapse
|
4
|
Feng D, Cui Y, Zeng Y, Wang D, Zhang H, Zhang Y, Song W. Enhancing compost quality through biochar and oyster shell amendments in the co-composting of seaweed and sugar residue. CHEMOSPHERE 2024; 366:143500. [PMID: 39384133 DOI: 10.1016/j.chemosphere.2024.143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Aquaculture and agricultural production generate substantial amounts of waste, including seaweed (which has plant-stimulating properties), oyster shells, and sugar residues. Through composting and appropriate management, these wastes have the potential to be converted into beneficial soil amendments. However, there is a lack of research exploring the potential of composting in promoting the conversion of seaweed into more stable humified forms, as well as in assessing whether composted seaweed retains its beneficial effects on plant growth. Additionally, studies on using oyster shells as additives to reduce waste pressure and comparing their effectiveness with biochar are relatively scarce. This study examines the impact of incorporating 5% corn stover biochar (T1), 10% biochar (T2), and 10% oyster shell powder (T3) on key physicochemical properties, product quality, and microbial community dynamics during the co-composting of seaweed and sugar residues. Results indicate that organic matter (OM) loss in T1 and T2 increased by 31.2% and 26.4%, respectively, compared to the control (CK). Moreover, Excitation-emission matrix (EEM) fluorescence spectroscopy revealed that humic substances in T1 and T2 surged by 434% and 423%, respectively, far exceeding the 289% increase in CK. The 10% biochar treatment also improved alginate degradation and seed germination index, due to the presence of biostimulants in seaweed and an increased abundance of Cobetia. Microbial analysis post-composting showed that T2 and T3 significantly enhanced the diversity and richness of bacterial communities. Notably, although oyster shell powder did not improve the humification degree of compost as significantly as biochar, it achieved effective weight reduction of waste (OM loss of 43.57%, far exceeding CK's 35.34%) without hindering the composting process. All four compost treatments retained the plant-stimulating effects of seaweed and facilitated alginate degradation. These results underscore the potential of biochar to enhance composting efficiency and utilize composting to process large quantities of oyster shell waste.
Collapse
Affiliation(s)
- Dawei Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Yinjie Cui
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Yang Zeng
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Derui Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Hongxia Zhang
- College of Life Sciences, Yantai University, Yantai, 264005, China.
| | - Yuxue Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Wanlin Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
5
|
Kohira Y, Fentie D, Lewoyehu M, Wutisirirattanachai T, Gezahegn A, Addisu S, Sato S. Mitigation of ammonia volatilization from organic and inorganic nitrogen sources applied to soil using water hyacinth biochars. CHEMOSPHERE 2024; 363:142872. [PMID: 39019190 DOI: 10.1016/j.chemosphere.2024.142872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The recent global population explosion has increased people's food demand. To meet this demand, huge amounts of nitrogen (N) fertilizer have been applied in the worldwide. However, ammonia (NH3) volatilization is one of the primary factors of N loss from soil after N application causing decrease crop N utilization efficiency and productivity. Incubation experiments were conducted on an acidic clayey soil with two different N sources (urea and anaerobic digestion effluent; ADE), two differently-produced biochars, and three biochar application rates (0%, 0.25%, and 1.0% w/w). Ammonia volatilization was lower from urea (14.0-23.5 mg N kg-1) and ADE (11.3-21.0 mg N kg-1) with biochar application than those without biochar (40.1 and 26.2 mg N kg-1 from urea and ADE alone, respectively). Biochar application significantly mitigated volatilization and reduction percentages for urea and ADE were 40%-64% and 18%-55%, respectively. 1.0% biochar application mitigated volatilization significantly compared to 0.25% application regardless of N source and biochar types. Possible mechanism for volatilization mitigation for urea and ADE were increased N immobilization by soil microorganisms and accelerated net nitrification rate due to increased soil nitrifying bacteria, respectively. Overall, our results clarified different mechanisms for N volatilization mitigation from different (inorganic vs. organic) N sources with biochar application.
Collapse
Affiliation(s)
- Yudai Kohira
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| | - Desalew Fentie
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan; College of Agriculture Food and Climate Science, Injibara University, Injibara, Ethiopia, P.O. Box 40.
| | - Mekuanint Lewoyehu
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan; College of Science, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79.
| | - Tassapak Wutisirirattanachai
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| | - Ashenafei Gezahegn
- College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79; College of Agriculture and Environmental Sciences, Debark University, Debark, Ethiopia, P.O. Box 90.
| | - Solomon Addisu
- College of Agriculture and Environmental Sciences, Bahir Dar University, Bahir Dar, Ethiopia, P.O. Box 79.
| | - Shinjiro Sato
- Graduate School of Science and Engineering, Soka University, 1-236 Tangi-cho, Hachioji-shi, Tokyo, 192-8577, Japan.
| |
Collapse
|
6
|
Yang L, Tang G, Xu W, Zhang Y, Ning S, Yu P, Zhu J, Wu Q, Yu P. Effect of Combined Application of Wood Vinegar Solution and Biochar on Saline Soil Properties and Cotton Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2427. [PMID: 39273912 PMCID: PMC11396923 DOI: 10.3390/plants13172427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Biomass pyrolysis by-products, such as biochar (BC) and wood vinegar (WV), are widely used as soil conditioners and efficiency enhancers in agriculture. A pot experiment was conducted to examine the effects of WV, both alone and in combination with BC, on soil properties in mildly saline soil and on cotton stress tolerance. The results demonstrated that BC and WV application, either individually or together, increased soil nutrient content. The combined application was more effective than the individual applications, resulting in a 5.18-20.12% increase in organic matter, a 2.65-15.04% increase in hydrolysable nitrogen, a 2.23-58.05% increase in effective phosphorus, and a 2.71-29.38% increase in quick-acting potassium. Additionally, the combined application of WV and BC led to greater improvements in cotton plant height, net photosynthetic rate (Pn), leaf nitrate reductase (NR), superoxide dismutase (SOD), and catalase (CAT) activities compared to the application of BC or WV alone. The enhancements in this study varied across different parameters. Plant height showed an increase of 14.32-21.90%. Net photosynthetic rate improved by 13.56-17.60%. Leaf nitrate reductase increased by 5.47-37.79%. Superoxide dismutase and catalase showed improvements of 5.82-64.95% and 10.36-71.40%, respectively (p < 0.05). Moreover, the combined treatment outperformed the individual applications of WV and BC, resulting in a significant decrease in MDA levels by 2.47-51.72% over the experimental period. This combined treatment ultimately enhanced cotton stress tolerance. Using the entropy weight method to analyze the results, it was concluded that the combined application of WV and BC could enhance soil properties in mildly saline soils, increase cotton resistance, and hold significant potential for widespread application.
Collapse
Affiliation(s)
- Liu Yang
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Soil Fertiliser and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Saline and Alkaline Land Improvement and Utilisation (Arid and Semi-Arid Zone Saline and Alkaline Land), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Guangmu Tang
- Institute of Soil Fertiliser and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Saline and Alkaline Land Improvement and Utilisation (Arid and Semi-Arid Zone Saline and Alkaline Land), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Wanli Xu
- Institute of Soil Fertiliser and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Saline and Alkaline Land Improvement and Utilisation (Arid and Semi-Arid Zone Saline and Alkaline Land), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Yunshu Zhang
- Institute of Soil Fertiliser and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Saline and Alkaline Land Improvement and Utilisation (Arid and Semi-Arid Zone Saline and Alkaline Land), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Songrui Ning
- State Key Laboratory of Eco-Hydraulus in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Pujia Yu
- School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Jie Zhu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qingsong Wu
- Student Work Department, Hulunbuir Vocational Technical College, Hulunbuir 021000, China
- Department of Chemical Engineering, Hulunbuir Vocational Technical College, Hulunbuir 021000, China
| | - Peng Yu
- Department of Chemical Engineering, Hulunbuir Vocational Technical College, Hulunbuir 021000, China
| |
Collapse
|
7
|
Cao Z, Zhu R, Li Y, Kakade A, Zhang S, Yuan Y, Wu Y, Mi J. Mitigation of ammonia and hydrogen sulfide emissions during aerobic composting of laying hen waste through NaOH-modified biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121634. [PMID: 38943752 DOI: 10.1016/j.jenvman.2024.121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
The impact of NaOH-modified biochar on the release of NH3 and H2S from laying hens' manure was examined for 44 days, using a small-scale simulated aerobic composting system. The findings revealed that the NaOH-modified biochar reduced NH3 and H2S emissions by 40.63% and 77.78%, respectively, compared to the control group. Moreover, the emissions of H2S were significantly lower than those of the unmodified biochar group (p < 0.05). The increased specific surface area and microporous structure of the biochar, as well as the higher content of alkaline and oxygenated functional groups, were found to facilitate the adsorption of NH3 and H2S. This enhanced adsorption capability was the primary reason for the significant reduction in NH3 emissions. Furthermore, during the high-temperature phase of composting, there was a notable alteration in the microbial community. The abundance of Limnochordaceae, Savagea, and IMCC26207 increased significantly which aided in the conversion of H2S to stable sulfate. These microorganisms also influenced the abundance of functional genes involved in sulfur metabolism, thereby inhibiting cysteine synthesis, along with the decomposition and conversion of sulfate to sulfite. This led to a significant decrease in H2S emissions. This study provides valuable data for the selection of deodorizers in the composting process of egg-laying hens. The results have significant implications for the application of NaOH-modified biochar for odor reduction in aerobic composting processes.
Collapse
Affiliation(s)
- Ze Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecocystems, International Centre of Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Run Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Apurva Kakade
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecocystems, International Centre of Tibetan Plateau Ecosystem Management, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shiyu Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yilin Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China; Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Yan B, Lan T, Lv Y, Xing C, Liang Y, Wang H, Wu Q, Guo L, Guo WQ. Enhancing simultaneous nitrogen and phosphorus availability through biochar addition during Chinese medicinal herbal residues composting: Synergism of microbes and humus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172515. [PMID: 38642759 DOI: 10.1016/j.scitotenv.2024.172515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tian Lan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yang Lv
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chuanming Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongqi Liang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liang Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
9
|
Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, Hai Nguyen NS, Xie S, Zhang T, Mukherjee S, Bolan NS. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124115. [PMID: 38718963 DOI: 10.1016/j.envpol.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Tra Van Tung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Shiyu Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
10
|
Zhou Y, Awasthi MK, Syed A, Bahkali AH. Engineered biochar combined clay for microplastic biodegradation during pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124372. [PMID: 38880326 DOI: 10.1016/j.envpol.2024.124372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
This study pursued to regulate bacterial community succession pattern and expedited biodegradation of microplastics (MP) during pig manure (PM) composting employing walnut shell biochar (WSB) and montmorillonite (M). The WSB with concentration of 0%, 2.5%, 5%, 7.5%, 10% and 12% along with 10% M participated into PM for 42 days compost to search the optimal solution. The results confirmed the most prosperous bacterial phylum consisted of Firmicutes (3.02%-91.80%), Proteobacteria (2.08%-48.54%), Chloroflexi (0-44.62%) and Bacteroidetes (0.85%-40.93%). The addition of biochar has dramatically arranged bacterial community at different stages of composting. Energy Dispersive Spectrometer (EDS) revealed that carbon element in MPs decreased since the chemical bond fracture, under the intervention of high-temperature composting and WSB, the carbon content of MPs was maximum reduced by 20.25%. Fourier transform infrared spectrum indicated that CC, C-O, C-H and -COOH abundance of MPs in 10% and 12% dose biochar addition sharply reduced, interestingly, explicating WSB and composting made MP biodegradable. This experiment possesses affirmatory practical meaning for elimination of potential hazards by composting.
Collapse
Affiliation(s)
- Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Tran TK, Huynh L, Nguyen HL, Nguyen MK, Lin C, Hoang TD, Hung NTQ, Nguyen XH, Chang SW, Nguyen DD. Applications of engineered biochar in remediation of heavy metal(loid)s pollution from wastewater: Current perspectives toward sustainable development goals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171859. [PMID: 38518825 DOI: 10.1016/j.scitotenv.2024.171859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Environmental pollution of heavy metal(loid)s (HMs) caused adverse impacts, has become one of the emerging concerns and challenges worldwide. Metal(loid)s can pose significant threats to living organisms even when present in trace levels within environmental matrices. Extended exposure to these substances can lead to adverse health consequences in humans. Removing HM-contaminated water and moving toward sustainable development goals (SDGs) is critical. In this mission, biochar has recently gained attention in the environmental sector as a green and alternative material for wastewater removal. This work provides a comprehensive analysis of the remediation of typical HMs by biochars, associated with an understanding of remediation mechanisms, and gives practical solutions for ecologically sustainable. Applying engineered biochar in various fields, especially with nanoscale biochar-aided wastewater treatment approaches, can eliminate hazardous metal(loid) contaminants, highlighting an environmentally friendly and low-cost method. Surface modification of engineered biochar with nanomaterials is a potential strategy that positively influences its sorption capacity to remove contaminants. The research findings highlighted the biochars' ability to adsorb HM ions based on increased specific surface area (SSA), heightened porosity, and forming inner-sphere complexes with oxygen-rich groups. Utilizing biochar modification emerged as a viable approach for addressing lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), and chromium (Cr) pollution in aqueous environments. Most biochars investigated demonstrated a removal efficiency >90 % (Cd, As, Hg) and can reach an impressive 99 % (Pb and Cr). Furthermore, biochar and advanced engineered applications are also considered alternative solutions based on the circular economy.
Collapse
Affiliation(s)
- Thien-Khanh Tran
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Loan Huynh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City 76100, Viet Nam
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Tuan-Dung Hoang
- School of Chemistry and Life Science, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi 100000, Viet Nam; Vietnam National University, Hanoi - School of Interdisciplinary Sciences and Arts, 144 Xuan Thuy Street, Cau Giay District, Hanoi 100000, Viet Nam
| | - Nguyen Tri Q Hung
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - X Hoan Nguyen
- Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City, Viet Nam
| | - S Woong Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
12
|
Wang F, Pan T, Fu D, Fotidis IA, Moulogianni C, Yan Y, Singh RP. Pilot-scale membrane-covered composting of food waste: Initial moisture, mature compost addition, aeration time and rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171797. [PMID: 38513870 DOI: 10.1016/j.scitotenv.2024.171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
The impact of different operational parameters on the composting efficiency and compost quality during pilot-scale membrane-covered composting (MCC) of food waste (FW) was evaluated. Four factors were assessed in an orthogonal experiment at three different levels: initial mixture moisture (IMM, 55 %, 60 %, and 65 %), aeration time (AT, 6, 9, and 12 h/d), aeration rate (AR, 0.2, 0.4, and 0.6 m3/h) and mature compost addition ratio (MC, 2 %, 4 %, and 6 %). Results indicated that 55 % IMM, 6 h/d AT, 0.4 m3/h AR, and 4 % MC addition ratio simultaneously provided the compost with the maximum cumulative temperature and the minimum moisture. It was shown that the IMM was the driving factor of this optimum composting process. On contrary, the optimal parameters for reducing carbon and nitrogen loss were 65 % IMM, 6 h/d AT, 0.4 m3/h AR, and 2 % MC addition ratio. The AR had the most influence on reducing carbon and nitrogen losses compared to all other factors. The optimal conditions for compost maturity were 55 % IMM, 9 h/d AT, 0.2 m3/h AR, and 6 % MC addition ratio. The primary element influencing the pH and electrical conductivity values was the AR, while the germination index was influenced by IMM. Protein was the main organic matter limiting the composting efficiency. The results of this study will provide guidance for the promotion and application of food waste MCC technology, and contribute to a better understanding of the mechanisms involved in MCC for organic solid waste treatment.
Collapse
Affiliation(s)
- Fei Wang
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ting Pan
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Dafang Fu
- School of Civil Engineering, Southeast University, Nanjing 211189, China
| | - Ioannis A Fotidis
- School of Civil Engineering, Southeast University, Nanjing 211189, China; Department of Environment, Ionian University, 29100 Zakynthos, Greece
| | | | - Yixin Yan
- School of Civil Engineering, Southeast University, Nanjing 211189, China.
| | | |
Collapse
|
13
|
Zhao H, Li S, Pu J, Wang H, Dou X. Effects of Bacillus-based inoculum on odor emissions co-regulation, nutrient element transformations and microbial community tropological structures during chicken manure and sawdust composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120328. [PMID: 38354615 DOI: 10.1016/j.jenvman.2024.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.
Collapse
Affiliation(s)
- Huaxuan Zhao
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Shangmin Li
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China.
| | - Junhua Pu
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Hongzhi Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Xinhong Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
14
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
15
|
Wang Z, Zhang M, Li J, Wang J, Sun G, Yang G, Li J. Effect of biochar with various pore characteristics on heavy metal passivation and microbiota development during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120048. [PMID: 38246105 DOI: 10.1016/j.jenvman.2024.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Understanding the porosity of biochar (BC) that promotes the heavy metal (HM) passivation during composting can contribute to the sustainable management of pig manure (PM). The current work aimed to explore the influence of BC with varying pore sizes on the physicochemical properties and morphological changes of HMs (including Zn, Cu, Cr, As, and Hg), and microbiota development during PM composting. The various pore sizes of BC were generated by pyrolyzing pine wood at 400 (T1), 500 (T2), 600 (T3) and 700 (T4) °C, respectively. The results revealed a positive correlation between specific surface area of BC and pyrolysis temperature. BC addition contributed to a significantly extended compost warming rate and duration of high-temperature period, as well as HM passivation, reflected in the decrease in Exc-Zn (63-34%) and Red-Cu (28-13%) content, and the conversion of Oxi-Cr (29-21%) and Red-Hg (16-5%) to more stable forms. Moreover, BC at T4 exhibited the best effect on Zn and Cu passivation due to the highest specific surface area (380.03 m2/g). In addition to its impact on HM passivation, BC addition improved the microbial environment during PM composting, leading to enhanced microbial diversity and richness. Notably, Chloroflexi and Bacteroidota played key roles in promoting the transformation of Exc-Cu and Red-Hg into stable forms. This phenomenon further stimulated the enhanced decomposition of organic matter (OM) when BC prepared at 600-700 °C was added. Therefore, it can be concluded that the regulation of BC porosity is an effective strategy to improve HM passivation and the overall effectiveness of PM composting.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| | - Guotao Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China.
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
16
|
Stegenta-Dąbrowska S, Syguła E, Bednik M, Rosik J. Effective Carbon Dioxide Mitigation and Improvement of Compost Nutrients with the Use of Composts' Biochar. MATERIALS (BASEL, SWITZERLAND) 2024; 17:563. [PMID: 38591413 PMCID: PMC10856095 DOI: 10.3390/ma17030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 04/10/2024]
Abstract
Composting is a process that emits environmentally harmful gases: CO2, CO, H2S, and NH3, negatively affecting the quality of mature compost. The addition of biochar to the compost can significantly reduce emissions. For effective CO2 removal, high doses of biochar (up to 20%) are often recommended. Nevertheless, as the production efficiency of biochar is low-up to 90% mass loss-there is a need for research into the effectiveness of lower doses. In this study, laboratory experiments were conducted to observe the gaseous emissions during the first 10 days of composting with biochars obtained from mature composts. Biochars were produced at 550, 600, and 650 °C, and tested with different doses of 0, 3, 6, 9, 12, and 15% per dry matter (d.m.) in composting mixtures, at three incubation temperatures (50, 60, and 70 °C). CO2, CO, H2S, and NH3 emissions were measured daily. The results showed that the biochars effectively mitigate CO2 emissions during the intensive phase of composting. Even 3-6% d.m. of compost biochars can reduce up to 50% of the total measured gas emissions (the best treatment was B650 at 60 °C) and significantly increase the content of macronutrients. This study confirmed that even low doses of compost biochars have the potential for enhancing the composting process and improving the quality of the material quality.
Collapse
Affiliation(s)
- Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Ewa Syguła
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| | - Magdalena Bednik
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka Street 53, 50-375 Wrocław, Poland;
| | - Joanna Rosik
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37a, 51-630 Wrocław, Poland; (S.S.-D.); (E.S.)
| |
Collapse
|
17
|
Li S, Wen Y, Wang Y, Liu M, Su L, Peng Z, Zhou Z, Zhou N. Novel α-amino acid-like structure decorated biochar for heavy metal remediation in acid soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132740. [PMID: 37856962 DOI: 10.1016/j.jhazmat.2023.132740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Neither chemical nor physical adsorption play well in heavy metals remediation in acid soil due to the competing behavior of abundant protons, where stable chelators that can be reused are of significant demand. Herein, biochar with abundant nitro and carboxyl groups is prepared, which can be assembled into self-supporting electrode. Under the catalyzation of electricity, the surface decorated -NO2 on the biochar can be in situ transformed into -NH2. Combined with the carboxyl group that attached on the same carbon atom, a special α-amino acid-like structure modified biochar (α-AC@BC) can be successfully constructed. Due to the strong affinity between the α-amino acid-like ligand and heavy metals, this α-AC@BC exhibits high removal efficiencies of 83.41%, 80.94%, 92.54% and 77.05% for available copper, cadmium, lead and zinc respectively, even in a strong acid soil with low pH of 4. After four adsorption-desorption cycles, the α-AC@BC could still eliminate 83.88% of copper. The high adsorption energy among -NH2, -COOH and heavy metals (-2.99 eV for copper, -1.90 eV for lead, -1.30 eV for zinc and -0.91 eV for cadmium) could form steady coordination structure to guarantee a highly practical application potential of α-AC@BC in strong acid soil. This study provides a novel concept for the decontamination of multiple heavy metal polluted acid soil.
Collapse
Affiliation(s)
- Shikai Li
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yujiao Wen
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Yifan Wang
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Meng Liu
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Lezhu Su
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhengjie Peng
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Zhi Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Nan Zhou
- Hunan Engineering Research Center for Biochar, School of Chemistry and Materials Science, College of Mechanical and Electrical Engineering, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
18
|
Nguyen MK, Lin C, Nguyen HL, Le VR, Kl P, Singh J, Chang SW, Um MJ, Nguyen DD. Emergence of microplastics in the aquatic ecosystem and their potential effects on health risks: The insights into Vietnam. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118499. [PMID: 37480638 DOI: 10.1016/j.jenvman.2023.118499] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/24/2023]
Abstract
The increase of microplastic contamination in Vietnam is a growing concern due to various domestic, agricultural, and industrial activities. The use of plastic mulch and sludge application in agricultural farmland, textile production, daily consumer items, cleaning agents, and health/personal care products contribute significantly to the increasing microplastic pollution in the aquatic ecosystem. The concentration of microplastics reported in surface water ranged from 0.35 to 519,000 items m-3, with fibers and fragments being the most prevalent shapes. Notably, the high concentration of microplastics was observed in lakes, canals, and megacities such as Ha Noi and Ho Chi Minh City, which poses potential health risks to the local community via drinking-water supply and food chains. As an emerging pollutant, MPs are the transport vectors for contaminants in environmental matrices that act as a carrier of hazardous pollutants, release toxic compounds, and evenly aggregate/accumulate in biota. Recent studies have reported the presence of microplastics in various marine organisms, including fish and shellfish, highlighting the risk of ingestion of these particles by humans and wildlife. Thus, it is imperative to monitor microplastic contamination in the ecosystem to provide helpful information for the government and local communities. Efforts should be taken to reduce microplastic pollution at the source to minimize potential effects on ecological and health safety. This review paper emphasizes the urgent need for further research on microplastic pollution in Vietnam and highlights potential solutions to mitigate this emerging environmental threat. KEYWORKS: single-use plastics; microplastics; ecosystems; plastic waste; health risk; ecological and health safety; pollution mitigation.
Collapse
Affiliation(s)
- Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University, Ho Chi Minh City 700000, Viet Nam; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), Ho Chi Minh City, 700000, Viet Nam
| | - Priya Kl
- Department of Civil Engineering, TKM College of Engineering, Kollam 691005, India
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Soon W Chang
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Republic of Korea
| | - Myoung-Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Republic of Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
19
|
Chen X, Zhao Y, Yang L, Yang Y, Wang L, Wei Z, Song C. Identifying the specific pathways to improve nitrogen fixation of different straw biochar during chicken manure composting based on its impact on the microbial community. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:8-16. [PMID: 37531741 DOI: 10.1016/j.wasman.2023.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
The application of straw biochar to chicken manure composting mitigated nitrogen loss. However, the impact of biochar derived from different types of straw on nitrogen fixation in chicken manure composting is discrepant, and the specific pathways remain unclear. Therefore, this study aimed to clarify the specific pathways of maize straw biochar (M) and rice straw biochar (R) to improve nitrogen fixation during chicken manure composting. The nitrogen losses in control (no addition, CK), M, and R composting were 51.84 %, 33.47 %, and 38.24 %, respectively, suggesting that adding straw biochar effectively improved nitrogen fixation. Microbial community analysis suggested that inhibiting denitrification and NH4+-N transformation by microorganisms was the primary means of improving nitrogen fixation. Meanwhile, biochar addition reduced the number of bacteria participating in nitrogen transformation and strengthened the NO3--N and total organic nitrogen transformation processes, among which the effect of M composting was stronger. The stronger effect was attributed to the significant role of the core microorganisms in M composting in shifting the transformation processes of the nitrogen components (P < 0.05). Therefore, the function of different straw biochar was determined by its different impacts on the microbial community, highlighting the important role of microbial community variability.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liu Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunan Yang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
20
|
Zahra K, Farhan M, Kanwal A, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ. Investigating the role of bulking agents in compost maturity. Sci Rep 2023; 13:16003. [PMID: 37749113 PMCID: PMC10520060 DOI: 10.1038/s41598-023-41891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
Kitchen waste is increasing globally, similarly in Pakistan bulk of municipal solid waste comprises of kitchen waste specifically, tea waste. Composting of kitchen waste is one of the promising ways to convert waste into useful product, resulting into zero waste. This study is aimed to convert waste (kitchen waste) in to a resource (compost) using bulking agents (tea waste and biochar) for reducing maturity time. Secondly, compost application on Solanum lycopersicum (tomato) was also tested. Four compost treatments were designed under aerobic composting conditions for 30 days. Tea waste and biochar have accelerated the maturity rate and produced a nutrient rich compost. Final compost had Electrical Conductivity of 2mS/cm, Carbon Nitrogen ration of 15, 54% of organic matter, 15% of moisture content, 48% of cellulose content, and 28% of Lignin content. With the use of Co-compost the Solanum lycopersicum showed 133% germination index, 100% germination, 235% Munoo-Liisa Vitality Index and 1238% seed vigor index. Co-compost also improved the soil total nitrogen by 1.4%, total phosphorous by 2%, total potassium by 2.1% and bulk density by 2.6 gcm-3. This study successfully used tea waste and biochar as bulking agents to reduce maturation time to 30 days. Tea waste and biochar enhanced the organic matter degradation, lignocellulose degradation, water holding capacity, porosity, seed's vigor, germination index. This research can be helpful in developing home composting and home gardening to combat solid waste management and food security issue in developing countries.
Collapse
Affiliation(s)
- Khadija Zahra
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | - Amina Kanwal
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Faiza Sharif
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Muhammad Umar Hayyat
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Gul Zareen Ghafoor
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| |
Collapse
|
21
|
Le VR, Nguyen MK, Nguyen HL, Lin C, Rakib MRJ, Thai VA, Le VG, Malafaia G, Idris AM. Organic composts as A vehicle for the entry of microplastics into the environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164758. [PMID: 37308024 DOI: 10.1016/j.scitotenv.2023.164758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.
Collapse
Affiliation(s)
- Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Van-Anh Thai
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 111000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
22
|
Oviedo-Ocaña ER, Abendroth C, Domínguez IC, Sánchez A, Dornack C. Life cycle assessment of biowaste and green waste composting systems: A review of applications and implementation challenges. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:350-364. [PMID: 37708800 DOI: 10.1016/j.wasman.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Composting is one of the most widely applied methods for recycling organic waste. This process has been proposed as one option that facilitates the reincorporation of materials into the production cycle. However, composting also generates environmental impacts. Life Cycle Assessment (LCA) is the most common approach to evaluate the environmental impacts of a process at different system stages. Nevertheless, applying LCA in composting facilities is challenging due to the extensive information required, the lack of standardization on the initial assumptions, the definition of system boundaries, and the high diversity of existing composting technologies. This paper systematically reviews LCA studies in biowaste and/or green waste composting. The study highlights the challenges that should be met in order to improving the application of LCA to evaluate the environmental impacts of this type or waste treatment strategy. The review protocol used identified 456 papers published between 2010 and 2022. After the screening, 56 papers were selected, read, and thoroughly analyzed. The results show that: i) about 68% of the studies aimed to compare composting with other solid waste management options; ii) there was a wide diversity among the impact categories considered, which predominantly included climate change and ozone depletion; iii) there was no consensus on the functional unit or the system boundaries; iv) the main gaseous emissions studied were ammonia, methane, and nitrogen oxide, which were generally determined by emission factors; v) the avoided environmental impacts associated with the end-product quality and its application as an organic amendment or soil improver were ignored. This work demonstrates the complexity of conducting credible and valid composting LCA studies and proposes seven recommendations for improving the application of this assessment methodology to analyze this waste management alternative.
Collapse
Affiliation(s)
- E R Oviedo-Ocaña
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria Bucaramanga, Colombia
| | - C Abendroth
- Technische Universität Dresden, Institute of Waste Management and Circular Economy, Pratzschwitzer Str. 15. 01796 Pirna, Germany; Brandenburg Technical University Cottbus-Senftenberg, Faculty of Environment and Natural Sciences, Lehrgebäude 4 A R2.25, Siemens-Halske-Ring 8 03046 Cottbus, Germany
| | - I C Domínguez
- Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Grupo de Investigación en Recurso Hídrico y Saneamiento Ambiental - GPH, Carrera 27 Calle 9 Ciudad Universitaria Bucaramanga, Colombia
| | - A Sánchez
- Universitat Autònoma de Barcelona, Department of Chemical Engineering, Composting Research Group, 08193, Barcelona, Bellaterra, Spain.
| | - C Dornack
- Technische Universität Dresden, Institute of Waste Management and Circular Economy, Pratzschwitzer Str. 15. 01796 Pirna, Germany
| |
Collapse
|
23
|
Wang Y, Wang J, Wu X, Zhao R, Zhang Z, Zhu J, Azeem M, Xiao R, Pan J, Zhang X, Li R. Synergetic effect and mechanism of elementary sulphur, MgSO 4 and KH 2PO 4 progressive reinforcement on pig manure composting nitrogen retention. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121934. [PMID: 37263560 DOI: 10.1016/j.envpol.2023.121934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
The potential of sulphur (S), MgSO4 (Mg), and KH2PO4 (P) in nitrogen retention, ammonia emission decrease, and microbial community succession during composting needs to be investigated. To achieve this, different levels of S (0, 0.2, 0.4, 0.6, and 0.8% in dry weight) plus Mg and P (S + Mg + P) were progressively added in 70 days pig manure aerobic composting. The results revealed that the amendment increased salinity and lowered pH and dephytotoxication of the product with the increase of S amount. However, no significant inhibition effects were observed on the evolution of the thermophilic phase and product maturity. In addition, the amendment significantly reduced the total NH3 and N2O emissions by 29.66%-58.81% and 20.6%-56.7%, increased NH4+ level by 17.22%-73.21% in thermophilic phase and NO3- content by 26.17%-57.48% in a mature phase, and elevated the total Kjeldahl nitrogen content by 34.28%-46.6% during the composting. In addition, compared to the control, the supplement markedly encouraged the formation of guanite in the compost product. The S addition stimulated the growth of Anseongella, Actinomadura, Chelativorans, Castellaniella, Luteimonas, and Steroidobacter microbial communities which functioned well in the degradation of nitrogen-containing compounds and organic matter. Evidence from Redundancy Analysis, Firmicutes, Myxococcus, Chloroflexi, Gemmatimonadota, and Deinococcota showed positive correlations with pH. These results imply that adding S-Mg-P amendment encourages the population and activity of specific functional microorganisms, and facilitated the ammonia emission reduction by lowering pH and thus reserved nitrogen through the formation of guanite during composting. The investigation of bacterial community abundance and environmental variables at the phylum and genus levels over time revealed that adding of 0.6% S in conjunction with P and Mg minerals was suitable for nitrogen loss mitigation in composting. The findings suggest using S + Mg + P supplement to conserve nitrogen in pig dung aerobic composting.
Collapse
Affiliation(s)
- Yang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuan Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juanjuan Zhu
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Muhammad Azeem
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, Rawalpindi, Punjab 46300, Pakistan
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
24
|
Xu M, Sun H, Chen E, Yang M, Wu C, Sun X, Wang Q. From waste to wealth: Innovations in organic solid waste composting. ENVIRONMENTAL RESEARCH 2023; 229:115977. [PMID: 37100364 DOI: 10.1016/j.envres.2023.115977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023]
Abstract
Organic solid waste (OSW) is not only a major source of environmental contamination, but also a vast store of useful materials due to its high concentration of biodegradable components that can be recycled. Composting has been proposed as an effective strategy for recycling OSW back into the soil in light of the necessity of a sustainable and circular economy. In addition, unconventional composting methods such as membrane-covered aerobic composting and vermicomposting have been reported more effective than traditional composting in improving soil biodiversity and promoting plant growth. This review investigates the current advancements and potential trends of using widely available OSW to produce fertilizers. At the same time, this review highlights the crucial role of additives such as microbial agents and biochar in the control of harmful substances in composting. Composting of OSW should include a complete strategy and a methodical way of thinking that can allow product development and decision optimization through interdisciplinary integration and data-driven methodologies. Future research will likely concentrate on the potential in controlling emerging pollutants, evolution of microbial communities, biochemical composition conversion, and the micro properties of different gases and membranes. Additionally, screening of functional bacteria with stable performance and exploration of advanced analytical methods for compost products are important for understanding the intrinsic mechanisms of pollutant degradation.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
25
|
Tran HT, Bolan NS, Lin C, Binh QA, Nguyen MK, Luu TA, Le VG, Pham CQ, Hoang HG, Vo DVN. Succession of biochar addition for soil amendment and contaminants remediation during co-composting: A state of art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118191. [PMID: 37210821 DOI: 10.1016/j.jenvman.2023.118191] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
This paper aimed to highlight the succession of biochar addition for soil amendment and contaminants remediation during composting process. Biochar incorporated into the compost mixture promotes composting performance and enhances contaminants reduction. Co-composting with biochar for soil biota has been demonstrated via modified soil biological community abundance and diversity. On the other hand, adverse alterations to soil properties were noted, which had a negative impact on the communication of microbe-to-plant interactions within the rhizosphere. As a result, these changes influenced the competition between soilborne pathogens and beneficial soil microorganisms. Co-composting with biochar promoted the heavy metals (HMs) remediation efficiency in contaminated soils by around 66-95%. Notably, applying biochar during composting could improve nutrient retention and mitigate leaching. The adsorption of nutrients such as nitrogen and phosphorus compounds by biochar can be applied to manage environmental contamination and presents an excellent opportunity to enhance soil quality. Additionally, the various specific functional groups and large specific surface areas of biochar allow for excellent adsorption of persistent pollutants (e.g., pesticides, polychlorinated biphenyls (PCBs)) and emerging organic pollutants, such as microplastic, phthalate acid esters (PAEs) during co-composting. Finally, future perspectives, research gaps, and recommendations for further studies are highlighted, and potential opportunities are discussed.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Chitsan Lin
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Quach An Binh
- Department of Academic Affair and Testing, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Minh-Ky Nguyen
- Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, 700000, Viet Nam.
| | - The Anh Luu
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, 111000, Viet Nam
| | - Cham Q Pham
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai, 810000, Viet Nam
| | - Dai-Viet N Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|