1
|
Trinh HP, Lee SH, Nguyen TV, Park HD. Contribution of the microbial community to operational stability in an anammox reactor: Neutral theory and functional redundancy perspectives. BIORESOURCE TECHNOLOGY 2025; 419:132029. [PMID: 39740752 DOI: 10.1016/j.biortech.2024.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
A comprehensive understanding of microbial assembly is essential for achieving stable performance in biological wastewater treatment. Nevertheless, few studies have quantified these phenomena in detail, particularly in anammox-based processes. This study integrated mathematical and microbial approaches to analyze a 330-day anammox reactor with stable nitrogen removal efficiency (97 - 99%) despite changes in the high nitrogen loading rate, nitrogen concentration, and hydraulic retention time. A high value of functional redundancy (0.82) was obtained, with 84.6% of the microbial species following the neutral community model in stochastic processes, thus maintaining the stability of the dominant species and function in the microbial community. This study represents an initial attempt to quantify and evaluate the importance of functional redundancy in an anammox reactor. Based on these findings, engineering strategies have also been proposed to preserve high functional redundancy in stabilizing system performance under varying operating conditions.
Collapse
Affiliation(s)
- Hoang Phuc Trinh
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Thi Vinh Nguyen
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
2
|
Zhu Y, Li D, Ma B, Zeng H, Zhang J. Deciphering key microbes and their interactions within anaerobic ammonia oxidation systems. BIORESOURCE TECHNOLOGY 2025; 416:131799. [PMID: 39532267 DOI: 10.1016/j.biortech.2024.131799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The stability of anaerobic ammonium oxidation (anammox) performance is inseparably linked to the dynamic equilibrium of microbial interactions. However, understanding of the key microbes within anammox systems remains limited. Through the analysis of 186 16S rRNA datasets combined with various ecological analysis methods, this study identified key microbes in the anammox process. Interactions between Candidatus_Kuenenia and other key microbes are the most significant with greater tolerance to differing water quality, while Candidatus_Jettenia have higher habitat specificity. Under adverse conditions, anammox bacteria can reduce the impact of unfavorable environments by enhancing interactions with certain microbes. This study comprehensively reviews the main functions of key microbes in the anammox system and their interactions, and summarizes several common interaction mechanisms, providing new insights for understanding the startup and stable operation of the anammox process.
Collapse
Affiliation(s)
- Yuliang Zhu
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Ben Ma
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
3
|
Gonçalves Piteira Carvalho B, Abreu Henriques D, Fernandes LA, Leal CD, Calábria de Araújo J. Partial nitritation/anammox applied to real anaerobically pretreated domestic sewage under subtropical climate: aeration strategies and nitrogen cycle bacteria. ENVIRONMENTAL TECHNOLOGY 2024; 45:5589-5599. [PMID: 38286140 DOI: 10.1080/09593330.2023.2298666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024]
Abstract
The combination of sewage anaerobic treatment and partial nitritation/anammox process (PN/A) can make wastewater treatment plants energetically self-sufficient. However, PN/A application has been a challenge in low-nitrogen wastewaters and it is little explored in anaerobically pretreated domestic sewage, as well as aeration strategies and the PN/A feasibility at ambient temperature. This study investigated PN/A in a sequential batch reactor (SBR) treating real anaerobically pretreated domestic sewage. After the startup, SBR was fed with real wastewater and operated at 35°C and at ambient temperature (20-31°C) without total nitrogen (TN) removal decrease (71 ± 8 and 75 ± 6%, respectively). The median ammonium and TN removals were 68 ± 21 and 59 ± 9%, respectively with 7 min on/14 min off strategy, which represents 12.3 ± 4.2 mg L-1 N-NH4+ effluent, which is lower than Brazilian discharge limits. The qPCR results showed anammox abundance in the range of 108-109 n° copies gVSS-1. Thus, results were very promising and showed the feasibility of the PN/A process for treating real anaerobically pretreated domestic sewage at ambient temperature.
Collapse
Affiliation(s)
| | - Daniel Abreu Henriques
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Luyara Almeida Fernandes
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Cintia Dutra Leal
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais - UFMG, Belo Horizonte, Brazil
| |
Collapse
|
4
|
Jiao T, Zhao C, Zhang M, Han F, Han Y, Zhang S, Zhou W. Recovery of ammonia assimilating microbiome after Cr (VI) shock by bio-accelerators. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123020. [PMID: 39454390 DOI: 10.1016/j.jenvman.2024.123020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The pretreatment process is often unable to completely intercept heavy metals in wastewater, facing a huge risk of leakage, increasing the difficulty of treating pollutants in the subsequent biochemical process or even leading to the collapse of the system, and facing the difficulty of inoperability and rehabilitation. Heterotrophic ammonia assimilation has the potential to maintain some stability after heavy metal shock, thanks to its rapid microbial proliferation, robust resistance to high loads, remarkable environmental adaptability, and inherent stability. Bio-accelerators dosing strategies could strengthen the performance recovery ability of traditional bio-system after heavy metal impact. However, no recovery strategies for inhibiting HAA have been reported. Herein, three bio-accelerants, specifically, vitamin A, 6-benzylaminopurine, and α-ketoglutaric acid, were investigated for their potential to restore the HAA system impacted by 20 mg/L Cr (VI). The three bio-accelerants effectively mitigated the toxicity of the HAA system, resulting in a 60.4% increase in NH4+-N removal efficiency within just 6 days with cytokinin. During toxicity remediation, three bio-accelerants facilitated the production of extracellular protein components in soluble microbial products and stimulated the secretion of extracellular polymeric substances. The three bio-accelerants enhanced competition among genera and influenced community assembly processes to regulate community structure and enhance functional gene expression. This study offers a practical approach to enhancing the HAA process and remediating microbial toxicity.
Collapse
Affiliation(s)
- Tong Jiao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Chuanfu Zhao
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Mengru Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Fei Han
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Yufei Han
- Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, PR China
| | - Shuhui Zhang
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan, Shandong, PR China; Laboratory of Water-sediment Regulation and Eco-decontamination, Jinan, Shandong, PR China.
| |
Collapse
|
5
|
Albaseer SS, Al-Hazmi HE, Kurniawan TA, Xu X, Abdulrahman SAM, Ezzati P, Habibzadeh S, Hollert H, Rabiee N, Lima EC, Badawi M, Saeb MR. Microplastics in water resources: Global pollution circle, possible technological solutions, legislations, and future horizon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173963. [PMID: 38901599 DOI: 10.1016/j.scitotenv.2024.173963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Beneath the surface of our ecosystems, microplastics (MPs) silently loom as a significant threat. These minuscule pollutants, invisible to the naked eye, wreak havoc on living organisms and disrupt the delicate balance of our environment. As we delve into a trove of data and reports, a troubling narrative unfolds: MPs pose a grave risk to both health and food chains with their diverse compositions and chemical characteristics. Nevertheless, the peril extends further. MPs infiltrate the environment and intertwine with other pollutants. Worldwide, microplastic levels fluctuate dramatically, ranging from 0.001 to 140 particles.m-3 in water and 0.2 to 8766 particles.g-1 in sediment, painting a stark picture of pervasive pollution. Coastal and marine ecosystems bear the brunt, with each organism laden with thousands of microplastic particles. MPs possess a remarkable ability to absorb a plethora of contaminants, and their environmental behavior is influenced by factors such as molecular weight and pH. Reported adsorption capacities of MPs vary greatly, spanning from 0.001 to 12,700 μg·g-1. These distressing figures serve as a clarion call, demanding immediate action and heightened environmental consciousness. Legislation, innovation, and sustainable practices stand as indispensable defenses against this encroaching menace. Grasping the intricate interplay between microplastics and pollutants is paramount, guiding us toward effective mitigation strategies and preserving our health ecosystems.
Collapse
Affiliation(s)
- Saeed S Albaseer
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland.
| | | | - Xianbao Xu
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Peyman Ezzati
- ERA Co., Ltd, Science and Technology Center, P.O. Box: 318020, Taizhou, Zhejiang, China
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Department Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Eder C Lima
- Institute of Chemistry - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Michael Badawi
- Université de Lorraine, CNRS, Laboratoire Lorrain de Chimie Moléculaire, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
6
|
Yao S, Zhang K, Yang S, Li Z, Wang Y, Ma F, Chen P, Zhu T. A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification coupled anammox system. Biodegradation 2024; 35:565-582. [PMID: 38844743 DOI: 10.1007/s10532-024-10077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/16/2024] [Indexed: 07/14/2024]
Abstract
A novel coupling process to replace the traditional multi-stage anammox process-sulfur autotrophic denitrification (SAD) coupled anaerobic ammonium oxidation (anammox) system was designed, which solved problems of nitrate produced in anammox process and low nitrate conversion rate caused by nitrite accumulation in SAD process. Different filter structures (SAD filter and anammox granular sludge) were investigated to further explore the excellent performance of the novel integrated reactor. The results of sequential batch experiments indicated that nitrite accumulation occurred during SAD, which inhibited the conversion of nitrate to dinitrogen gas. When SAD filter and anammox granular sludge were added to packed bed reactor simultaneously, the nitrate removal rate increased by 37.21% and effluent nitrite concentration decreased by 100% compared to that achieved using SAD. The stratified filter structure solved groove flow. Different proportion influence of SAD filter and anammox granular sludge on the stratified filter structure was evaluated. More suitable ratio of SAD filter to anammox granular sludge was 2:1. Proteobacteria (57.26%), Bacteroidetes (20.12%) and Chloroflexi (9.95%) were the main phyla. The dominant genera of denitrification functional bacteria were Thiobacillus (39.80%), Chlorobaculum (3.99%), norank_f_PHOs-HE36 (2.90%) and Ignavibacterium (2.64%). The dominant genus of anammox bacterium was Candidatus_Kuenenia (3.05%).
Collapse
Affiliation(s)
- Sai Yao
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Kuo Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Song Yang
- Liaoning Coning Testing Co., Ltd, No. 603, 16-6, Wensu Street, Hunnan District, Shenyang, 110170, People's Republic of China
| | - Zijun Li
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Youzhao Wang
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Feng Ma
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Pu Chen
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China
| | - Tong Zhu
- Institute of Process Equipment and Environmental Engineering, School of Mechanical Engineering and Automation, Northeastern University, 3-11, Wenhua Road, Heping District, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
7
|
Sari T, Akgul D, Mertoglu B. Enhancement of hydrazine accumulation in anammox bioreactors. CHEMOSPHERE 2024; 359:142293. [PMID: 38723689 DOI: 10.1016/j.chemosphere.2024.142293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The role of hydrazine (N2H4) in anammox metabolism has been widely studied; however, studies on N2H4 biosynthesis by anammox bacteria are limited in the literature. In this context, the current research aims to investigate the enhancement of biological N2H4 production in the anammox process in a long-term manner. The experimental studies started with the optimization of the operating conditions to achieve maximum N2H4 accumulation. Under favorable conditions (pH = 8.97 ± 0.08; T = 35.5 ± 0.5 °C; initial hydroxylamine dose = 1.46 ± 0.01 mM), 17.16 ± 0.64 mg L-1 of N2H4 accumulated in the batch systems. The continuity of N2H4 bioproduction was then evaluated by long-term observations. A continuous flow bioreactor was operated in four consecutive manipulated periods under optimized conditions. In the long-term operated bioreactor, 55.10 ± 0.30 mg L-1 N2H4 was accumulated at optimal conditions, which was 2.5 times higher than reported in the literature. Although manipulation of the bioreactor operating conditions initially resulted in a significant increase in N2H4 bioaccumulation, it subsequently caused a severe deterioration in anammox activity. However, this could be mitigated by increasing the biomass concentration in the anammox systems. In addition, the relative abundance of Candidatus Kuenenia decreased by 1.88% throughout the long-term operation.
Collapse
Affiliation(s)
- Tugba Sari
- Department of Bioengineering, Marmara University, Istanbul, Goztepe, 34722, Turkey
| | - Deniz Akgul
- Department of Environmental Engineering, Marmara University, Istanbul, Goztepe, 34722, Turkey.
| | - Bulent Mertoglu
- Department of Bioengineering, Marmara University, Istanbul, Goztepe, 34722, Turkey
| |
Collapse
|
8
|
Tan J, Hu Y, Ding C, Li Y, Gu Y, Li Z, Lin H. Strong adsorption enhanced nitrogen removal from landfill leachate by PVA/CMC/WPU pellets immobilized microorganisms. JOURNAL OF WATER PROCESS ENGINEERING 2024; 63:105480. [DOI: 10.1016/j.jwpe.2024.105480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Hu J, Qian F, Li X, Tang Y, Zhu C, Fu J, Wang J. Rapid start-up and operational characteristics of partial denitrification coupled with anammox driven by innovative strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172442. [PMID: 38614336 DOI: 10.1016/j.scitotenv.2024.172442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The Partial Denitrification-Anammox (PD/A) process established a low-consumption, efficient and sustainable pathway for complete nitrogen removal, which is of great interest to the industry. Rapid initiation and stable operation of the PD/A systems were the main issues limiting its engineering application in wastewater nitrogen removal. A PD/A system was initiated in a continuous stirred-tank reactors (CSTRs) in the presence of low concentration of organic matter, and the effects of organic matter types and COD/NO3--N ratios on the performance of the PD/A system, and microbial community characteristics were explored. The results showed that low concentrations of organic matter could promote the rapid initiation of the Anammox process and then the strategy of gradually replacing NO2--N with NO3--N could successfully initiate the PD/A system at 70 days. The type of organic matter had a significant effect on the initiation of the Anammox and the establishment of the PD/A system. Compared to glucose, sodium acetate was more favorable for rapid start-up and the synergy among microorganisms, and organic matter was lower, with an optimal COD/NO3--N ratio of 3.0. Microorganisms differed in their sensitivity to environmental factors. The relative abundance of Planctomycetota and Proteobacteria in R2 was 51 %, with the presence of three typical anammox bacteria, Candidatus_Brocadia, Candidatus_Kuenenia, and Candidatus_Jettenia in the system. This study provides a new strategy for the rapid initiation and stable operation of the PD/A process.
Collapse
Affiliation(s)
- Juntong Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, PR China
| | - Xingran Li
- Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yuchao Tang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jie Fu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, PR China; Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
10
|
Wang Q, Zhang C, Song J, Bamanu B, Zhao Y. Enhancement of bio-promoters on hexavalent chromium inhibited sulfur-driven denitrification: repairing damage, accelerating electron transfer, and reshaping microbial collaboration. BIORESOURCE TECHNOLOGY 2024; 400:130699. [PMID: 38615966 DOI: 10.1016/j.biortech.2024.130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.
Collapse
Affiliation(s)
- Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chenggong Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinxin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Bibek Bamanu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
11
|
Li Y, Pan Z, Liao J, Dai R, Lin JG, Ling J, Xu Y. Micro-aeration and low influent C/N are key environmental factors for achieving ANAMMOX in livestock farming wastewater treatment plants. WATER RESEARCH 2024; 253:120141. [PMID: 38377919 DOI: 10.1016/j.watres.2023.120141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 02/22/2024]
Abstract
Anaerobic ammonium oxidation (ANAMMOX)-mediated system is a cost-effective green nitrogen removal process. However, there are few examples of successful application of this advanced wastewater denitrification process in wastewater treatment plants, and the understanding of how to implement anaerobic ammonia oxidation process in full-scale is still limited. In this study, it was found that the abundance of anaerobic ammonia-oxidizing bacteria (AnAOB) in the two livestock wastewater plants named J1 and J2, respectively, showed diametrically opposed trends of waxing and waning with time. The microbial communities of the activated sludge in the two plants at different time were sampled and analyzed by high-throughput sequencing of 16S rRNA genes. Structural equation models (SEMs) were used to reveal the key factors affecting the realization of the ANAMMOX. Changes in the concentration of dissolved oxygen and C/N had a significant effect on the relative abundance of anaerobic ammonia oxidation bacteria (AnAOB). The low concentration of DO (0.2∼0.5 mg/L) could inhibit the activity of nitrifying bacteria (NOB) to achieve partial oxidation of ammonia nitrogen and provide sufficient substrate for the growth of AnAOB, similar to the CANON (Completely Autotrophic Nitrogen removal Over Nitrite). Unlike CANON, heterotrophic denitrification is also a particularly critical part of the livestock wastewater treatment, and a suitable C/N of about 0.6 could reduce the competition risk of heterotrophic microorganisms to AnAOB and ensure a good ecological niche for AnAOB. Based on the results of 16S rRNA and microbial co-occurrence networks, it was discovered that microorganisms in the sludge not only had a richer network interaction, but also achieved a mutually beneficial symbiotic interaction network among denitrifying bacteria (Pseudomonas sp., Terrimonas sp., Dokdonella sp.), AnAOB (Candidatus Brocadia sp.) at DO of 0.2∼0.5 mg/L and C/N of 0.6. Among the top 20 in abundance of genus level, AnAOB had a high relative abundance of 27.66%, followed by denitrifying bacteria of 3.67%, AOB of 0.64% and NOB of 0.26%, which is an essential indicator for the emergence of an AnAOB-dominated nitrogen removal cycle. In conclusion, this study highlights the importance of dissolved oxygen and C/N regulation by analyzing the mechanism of ANAMMOX sludge extinction and growth in two plants under anthropogenic regulation of AnAOB in full-scale wastewater treatment systems.
Collapse
Affiliation(s)
- Yuxin Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhenzhong Pan
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingsong Liao
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu, 527400, China
| | - Ruizhi Dai
- Yikangsheng Environmental Science and Technology Limited Company of Guangdong, Yunfu, 527400, China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Jiayin Ling
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Al-Hazmi HE, Hassan GK, Kurniawan TA, Śniatała B, Joseph TM, Majtacz J, Piechota G, Li X, El-Gohary FA, Saeb MR, Mąkinia J. Technological solutions to landfill management: Towards recovery of biomethane and carbon neutrality. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120414. [PMID: 38412730 DOI: 10.1016/j.jenvman.2024.120414] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/23/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland.
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt.
| | | | - Bogna Śniatała
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń, 87-100, Poland
| | - Xiang Li
- School of Environmental Science & Engineering, Donghua Univerisity, Dept Env. Room 4155, 2999 North Renmin Rd, Songjiang District, Shanghai, China
| | - Fatma A El-Gohary
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki, P.O. Box 12622, Egypt
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416, Gdańsk, Poland
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
| |
Collapse
|
13
|
Hou X, Li X, Zhu X, Li W, Kao C, Peng Y. Advanced nitrogen removal from municipal wastewater through partial nitrification-denitrification coupled with anammox in step-feed continuous system. BIORESOURCE TECHNOLOGY 2024; 391:129967. [PMID: 37923230 DOI: 10.1016/j.biortech.2023.129967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Combined partial nitrification-denitrification/anammox (PN-PD/A) processes have attracted great attention from researchers in recent years to achieve high nitrogen removal from low carbon /nitrogen (C/N) municipal wastewater. In this context, a step-feed anoxic/oxic (A/O) process was conducted in this study through the combination of the partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) to remove N from municipal wastewater with low C/N. The enhancement of the PN-PD/A process resulted in N removal efficiency of 85.6% at C/N of 2.8. The contributions of the anammox reached 36.4 and 8.8% in the anoxic and oxic chambers, respectively. The biocarriers added to the anoxic and oxic chambers increased the relative abundance of the anammox bacteria in biofilms from 0.61% to 1.51% and 1.02%, respectively. This study demonstrated that employing the step-feed A/O process can create optimal conditions for the anammox bacteria growth, thereby ensuring advanced N removal from low C/N municipal wastewater.
Collapse
Affiliation(s)
- Xiaohang Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiaorong Zhu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University Beijing 100730, China; Beijing Diabetes Institute, Beijing 100730, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Al-Hazmi HE, Łuczak J, Habibzadeh S, Hasanin MS, Mohammadi A, Esmaeili A, Kim SJ, Khodadadi Yazdi M, Rabiee N, Badawi M, Saeb MR. Polysaccharide nanocomposites in wastewater treatment: A review. CHEMOSPHERE 2024; 347:140578. [PMID: 37939921 DOI: 10.1016/j.chemosphere.2023.140578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
In modern times, wastewater treatment is vital due to increased water contamination arising from pollutants such as nutrients, pathogens, heavy metals, and pharmaceutical residues. Polysaccharides (PSAs) are natural, renewable, and non-toxic biopolymers used in wastewater treatment in the field of gas separation, liquid filtration, adsorption processes, pervaporation, and proton exchange membranes. Since addition of nanoparticles to PSAs improves their sustainability and strength, nanocomposite PSAs has gained significant attention for wastewater treatment in the past decade. This review presents a comprehensive analysis of PSA-based nanocomposites used for efficient wastewater treatment, focusing on adsorption, photocatalysis, and membrane-based methods. It also discusses potential future applications, challenges, and opportunities in adsorption, filtration, and photocatalysis. Recently, PSAs have shown promise as adsorbents in biological-based systems, effectively removing heavy metals that could hinder microbial activity. Cellulose-mediated adsorbents have successfully removed various pollutants from wastewater, including heavy metals, dyes, oil, organic solvents, pesticides, and pharmaceutical residues. Thus, PSA nanocomposites would support biological processes in wastewater treatment plants. A major concern is the discharge of antibiotic wastes from pharmaceutical industries, posing significant environmental and health risks. PSA-mediated bio-adsorbents, like clay polymeric nanocomposite hydrogel beads, efficiently remove antibiotics from wastewater, ensuring water quality and ecosystem balance. The successful use of PSA-mediated bio-adsorbents in wastewater treatment depends on ongoing research to optimize their application and evaluate their potential environmental impacts. Implementing these eco-friendly adsorbents on a large scale holds great promise in significantly reducing water pollution, safeguarding ecosystems, and protecting human health.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Justyna Łuczak
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, 74078, United States
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Michael Badawi
- Université de Lorraine, CNRS, L2CM, F-57000 Metz, France
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
15
|
Oba K, Suenaga T, Yasuda S, Kuroiwa M, Hori T, Lackner S, Terada A. Quest for Nitrous Oxide-reducing Bacteria Present in an Anammox Biofilm Fed with Nitrous Oxide. Microbes Environ 2024; 39:ME23106. [PMID: 38538312 PMCID: PMC10982107 DOI: 10.1264/jsme2.me23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
N2O-reducing bacteria have been examined and harnessed to develop technologies that reduce the emission of N2O, a greenhouse gas produced by biological nitrogen removal. Recent investigations using omics and physiological activity approaches have revealed the ecophysiologies of these bacteria during nitrogen removal. Nevertheless, their involvement in anammox processes remain unclear. Therefore, the present study investigated the identity, genetic potential, and activity of N2O reducers in an anammox reactor. We hypothesized that N2O is limiting for N2O-reducing bacteria and an exogeneous N2O supply enriches as-yet-uncultured N2O-reducing bacteria. We conducted a 1200-day incubation of N2O-reducing bacteria in an anammox consortium using gas-permeable membrane biofilm reactors (MBfRs), which efficiently supply N2O in a bubbleless form directly to a biofilm grown on a gas-permeable membrane. A 15N tracer test indicated that the supply of N2O resulted in an enriched biomass with a higher N2O sink potential. Quantitative PCR and 16S rRNA amplicon sequencing revealed Clade II nosZ type-carrying N2O-reducing bacteria as protagonists of N2O sinks. Shotgun metagenomics showed the genetic potentials of the predominant Clade II nosZ-carrying bacteria, Anaerolineae and Ignavibacteria in MBfRs. Gemmatimonadota and non-anammox Planctomycetota increased their abundance in MBfRs despite their overall lower abundance. The implication of N2O as an inhibitory compound scavenging vitamin B12, which is essential for the synthesis of methionine, suggested its limited suppressive effect on the growth of B12-dependent bacteria, including N2O reducers. We identified Dehalococcoidia and Clostridia as predominant N2O sinks in an anammox consortium fed exogenous N2O because of the higher metabolic potential of vitamin B12-dependent biosynthesis.
Collapse
Affiliation(s)
- Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739–8527, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Megumi Kuroiwa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16–1 Onogawa, Tsukuba, Ibaraki, 305–8569, Japan
| | - Susanne Lackner
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Department of Civil and Environmental Engineering Science, Institute IWAR, Chair of Water and Environmental Biotechnology Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| |
Collapse
|
16
|
Hu J, Wang J, Li X, Zhao J, Liu W, Zhu C. Efficient nitrogen removal and substrate usage in integrated fixed-film activated sludge-anammox system under seasonal temperature variation. BIORESOURCE TECHNOLOGY 2024; 391:129946. [PMID: 37907120 DOI: 10.1016/j.biortech.2023.129946] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
To elucidate how integrated fixed-film activated sludge (IFAS) system favors nitrogen removal performance under seasonal temperature variations, two push-flow reactors were operated with and without carriers under the same operating conditions. The results show that the IFAS system had significant advantages in shock response and low temperature adaptation, with a nitrogen removal rate of 0.37-0.53 kg-N(m3·d)-1 at the temperature of 8-12 °C. Anammox bacteria on carriers were almost unaffected by temperature variation, and its nitrogen removal contribution rate stabilized at 55 % in the IFAS system. The Haldane model reveals that the specific anammox activity in the IFAS system was 28 % to 49 % higher than that in the control system at 13 °C. Candidatus_Jettenia, with the highest abundance of 45 %, was the dominant species in the IFAS system and preferred to attach to the carriers. This study provides a feasible scheme for the application of anammox process.
Collapse
Affiliation(s)
- Juntong Hu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; National Local Joint Engineering Laboratory of Urban Domestic Wastewater Resource Utilization Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215009, PR China; Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Xingran Li
- Tianping College, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Junjie Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Wanting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chen Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| |
Collapse
|
17
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
18
|
Joseph TM, Al-Hazmi HE, Śniatała B, Esmaeili A, Habibzadeh S. Nanoparticles and nanofiltration for wastewater treatment: From polluted to fresh water. ENVIRONMENTAL RESEARCH 2023; 238:117114. [PMID: 37716387 DOI: 10.1016/j.envres.2023.117114] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Water pollution poses significant threats to both ecosystems and human health. Mitigating this issue requires effective treatment of domestic wastewater to convert waste into bio-fertilizers and gas. Neglecting liquid waste treatment carries severe consequences for health and the environment. This review focuses on intelligent technologies for water and wastewater treatment, targeting waterborne diseases. It covers pollution prevention and purification methods, including hydrotherapy, membrane filtration, mechanical filters, reverse osmosis, ion exchange, and copper-zinc cleaning. The article also highlights domestic purification, field techniques, heavy metal removal, and emerging technologies like nanochips, graphene, nanofiltration, atmospheric water generation, and wastewater treatment plants (WWTPs)-based cleaning. Emphasizing water cleaning's significance for ecosystem protection and human health, the review discusses pollution challenges and explores the integration of wastewater treatment, coagulant processes, and nanoparticle utilization in management. It advocates collaborative efforts and innovative research for freshwater preservation and pollution mitigation. Innovative biological systems, combined with filtration, disinfection, and membranes, can elevate recovery rates by up to 90%, surpassing individual primary (<10%) or biological methods (≤50%). Advanced treatment methods can achieve up to 95% water recovery, exceeding UN goals for clean water and sanitation (Goal 6). This progress aligns with climate action objectives and safeguards vital water-rich habitats (Goal 13). The future holds promise with advanced purification techniques enhancing water quality and availability, underscoring the need for responsible water conservation and management for a sustainable future.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | - Hussein E Al-Hazmi
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Bogna Śniatała
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology, and Industrial Trades, College of the North Atlantic-Qatar, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran 1599637111, Iran.
| |
Collapse
|
19
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
20
|
Xue Y, Zheng M, Cheng Z, Li S, Yang S, Liu Y, Qian Y, Huang X. Dynamic Simulation of Nitrifying Microbial Communities for Establishing Acidic Partial Nitritation in Suspended Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17542-17552. [PMID: 37909179 DOI: 10.1021/acs.est.3c01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Acidic partial nitritation (PN) is a promising technology to achieve low-cost and energy-efficient shortcut nitrogen removal from wastewater. However, a comprehensive understanding of the acidic PN under dynamic changes of pH in a sequencing batch reactor (SBR) is still lacking. In this study, we successfully established acidic PN (NO2- accumulation ratio >80%) under dynamic pH variation from 7.0 to 4.5 in a lab-scale SBR. By accumulating in situ free nitrous acid (FNA) generation based on the dynamic pH change, acidic PN maintained stability even at a low NH4+ concentration of 100 mg N L-1. The microbial community analysis revealed that two ammonium-oxidizing bacteria (AOB) genera, Nitrosospira and Nitrosomonas, successfully coexisted and cooperated during acidic PN. None of the species of nitrite-oxidizing bacteria (NOB) showed adaptation to intermittent inhibition of in situ FNA even under high DO conditions (>4.0 mg O2 L-1). Furthermore, we innovatively incorporated the classic nitrification model with the growth and decay of different nitrifying bacterial species and their inhibition by pH, FNA, and free ammonia (FA) to predict the nitrifying microbial communities shifting for establishing acidic PN. The extended model was calibrated by using short-term batch experiments and was validated by using long-term dynamic data of the nitrifying microbial community during SBR operation. The validated model was further used to identify feasible influent conditions for the SBR PN process, including influent HCO3- concentration, NH4+ concentration and molar ratio (HCO3/NH4+). Outcomes from this study support the optimal design of acidic PN-based short-cut nitrogen removal processes for future application.
Collapse
Affiliation(s)
- Yu Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhao Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Qian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
22
|
Chen J, Zhang X, Zhou L, Zhu Z, Wu Z, Zhang K, Wang Y, Ju T, Ji X, Jin D, Wu P, Zhang X. Metagenomics insights into high-rate nitrogen removal from municipal wastewater by integrated nitrification, partial denitrification and Anammox at an extremely short hydraulic retention time. BIORESOURCE TECHNOLOGY 2023; 387:129606. [PMID: 37572889 DOI: 10.1016/j.biortech.2023.129606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
To achieve high-rate nitrogen removal in municipal wastewater treatment through anaerobic ammonia oxidation (Anammox), the nitrification, partial denitrification, and Anammox processes were integrated by a step-feed strategy. An exceptional nitrogen removal load of 0.224 kg N/(m3·d) was achieved by gradient-reducing the hydraulic retention time (HRT) to 5 h. Metagenomic analysis demonstrated that Nitrosospira could express all genes encoding ammonia oxidation under low nitrogen and dissolved oxygen conditions (less than 0.5 mg/L), enabling complete nitrification. With the short of HRT, the relative abundance of Thauera increased from 2.8 % to 6.4 %. Frequent substrate exchanges at such extremely short HRT facilitated enhanced synergistic interactions among Nitrosospira, Thauera, and Candidatus Brocadia. These findings provide a comprehensive understanding of the utilization of Anammox combined processes for high-speed nitrogen removal in municipal wastewater treatment and the microbial interactions involved.
Collapse
Affiliation(s)
- Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Ting Ju
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Xu Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Da Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road,Suzhou 215009, China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
23
|
Wu H, Wang G, Li L, Gao Z, Wang M, Wang J, Zhang Z, Wang A, Tian X, Li J. Partial nitritation and nitrogen removal of vacuum toilet wastewater from high-speed trains in a sequential batch reactor. CHEMOSPHERE 2023; 329:138657. [PMID: 37040837 DOI: 10.1016/j.chemosphere.2023.138657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Owing to the high contents of organics and nitrogen in vacuum toilet wastewater (VTW) generated from high-speed trains, onsite pretreatment is usually required before VTW can be discharged into municipal sewers. In this study, a partial nitritation process was stably established in a sequential batch reactor to efficiently utilize the organics in synthetic and real VTWs for nitrogen removal and to produce an effluent suitable for anaerobic ammonia oxidation. In spite of the high fluctuations of COD and nitrogen in VTW, the organics used for nitrogen removal stabilized at 1.97 ± 0.18 mg COD mg N-1 removed, and the effluent NO2--N/NH4+-N ratios were maintained at 1.26 ± 0.13. The removal efficiencies of nitrogen and COD were 31.8 ± 3.5% and 65.2 ± 5.3% under the volumetric loading rates of 1.14 ± 0.15 kg N m-3 d-1 and 1.03 ± 0.26 kg COD m-3 d-1 for real VTW, respectively. Microbial community analysis revealed that Nitrosomonas (0.95%-1.71%) was the dominant autotrophic ammonium-oxidizing bacterial genus, but nitrite-oxidizing bacteria, Nitrolancea, was severely inhibited, with a relative abundance less than 0.05%. The relative abundance of denitrifying bacteria increased by 7.34% when the influent was switched to real VTW. Functional profile predictions of the biomass showed that the decrease in the COD/N ratio and the switch of reactor influent from synthetic to real VTW increased the relative abundance of enzymes and modules involved in carbon and nitrogen metabolisms.
Collapse
Affiliation(s)
- Haoyuan Wu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Guotian Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Lei Li
- Institute of Watershed and Ecology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Zhenchao Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Mengyu Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiujun Tian
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
24
|
Derwis D, Majtacz J, Kowal P, Al-Hazmi HE, Zhai J, Ciesielski S, Piechota G, Mąkinia J. Integration of the sulfate reduction and anammox processes for enhancing sustainable nitrogen removal in granular sludge reactors. BIORESOURCE TECHNOLOGY 2023:129264. [PMID: 37271463 DOI: 10.1016/j.biortech.2023.129264] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
The Anammox and Sulfate Reduction Ammonium Oxidation processes were compared in two granular sequencing batch reactors operated for 160 days under anammox conditions. It was hypothesized that increasing the concentration of SO42- may positively influence the rate of N removal under anaerobic conditions and it was tested whether SO42- reduction and anammox occur independently or are related to each other. The cooperation of N-S cycles by increasing the concentration of influent SO42- to 952 mg S/L in the second reactor, a higher ammonium utilization rate and sulfate utilization rate was achieved compared to the first reactor, i.e., 2.1-fold and 15-fold, respectively. Nitrosomonas played the dominant role in the N metabolism, while Thauera - in the S metabolism. This study highlights the benefits of linking the N-S cycles as an effective approach for the treatment of NH4+ and SO42- - rich wastewater, including lower substrate removal cost and reduced energy consumption.
Collapse
Affiliation(s)
- Dominika Derwis
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Przemysław Kowal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| | - Jun Zhai
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Sławomir Ciesielski
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, Olsztyn 10-719, Poland
| | - Grzegorz Piechota
- GPCHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, Toruń 87-100, Poland.
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Street, Gdańsk 80-233, Poland
| |
Collapse
|
25
|
Al-Hazmi HE, Maktabifard M, Grubba D, Majtacz J, Hassan GK, Lu X, Piechota G, Mannina G, Bott CB, Mąkinia J. An Advanced Synergy of Partial Denitrification-Anammox for Optimizing Nitrogen Removal from Wastewater: A Review. BIORESOURCE TECHNOLOGY 2023; 381:129168. [PMID: 37182680 DOI: 10.1016/j.biortech.2023.129168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Anammox is a widely adopted process for energy-efficient removal of nitrogen from wastewater, but challenges with NOB suppression and NO3- accumulation have led to a deeper investigation of this process. To address these issues, the synergy of partial denitrification and anammox (PD-anammox) has emerged as a promising solution for sustainable nitrogen removal in wastewater. This paper presents a comprehensive review of recent developments in the PD-anammox system, including stable performance outcomes, operational parameters, and mathematical models. The review categorizes start-up and recovery strategies for PD-anammox and examines its contributions to sustainable development goals, such as reducing N2O emissions and saving energy. Furthermore, it suggests future trends and perspectives for improving the efficiency and integration of PD-anammox into full-scale wastewater treatment system. Overall, this review provides valuable insights into optimizing PD-anammox in wastewater treatment, highlighting the potential of simultaneous processes and the importance of improving efficiency and integration into full-scale systems.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mojtaba Maktabifard
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland; Faculty of Environmental and Energy Engineering, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Dominika Grubba
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Gamal K Hassan
- Water Pollution Research Department, National Research Centre, 33 Bohouth St, Giza, Dokki P.O. Box 12622, Egypt
| | - Xi Lu
- Three Gorges Smart Water Technology Co., LTD, 65 LinXin Road, ChangNing District, 200335 Shanghai, China
| | - Grzegorz Piechota
- GPCHEM, Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland.
| | - Giorgio Mannina
- Engineering Department, Palermo University, Ed. 8 Viale delle Scienze, 90128 Palermo, Italy
| | - Charles B Bott
- Hampton Roads Sanitation District, 1436 Air Rail Ave., Virginia Beach, VA 23455, USA
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|