1
|
Bradley PM, Romanok KM, Smalling KL, Donahue L, Gaikowski MP, Hines RK, Breitmeyer SE, Gordon SE, Loftin KA, McCleskey RB, Meppelink SM, Schreiner ML. Tapwater exposures, residential risk, and mitigation in a PFAS-impacted-groundwater community. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1368-1388. [PMID: 40223753 DOI: 10.1039/d5em00005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Tapwater (TW) safety and sustainability are priorities in the United States. Per/polyfluoroalkyl substance(s) (PFAS) contamination is a growing public-health concern due to prolific use, widespread TW exposures, and mounting human-health concerns. Historically-rural, actively-urbanizing communities that rely on surficial-aquifer private wells incur elevated risks of unrecognized TW exposures, including PFAS, due to limited private-well monitoring and contaminant-source proliferation in urbanizing landscapes. Here, a broad-analytical-scope TW-assessment was conducted in a hydrologically-vulnerable, Mississippi River alluvial-island community, where PFAS contamination of the shallow-alluvial drinking-water aquifer has been documented, but more comprehensive contaminant characterization to inform decision-making is currently lacking. In 2021, we analyzed 510 organics, 34 inorganics, and 3 microbial groups in 11 residential and community locations to assess (1) TW risks beyond recognized PFAS issues, (2) day-to-day and year-to-year risk variability, and (3) suitability of the underlying sandstone aquifer as an alternative source to mitigate TW-PFAS exposures. Seventy-six organics and 25 inorganics were detected. Potential human-health risks of detected TW exposures were explored based on cumulative benchmark-based toxicity quotients (∑TQ). Elevated risks (∑TQ ≥ 1) from organic and inorganic contaminants were observed in all alluvial-aquifer-sourced synoptic samples but not in sandstone-aquifer-sourced samples. Repeated sampling at 3 sites over 52-55 h indicated limited variability in risk over the short-term. Comparable PFAS-specific ∑TQ for spatial-synoptic, short-term (3 days) temporal, and long-term (3 years quarterly) temporal samples indicated that synoptic results provided useful insight into the risks of TW-PFAS exposures at French Island over the long-term. No PFAS detections in sandstone-aquifer-sourced samples over a 3 year period indicated no PFAS-associated risk and supported the sandstone aquifer as an alternative drinking-water source to mitigate community TW-PFAS exposures. This study illustrated the importance of expanded contaminant monitoring of private-well TW, beyond known concerns (in this case, PFAS), to reduce the risks of a range of unrecognized contaminant exposures.
Collapse
|
2
|
Bradley PM, Romanok KM, Smalling KL, Gordon SE, Huffman BJ, Paul Friedman K, Villeneuve DL, Blackwell BR, Fitzpatrick SC, Focazio MJ, Medlock-Kakaley E, Meppelink SM, Navas-Acien A, Nigra AE, Schreiner ML. Private, public, and bottled drinking water: Shared contaminant-mixture exposures and effects challenge. ENVIRONMENT INTERNATIONAL 2025; 195:109220. [PMID: 39736175 DOI: 10.1016/j.envint.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Humans are primary drivers of environmental-contaminant exposures worldwide, including in drinking-water (DW). In the United States, point-of-use DW (POU-DW) is supplied via private tapwater (TW), public-supply TW, and bottled water (BW). Differences in management, monitoring, and messaging and lack of directly-intercomparable exposure data influence the actual and perceived quality and safety of different DW supplies and directly impact consumer decision-making. OBJECTIVES The purpose of this paper is to provide a meta-analysis (quantitative synthesis) of POU-DW contaminant-mixture exposures and corresponding potential human-health effects of private-TW, public-TW, and BW by aggregating exposure results and harmonizing apical-health-benchmark-weighted and bioactivity-weighted effects predictions across previous studies by this research group. DISCUSSION Simultaneous exposures to multiple inorganic and organic contaminants of known or suspected human-health concern are common across all three DW supplies, with substantial variability observed in each and no systematic difference in predicted cumulative risk between supplies. Differences in contaminant or contaminant-class exposures, with important implications for DW-quality improvements, were observed and attributed to corresponding differences in regulation and compliance monitoring. CONCLUSION The results indicate that human-health risks from contaminant exposures are common to and comparable in all three DW-supplies, including BW. Importantly, this study's target analytical coverage, which exceeds that currently feasible for water purveyors or homeowners, nevertheless is a substantial underestimation of the breadth of contaminant mixtures in the environment and potentially present in DW. Thus, the results emphasize the need for improved understanding of the adverse human-health implications of long-term exposures to low-level inorganic-/organic-contaminant mixtures across all three distribution pipelines and do not support commercial messaging of BW as a systematically safer alternative to public-TW. Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment is necessary to reduce risks associated with long-term DW-contaminant exposures, especially in vulnerable populations, and to reduce environmental waste and plastics contamination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | | |
Collapse
|
3
|
Smalling KL, Romanok KM, Bradley PM, Hladik ML, Gray JL, Kanagy LK, McCleskey RB, Stavreva DA, Alexander-Ozinskas AK, Alonso J, Avila W, Breitmeyer SE, Bustillo R, Gordon SE, Hager GL, Jones RR, Kolpin DW, Newton S, Reynolds P, Sloop J, Ventura A, Von Behren J, Ward MH, Solomon GM. Mixed contaminant exposure in tapwater and the potential implications for human-health in disadvantaged communities in California. WATER RESEARCH 2024; 267:122485. [PMID: 39368187 DOI: 10.1016/j.watres.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Water is an increasingly precious resource in California as years of drought, climate change, pollution, as well as an expanding population have all stressed the state's drinking water supplies. Currently, there are increasing concerns about whether regulated and unregulated contaminants in drinking water are linked to a variety of human-health outcomes particularly in socially disadvantaged communities with a history of health risks. To begin to address this data gap by broadly assessing contaminant mixture exposures, the current study was designed to collect tapwater samples from communities in Gold Country, the San Francisco Bay Area, two regions of the Central Valley (Merced/Fresno and Kern counties), and southeast Los Angeles for 251 organic chemicals and 32 inorganic constituents. Sampling prioritized low-income areas with suspected water quality challenges and elevated breast cancer rates. Results indicated that mixtures of regulated and unregulated contaminants were observed frequently in tapwater throughout the areas studied and the types and concentrations of detected contaminants varied by region, drinking-water source, and size of the public water system. Multiple exceedances of enforceable maximum contaminant level(s) (MCL), non-enforceable MCL goal(s) (MCLG), and other health advisories combined with frequent exceedances of benchmark-based hazard indices were also observed in samples collected in all five of the study regions. Given the current focus on improving water quality in socially disadvantaged communities, our study highlights the importance of assessing mixed-contaminant exposures in drinking water at the point of consumption to adequately address human-health concerns (e.g., breast cancer risk). Data from this pilot study provide a foundation for future studies across a greater number of communities in California to assess potential linkages between breast cancer rates and tapwater contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diana A Stavreva
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Jesus Alonso
- Clean Water Action/Clean Water Fund, Oakland, CA, USA
| | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | | | | | - Gordon L Hager
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rena R Jones
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Seth Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peggy Reynolds
- University of California San Francisco, San Francisco, CA, USA
| | - John Sloop
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Mary H Ward
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gina M Solomon
- University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Miller SA, Faunce KE, Barber LB, Fleck JA, Burns DW, Jasmann JR, Hladik ML. Factors contributing to pesticide contamination in riverine systems: The role of wastewater and landscape sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:174939. [PMID: 39059670 DOI: 10.1016/j.scitotenv.2024.174939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Wastewater treatment plant (WWTP) discharges can be a source of organic contaminants, including pesticides, to rivers. An integrated model was developed for the Potomac River watershed (PRW) to determine the amount of accumulated wastewater percentage of streamflow (ACCWW) and calculate predicted environmental concentrations (PECs) for 14 pesticides in non-tidal National Hydrography Dataset Plus Version 2.1 stream segments. Predicted environmental concentrations were compared to measured environmental concentrations (MECs) from 32 stream sites that represented a range of ACCWW and land use to evaluate model performance and to assess possible non-WWTP loading sources. Statistical agreement between PECs and MECs was strongest for insecticides, followed by fungicides and herbicides. Principal component analysis utilizing optical fluorescence and ancillary water quality data identified wastewater and urban runoff sources. Pesticides that indicated relatively larger sources from WWTPs included dinotefuran, fipronil, carbendazim, thiabendazole, and prometon whereas imidacloprid, azoxystrobin, propiconazole, tebuconazole, and diuron were more related to urban runoff. In addition, PECs generally comprised a low proportion of MECs, which indicates possible dominant loading sources beyond WWTP discharges. Cumulative potential toxicity was higher for sites with greater ACCWW and/or located in developed areas. Imidacloprid, fipronil, and carbendazim accounted for the largest portion of predicted potential toxicity across sites. The chronic aquatic life toxicity benchmarks for freshwater invertebrates were exceeded for 82 % of the imidacloprid detections (n = 28) and 47 % of the fipronil detections (n = 19). These results highlight the ecological implications of pesticide contamination from WWTP discharges and also the potential legacy effects from accumulated soil and groundwater sources. Pesticide management strategies that mitigate both current and historical impacts may improve the health of aquatic ecosystems.
Collapse
Affiliation(s)
- Samuel A Miller
- U.S. Geological Survey, 1730 E Parham Road, Richmond, VA 23228, USA.
| | - Kaycee E Faunce
- U.S. Geological Survey, 1730 E Parham Road, Richmond, VA 23228, USA.
| | - Larry B Barber
- U.S. Geological Survey, 3215 Marine Street, Boulder, CO 80303, USA.
| | - Jacob A Fleck
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| | - Daniel W Burns
- U.S. Geological Survey, 1730 E Parham Road, Richmond, VA 23228, USA.
| | - Jeramy R Jasmann
- U.S. Geological Survey, 3215 Marine Street, Boulder, CO 80303, USA.
| | - Michelle L Hladik
- U.S. Geological Survey, 6000 J Street, Placer Hall, Sacramento, CA 95819, USA.
| |
Collapse
|
5
|
Skalaban TG, Thompson DA, Madrigal JM, Blount BC, Espinosa MM, Kolpin DW, Deziel NC, Jones RR, Beane Freeman L, Hofmann JN, Ward MH. Nitrate exposure from drinking water and dietary sources among Iowa farmers using private wells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170922. [PMID: 38350573 PMCID: PMC11665930 DOI: 10.1016/j.scitotenv.2024.170922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Nitrate levels are increasing in water resources across the United States and nitrate ingestion from drinking water has been associated with adverse health risks in epidemiologic studies at levels below the maximum contaminant level (MCL). In contrast, dietary nitrate ingestion has generally been associated with beneficial health effects. Few studies have characterized the contribution of both drinking water and dietary sources to nitrate exposure. The Agricultural Health Study is a prospective cohort of farmers and their spouses in Iowa and North Carolina. In 2018-2019, we assessed nitrate exposure for 47 farmers who used private wells for their drinking water and lived in 8 eastern Iowa counties where groundwater is vulnerable to nitrate contamination. Drinking water and dietary intakes were estimated using the National Cancer Institute Automated Self-Administered 24-Hour Dietary Assessment tool. We measured nitrate in tap water and estimated dietary nitrate from a database of food concentrations. Urinary nitrate was measured in first morning void samples in 2018-19 and in archived samples from 2010 to 2017 (minimum time between samples: 2 years; median: 7 years). We used linear regression to evaluate urinary nitrate concentrations in relation to total nitrate, and drinking water and dietary intakes separately. Overall, dietary nitrate contributed the most to total intake (median: 97 %; interquartile range [IQR]: 57-99 %). Among 15 participants (32 %) whose drinking water nitrate concentrations were at/above the U.S. Environmental Protection Agency MCL (10 mg/L NO3-N), median intake from water was 44 % (IQR: 26-72 %). Total nitrate intake was the strongest predictor of urinary nitrate concentrations (R2 = 0.53). Drinking water explained a similar proportion of the variation in nitrate excretion (R2 = 0.52) as diet (R2 = 0.47). Our findings demonstrate the importance of both dietary and drinking water intakes as determinants of nitrate excretion.
Collapse
Affiliation(s)
- Timothy G Skalaban
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD, United States of America; Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States of America
| | - Darrin A Thompson
- Center for Health Effects of Environmental Contamination, The University of Iowa, Iowa City, IA, United States of America
| | - Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD, United States of America
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Maria Morel Espinosa
- Tobacco and Volatiles Branch, National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa City, IA, United States of America
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States of America
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD, United States of America
| | - Laura Beane Freeman
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD, United States of America
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD, United States of America
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, National Cancer Institute, Rockville, MD, United States of America.
| |
Collapse
|
6
|
Schmitt K, Minovi D, Loeb S, Ward MH. A state-by-state comparison of policies that protect private well users. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:155-160. [PMID: 38374422 PMCID: PMC10985836 DOI: 10.1038/s41370-024-00645-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND While the Safe Drinking Water Act allows states and localities to adopt stronger protections for drinking water, state and local requirements concerning private drinking water wells vary dramatically and often do not provide necessary protections for residents who rely on well water. OBJECTIVE This paper inventories ten types of policies including laws, regulations, programs, and activities that states have adopted or partaken in to encourage safe drinking water for residential well owners. METHODS To identify categories of private well protections, we conducted a preliminary internet search with key search terms to create an initial list of 10 categories of laws, regulations, programs, and activities (collectively referred to as "policies") that states have taken to protect residential well water quality. To have a private well safety category present, the law, regulation, program, or activity must fit within the scope of the ten classifications. To limit the breadth of our search, we excluded local and county protections, as well as activities by non-governmental organizations. We also excluded basic construction standards for new wells and licensing standards for well drillers, both of which are covered under a previous study. We conducted an additional internet search to complete a comprehensive review of each state and category and to validate our previous findings. In addition to this internet search, we completed phone and email outreach to the state agencies implementing the well safety categories identified in our internet search to confirm our results. RESULTS The results indicate a wide range of state-based well water protections. The number of residential well water protections present in each state ranged from 8 policies in Iowa, Kentucky, and Maine to 1 policy in Oklahoma, with a median of 5 policies across the 50 states. IMPACT This paper examines protections that states have implemented to safeguard residential well water quality and to protect the health of people who rely on well water. This research reviews state-level regulations, laws, and programs, as opposed to local, municipal, county-level, or quasi-governmental protections for residential well owners. Residential well policies were examined across ten categories. Without any protections at the federal level, this research reveals gaps in state regulation and demonstrates the need for broader adoption of comprehensive state-level policies to better protect residential well owners from drinking water contaminants and their associated public health impacts.
Collapse
Affiliation(s)
- Katlyn Schmitt
- Center for Progressive Reform, 1250 Connecticut Ave NW Suite 700, Washington, DC, 20036, USA.
| | - Darya Minovi
- Union of Concerned Scientists, 1825 K St NW #800, Washington, DC, 20006, USA
| | - Sophie Loeb
- Center for Progressive Reform, 1250 Connecticut Ave NW Suite 700, Washington, DC, 20036, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Room SG/6E138, Rockville, MD, 20850, USA
| |
Collapse
|
7
|
Siegel HG, Nason SL, Warren JL, Prunas O, Deziel NC, Saiers JE. Investigation of Sources of Fluorinated Compounds in Private Water Supplies in an Oil and Gas-Producing Region of Northern West Virginia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17452-17464. [PMID: 37923386 PMCID: PMC10653085 DOI: 10.1021/acs.est.3c05192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of toxic organic compounds that have been widely used in consumer applications and industrial activities, including oil and gas production. We measured PFAS concentrations in 45 private wells and 8 surface water sources in the oil and gas-producing Doddridge, Marshall, Ritchie, Tyler, and Wetzel Counties of northern West Virginia and investigated relationships between potential PFAS sources and drinking water receptors. All surface water samples and 60% of the water wells sampled contained quantifiable levels of at least one targeted PFAS compound, and four wells (8%) had concentrations above the proposed maximum contaminant level (MCL) for perfluorooctanoic acid (PFOA). Individual concentrations of PFOA and perfluorobutanesulfonic acid exceeded those measured in finished public water supplies. Total targeted PFAS concentrations ranged from nondetect to 36.8 ng/L, with surface water concentrations averaging 4-fold greater than groundwater. Semiquantitative, nontargeted analysis showed concentrations of emergent PFAS that were potentially higher than targeted PFAS. Results from a multivariate latent variable hierarchical Bayesian model were combined with insights from analyses of groundwater chemistry, topographic characteristics, and proximity to potential PFAS point sources to elucidate predictors of PFAS concentrations in private wells. Model results reveal (i) an increased vulnerability to contamination in upland recharge zones, (ii) geochemical controls on PFAS transport likely driven by adsorption, and (iii) possible influence from nearby point sources.
Collapse
Affiliation(s)
- Helen G. Siegel
- School
of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Sara L. Nason
- Connecticut
Agricultural Experiment Station, 123 Huntington Street, New
Haven, Connecticut 06504, United States
| | - Joshua L. Warren
- School
of Public Health, Yale University, 60 College Street, New Haven, Connecticut 06510, United States
| | - Ottavia Prunas
- Swiss
Tropical and Public Health Institute, 2 Kreuzstrasse, Allschwill, Basel 4123, Switzerland
| | - Nicole C. Deziel
- School
of Public Health, Yale University, 60 College Street, New Haven, Connecticut 06510, United States
| | - James E. Saiers
- School
of the Environment, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
8
|
Smalling KL, Romanok KM, Bradley PM, Morriss MC, Gray JL, Kanagy LK, Gordon SE, Williams BM, Breitmeyer SE, Jones DK, DeCicco LA, Eagles-Smith CA, Wagner T. Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. ENVIRONMENT INTERNATIONAL 2023; 178:108033. [PMID: 37356308 DOI: 10.1016/j.envint.2023.108033] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
Drinking-water quality is a rising concern in the United States (US), emphasizing the need to broadly assess exposures and potential health effects at the point-of-use. Drinking-water exposures to per- and poly-fluoroalkyl substances (PFAS) are a national concern, however, there is limited information on PFAS in residential tapwater at the point-of-use, especially from private-wells. We conducted a national reconnaissance to compare human PFAS exposures in unregulated private-well and regulated public-supply tapwater. Tapwater from 716 locations (269 private-wells; 447 public supply) across the US was collected during 2016-2021 including three locations where temporal sampling was conducted. Concentrations of PFAS were assessed by three laboratories and compared with land-use and potential-source metrics to explore drivers of contamination. The number of individual PFAS observed ranged from 1 to 9 (median: 2) with corresponding cumulative concentrations (sum of detected PFAS) ranging from 0.348 to 346 ng/L. Seventeen PFAS were observed at least once with PFBS, PFHxS and PFOA observed most frequently in approximately 15% of the samples. Across the US, PFAS profiles and estimated median cumulative concentrations were similar among private wells and public-supply tapwater. We estimate that at least one PFAS could be detected in about 45% of US drinking-water samples. These detection probabilities varied spatially with limited temporal variation in concentrations/numbers of PFAS detected. Benchmark screening approaches indicated potential human exposure risk was dominated by PFOA and PFOS, when detected. Potential source and land-use information was related to cumulative PFAS concentrations, and the number of PFAS detected; however, corresponding relations with specific PFAS were limited likely due to low detection frequencies and higher detection limits. Information generated supports the need for further assessments of cumulative health risks of PFAS as a class and in combination with other co-occurring contaminants, particularly in unmonitored private-wells where information is limited or not available.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Tyler Wagner
- U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
9
|
Thompson DA, Kolpin DW, Hladik ML, Lehmler HJ, Meppelink SM, Poch MC, Vargo JD, Soupene VA, Irfan NM, Robinson M, Kannan K, Beane Freeman LE, Hofmann JN, Cwiertny DM, Field RW. Prevalence of neonicotinoid insecticides in paired private-well tap water and human urine samples in a region of intense agriculture overlying vulnerable aquifers in eastern Iowa. CHEMOSPHERE 2023; 319:137904. [PMID: 36709846 PMCID: PMC9957962 DOI: 10.1016/j.chemosphere.2023.137904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
A pilot study among farming households in eastern Iowa was conducted to assess human exposure to neonicotinoids (NEOs). The study was in a region with intense crop and livestock production and where groundwater is vulnerable to surface-applied contaminants. In addition to paired outdoor (hydrant) water and indoor (tap) water samples from private wells, urine samples were collected from 47 adult male pesticide applicators along with the completions of dietary and occupational surveys. Estimated Daily Intake (EDI) were then calculated to examine exposures for different aged family members. NEOs were detected in 53% of outdoor and 55% of indoor samples, with two or more NEOs in 13% of samples. Clothianidin was the most frequently detected NEO in water samples. Human exposure was ubiquitous in urine samples. A median of 10 different NEOs and/or metabolites were detected in urine, with clothianidin, nitenpyram, thiamethoxam, 6-chloronicotinic acid, and thiacloprid amide detected in every urine samples analyzed. Dinotefuran, imidaclothiz, acetamiprid-N-desmethyl, and N-desmethyl thiamethoxam were found in ≥70% of urine samples. Observed water intake for study participants and EDIs were below the chronic reference doses (CRfD) and acceptable daily intake (ADI) standards for all NEOs indicating minimal risk from ingestion of tap water. The study results indicate that while the consumption of private well tap water provides a human exposure pathway, the companion urine results provide evidence that diet and/or other exposure pathways (e.g., occupational, house dust) may contribute to exposure more than water contamination. Further biomonitoring research is needed to better understand the scale of human exposure from different sources.
Collapse
Affiliation(s)
- Darrin A Thompson
- University of Iowa, College of Public Health, Iowa, IA, USA; University of Iowa, Center for Health Effects of Environmental Contamination, Iowa, IA, USA.
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, Iowa, IA, USA
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, USA
| | | | | | - Matthew C Poch
- University of Iowa, College of Public Health, Iowa, IA, USA
| | - John D Vargo
- State Hygienic Laboratory at the University of Iowa, Iowa, IA, USA
| | | | - Nafis Md Irfan
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa, IA, USA; University of Iowa, Department of Internal Medicine, Iowa, IA, USA; University of Dhaka, Institute of Nutrition and Food Science, Dhaka, Bangladesh
| | - Morgan Robinson
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jonathan N Hofmann
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - David M Cwiertny
- University of Iowa, College of Public Health, Iowa, IA, USA; Department of Civil and Environmental Engineering, University of Iowa, Iowa, IA, USA; Public Policy Center, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|