1
|
Huang Y, Feng J, Wang X, Zhang Y, Zhang S. Microplastic type and concentration affect prokaryotic community structure and species coexistence in deep-sea cold seep sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137727. [PMID: 40010225 DOI: 10.1016/j.jhazmat.2025.137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025]
Abstract
As important methane hydrate storage sites, cold seep areas are threatened by microplastics (MPs) contamination. To assess the environmental impact of MPs on microbial communities in cold seep sediments, an incubation experiment was conducted using cold seep sediment amended with different concentration of polyamide (PA), polyethylene (PE), polyethylene terephthalate (PET), and polypropylene (PP) microplastics. The results showed that the different type and concentration of MPs significantly altered the prokaryotic community structures. The PE and PET addition highly changed the relative abundance of bacterial taxa in the bacterial community, while the proportion of archaeal species in the archaeal community was significantly altered in 0.5 % MPs treatments. All of the MPs reduced the network complexity of the bacterial and archaeal communities, such as the lower average degree and greater average path length. Furthermore, the MPs treatments also significantly decreased the network stability of prokaryotic communities. The lower network complexity led to lower network stability was observed in the archaeal community. The formation of oxidative functional groups on PE and PET MP surface based on FTIR analysis suggested that biodegradation could occur in cold seep sediment. Together, these results provide new evidence that MPs could change the structures and species coexistence of prokaryotic communities in cold seep sediments.
Collapse
Affiliation(s)
- Yongji Huang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchun Feng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Xinyuan Wang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yue Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
| | - Si Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
2
|
Yang Y, Chen L, Wan N, Xu A, Ding N, Song Z. Deciphering Planktonic Bacterial Community Assembly in the Storage Reservoir of the Long-Distance Water Diversion Project. Microorganisms 2025; 13:465. [PMID: 40005830 PMCID: PMC11858334 DOI: 10.3390/microorganisms13020465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Storage reservoirs are crucial components of long-distance water diversion projects, where water diversion may lead to changes in microbial diversity and community structure. Seasonal variations also drive alterations in microbial communities. However, the way that microbes assemble under the combined effects of water diversion and seasonal variations in the storage reservoir has not been extensively studied. Jihongtan Reservoir is the terminal storage reservoir of the Yellow River to Qingdao Water Diversion Project (YQWD), which had an average annual water diversion period exceeding 290 days in recent years. In this study, 16S rDNA amplicon sequencing was used to investigate the seasonal dynamics and assembly of planktonic bacterial communities during the water diversion period in Jihongtan Reservoir. The results indicate that planktonic bacteria were able to maintain stable diversity across all four seasons, while the community structure underwent significant seasonal succession. Water temperature (WT) was found to be the primary driving environmental factor influencing the seasonal dynamic of planktonic bacterial communities. Co-occurrence network patterns of planktonic bacterial communities varied across different seasons, particularly in spring and winter. The spring network displayed the most complexity, showcasing the highest connectivity and greater stability. In contrast, the winter network was simpler, exhibiting lower local connectivity but higher global connectivity and lower stability. The analysis of the neutral community model and null model revealed that the relative importance of deterministic and stochastic processes in governing planktonic bacterial community assembly varies seasonally. Stochastic processes (dispersal limitation) are more prominent in spring, summer, and autumn, while deterministic processes (heterogeneous selection) play a greater role in winter. This study is essential for gaining a comprehensive understanding of the effects of water diversion projects and offers valuable references for the assessment of other similar projects.
Collapse
Affiliation(s)
- Yingying Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| | - Liguo Chen
- Shandong Water Transfer Project Operation and Maintenance Center, Jinan 250199, China
| | - Nianxin Wan
- Jihongtan Reservoir Management Station of Shandong Water Transfer Project Operation and Maintenance Center, Qingdao 266111, China
| | - Ailing Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| | - Ning Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| | - Zhiwen Song
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, China; (Y.Y.)
| |
Collapse
|
3
|
Chen X, Li J, Xu G, Fang K, Wan S, Wang B, Gu F. Mechanisms Driving Seasonal Succession and Community Assembly in Sediment Microbial Communities Across the Dali River Basin, the Loess Plateau, China. Microorganisms 2025; 13:319. [PMID: 40005686 PMCID: PMC11857984 DOI: 10.3390/microorganisms13020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Microorganisms are instrumental in river ecosystems and participate in biogeochemical cycles. It is thought that dynamic hydrological processes in rivers influence microbial community assembly, but the seasonal succession and community assembly of river sediments on the Loess Plateau remain unclear. This study used high-throughput sequencing technology (16S and ITS) and the neutral community model to analyze seasonal succession and the assembly processes associated with microbial communities in the Dali River, a tributary of the Yellow River on the Loess Plateau. The results showed that sediment bacterial and fungal community diversity indexes in non-flood season were 1.03-3.15 times greater than those in flood season. There were obvious variations between non-flood and flood seasons in sediment microorganisms. The similarities among all, abundant, and rare microbial communities decreased as geographical distance increased. Proteobacteria (52.5-99.6%) and Ascomycota (22.0-34.2%) were the primary microbial phyla in all, abundant, and rare microbial communities. Sediment ammonia nitrogen, water temperature, and sediment organic carbon significantly affected (p < 0.05) the structure of all, abundant, and rare sediment microorganism communities. The ecological networks for the bacterial community of non-flood season and fungal community of flood season had complex topological parameters. The bacterial community in river sediments was driven by deterministic processes, while the fungal community was dominated by stochastic processes. These results expanded understanding about sediment microbial community characteristics in rivers on the Loess Plateau and provided insights into the assembly processes and the factors driving microbial communities in river networks.
Collapse
Affiliation(s)
| | - Jing Li
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi’an University of Technology, Xi’an 710048, China
| | - Guoce Xu
- Key Laboratory of National Forestry Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi’an University of Technology, Xi’an 710048, China
| | | | | | | | | |
Collapse
|
4
|
Zhang C, Liu F, Zou Y, Wang C, Zhang H, Wang B, Kan J, McMinn A, Wang H, Wang M. Vertical heterogeneity enhances network complexity and stability of co-occurrence microbes in the eastern Indian Ocean. ENVIRONMENTAL RESEARCH 2024; 263:120225. [PMID: 39448009 DOI: 10.1016/j.envres.2024.120225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Microbes are core to driving biogeochemical cycles and differ between sun-drenched surface and relatively dark deep oceans. However, their distinct contributions to the organization and association of communities are still remaining elusive. Here, their assembly and co-occurrence stability are systematically researched along the surface and vertical gradients in the eastern Indian Ocean. The distribution of surface microbes was grouped tightly with closer phylogenetic distance and broader niche breadth, and separately from those vertical samples. Clear distance-decay of community similarity was observed in surface microbes with lower richness, while more diverse microeukaryotes and prokaryotes were observed in surface and vertical environments, respectively. Co-occurrence microbes along vertical gradients had a more complex network that was dominated by prokaryotes, while exhibited a lower modularity compared to the surface network. Microbial associations along vertical gradients were more stable and resilient, with lower robustness, higher vulnerability, and a relatively consistent fragmentation. Moreover, prokaryotes contribute greatly to the network topology and stability compared to microeukaryotes in surface environments, emphasizing their distinct functions and survival strategies in maintaining community stability across spatial variations. Environmental selection and community differentiation led to the divergence in organization and potential function of microbes. This study shed light on new perspectives on how marine microbes were associated with and influenced by spatial heterogeneity and their distinct roles in community organization in the face of environmental fluctuations.
Collapse
Affiliation(s)
- Chuyu Zhang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Feilong Liu
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yawen Zou
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Can Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Honglei Zhang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Bo Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Jinjun Kan
- Microbiology Division, Stroud Water Research Center, Avondale, PA 19311, USA
| | - Andrew McMinn
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Hualong Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China.
| | - Min Wang
- College of Marine Life Science & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Key Lab of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; UMT-OUC Joint Centre for Marine Studies, Qingdao, 266003, China
| |
Collapse
|
5
|
Liu Y, Wang X, Liu X, Nan F, Wang J, Liu Q, Lv J, Feng J, Xie S. Light-driven differences in bacterial networks and organic matter decomposition: Insights from an analysis of the harmful cyanobacterium Microcystis aeruginosa PCC 7806. HARMFUL ALGAE 2024; 139:102740. [PMID: 39567075 DOI: 10.1016/j.hal.2024.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/22/2024]
Abstract
Freshwater systems are critical yet often underestimated components of global carbon cycling, functioning both as carbon sinks and sources. Cyanobacteria play a key role in this cycle by capturing atmospheric carbon dioxide through photosynthesis. The captured carbon is either released back into the atmosphere or sequestered in sediments following organismal decay. This study examines the pivotal role of cyanobacteria, specifically Microcystis aeruginosa PCC 7806, in the biogeochemical cycling of carbon in freshwater ecosystems, with a focus on how light influences the degradation of cyanobacteria-derived organic matter. Using a combination of 16S rDNA sequencing and excitation-emission matrix coupled with parallel factor (EEM-PARAFAC) analysis, we conducted a 50-day experiment to investigate the dynamics of dissolved organic matter (DOM) and lysate organic matter (LOM) derived from M. aeruginosa PCC 7806 under light and dark conditions. Our results demonstrate that light significantly impacts bacterial community composition, gene functionality, and the decomposition of organic matter. The findings emphasize the crucial role of light in facilitating microbial adaptation, stabilizing microbial networks and driving organic substrate transformation. These insights underscore the influence of light on microbial community dynamics and organic matter degradation, revealing shifts in microbial populations under varying light conditions. This suggests a strong link between photochemical processes and microbial activity, with significant ecological implications.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiding Wang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jie Wang
- College of Biological Science and Technology, Taiyuan Normal University, Jinzhong, 030619, China; Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong, 030619, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Quan Q, Liu J, Li C, Ke Z, Tan Y. Insights into prokaryotic communities and their potential functions in biogeochemical cycles in cold seep. mSphere 2024; 9:e0054924. [PMID: 39269181 PMCID: PMC11524163 DOI: 10.1128/msphere.00549-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Microorganisms are significant drivers of organic matter mineralization and are essential in marine biogeochemical cycles. However, the variations and influencing factors in prokaryotic communities from cold-seep sediments to the water column and the specific role of these microorganisms in biogeochemical cycles in the water column above cold seep remain unclear. Here, we investigated prokaryotic communities and their roles in nitrogen/sulfur cycling processes and conducted in situ dissolved organic matter (DOM) enrichment experiments to explore the effects of diverse sources of DOM on prokaryotic communities. Field investigations showed that the prokaryotic communities in the near-bottom water were more similar to those in the deep layer of the euphotic zone (44.60%) and at a depth of 400 m (50.89%) than those in the sediment (18.00%). DOM enrichment experiments revealed that adding dissolved organic nitrogen (DON) and phosphorus DOP caused a notable increase in the relative abundances of Rhodobacterales and Vibrionales, respectively. A remarkable increase was observed in the relative abundance of Alteromonadales and Pseudomonadales after the addition of dissolved organic sulfur (DOS). The metagenomic results revealed that Proteobacteria served as the keystone taxa in mediating the biogeochemical cycles of nitrogen, phosphorus, and sulfur in the Haima cold seep. This study highlights the responses of prokaryotes to DOM with different components and the microbially driven elemental cycles in cold seeps, providing a foundational reference for further studies on material energy metabolism and the coupled cycling of essential elements mediated by deep-sea microorganisms. IMPORTANCE Deep-sea cold seeps are among the most productive ecosystems, sustaining unique fauna and microbial communities through the release of methane and other hydrocarbons. Our study revealed that the influence of seepage fluid on the prokaryotic community in the water column is surprisingly limited, which challenges conventional views regarding the impact of seepage fluids. In addition, we identified that different DOM compositions play a crucial role in shaping the prokaryotic community composition, providing new insights into the factors driving microbial diversity in cold seeps. Furthermore, the study highlighted Proteobacteria as key and multifaceted drivers of biogeochemical cycles in cold seeps, emphasizing their significant contribution to complex interactions and processes. These findings offer a fresh perspective on the dynamics of cold-seep environments and their microbial communities, advancing our understanding of the biogeochemical functions in deep-sea environments.
Collapse
Affiliation(s)
- Qiumei Quan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxing Liu
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Chaolun Li
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhixin Ke
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yehui Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Mao J, Zheng Z, Ma L, Wang H, Wang X, Zhu F, Xue S, Srivastava P, Sapsford DJ. Polymetallic contamination drives indigenous microbial community assembly dominated by stochastic processes at Pb-Zn smelting sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174575. [PMID: 38977087 DOI: 10.1016/j.scitotenv.2024.174575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Indigenous microbial communities in smelting areas are crucial for maintaining fragile ecosystem functions. However, the community assembly process and their responses to polymetallic pollution are poorly understood, especially the taxa in each bin from the amplicons that contributed to the assembly process. Herein, microbial diversity, co-occurrence patterns, assembly process and the intrinsic mechanisms across contamination gradients at a typical PbZn smelting site were systematically unravelled by high-throughput sequencing. The results showed a consistent compositional profile among the indigenous communities across sampling sites, wherein genera KD4-96 from Chloroflexi and Sphingomonas from Proteobacteria emerged as the most abundant taxa. Network modularity of the high- and middle-contaminated communities at Pb and Zn smelting sites was >0.44, indicating that community populations were clustered into modules to resist high heavy metal stress. Stochastic processes dominated the community assembly, with the greatest contribution from drift (DR), which was significantly correlated with Pb, Zn, Cr and Cu contents. What's particular was that the DR-controlled bins were dominated by Proteobacteria (typical r-strategists), while the HoS-controlled bins were by Chloroflexi (typical K-strategists). Furthermore, the proportion of DR in the bins dominated by Sphingomonadaceae (phylum Proteobacteria) increased gradually with the increase of heavy metal contents. These discoveries provide essential insights for community control in restoring and mitigating soil degradation at PbZn smelting sites.
Collapse
Affiliation(s)
- Jialing Mao
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zikui Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Liyuan Ma
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Xingjie Wang
- Institute of Geological Survey, China University of Geosciences, Wuhan 430074, Hubei, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | | | - Devin J Sapsford
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
8
|
Fang W, Fan T, Wang S, Yu X, Lu A, Wang X, Zhou W, Yuan H, Zhang L. Seasonal changes driving shifts in microbial community assembly and species coexistence in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167027. [PMID: 37717779 DOI: 10.1016/j.scitotenv.2023.167027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Microbial communities play a vital role in urban river biogeochemical cycles. However, the seasonal variations in microbial community characteristics, particularly phylogenetic group-based community assembly and species coexistence, have not been extensively investigated. Here, we systematically explored the microbiome characteristics and assembly mechanisms of urban rivers in different seasons using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that the microbial community presented significant temporal heterogeneity in different seasons, and the diversity decreased from spring to winter. The phylogenetic group-based microbial community assembly was governed by dispersal limitation and drift in spring, summer, and autumn but was structured by homogeneous selection in winter. Moreover, the main functions of nitrification, denitrification, and methanol oxidation were susceptible to dispersal limitation and drift processes, whereas sulfate respiration and aromatic compound degradation were controlled by dispersal limitation and homogeneous selection. Network analyses indicated that network complexity decreased and then increased with seasonal changes, while network stability showed the opposite trend, suggesting that higher complexity and diversity reduced community stability. Temperature was determined to be the primary driver of microbial community structure and assembly processes in different seasons based on canonical correspondence analysis and linear regression analysis. In conclusion, seasonal variation drives the dynamics of microbial community assembly and species coexistence patterns in urban rivers. This study provides new insights into the generation and maintenance of microbial community diversity in urban rivers under seasonal change conditions.
Collapse
Affiliation(s)
- Wangkai Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Tingyu Fan
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China.
| | - Shun Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xiaokun Yu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Akang Lu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Xingming Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Anhui Engineering Laboratory for Comprehensive Utilization of Water and Soil Resources & Ecological Protection in Mining Area With High Groundwater Level, Huainan 232001, China
| | - Weimin Zhou
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Hongjun Yuan
- Anhui Shuiyun Environmental Protection Co., Ltd, Wuhu 241000, China
| | - Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China
| |
Collapse
|
9
|
Zhong S, Feng J, Kong J, Huang Y, Chen X, Zhang S. Differences in Bacterial Co-Occurrence Networks and Ecological Niches at the Surface Sediments and Bottom Seawater in the Haima Cold Seep. Microorganisms 2023; 11:3001. [PMID: 38138145 PMCID: PMC10745737 DOI: 10.3390/microorganisms11123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Cold seeps are highly productive chemosynthetic ecosystems in the deep-sea environment. Although microbial communities affected by methane seepage have been extensively studied in sediments and seawater, there is a lack of investigation of prokaryotic communities at the surface sediments and bottom seawater. We revealed the effect of methane seepage on co-occurrence networks and ecological niches of prokaryotic communities at the surface sediments and bottom seawater in the Haima cold seep. The results showed that methane seepage could cause the migration of Mn and Ba from the surface sediments to the overlying seawater, altering the elemental distribution at seepage sites (IS) compared with non-seepage sites (NS). Principal component analysis (PCA) showed that methane seepage led to closer distances of bacterial communities between surface sediments and bottom seawater. Co-occurrence networks indicated that methane seepage led to more complex interconnections at the surface sediments and bottom seawater. In summary, methane seepage caused bacterial communities in the surface sediments and bottom seawater to become more abundant and structurally complex. This study provides a comprehensive comparison of microbial profiles at the surface sediments and bottom seawater of cold seeps in the South China Sea (SCS), illustrating the impact of seepage on bacterial community dynamics.
Collapse
Affiliation(s)
- Song Zhong
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China;
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
| | - Jingchun Feng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China;
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Kong
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yongji Huang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiao Chen
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Si Zhang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; (J.K.); (Y.H.); (X.C.); (S.Z.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
10
|
Lyu Y, Zhang J, Chen Y, Li Q, Ke Z, Zhang S, Li J. Distinct diversity patterns and assembly mechanisms of prokaryotic microbial sub-community in the water column of deep-sea cold seeps. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119240. [PMID: 37837767 DOI: 10.1016/j.jenvman.2023.119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
Methane leakage from deep-sea cold seeps has a major impact on marine ecosystems. Microbes sequester methane in the water column of cold seeps and can be divided into abundant and rare groups. Both abundant and rare groups play an important role in cold seep ecosystems, and the environmental heterogeneity in cold seeps may enhance conversion between taxa with different abundances. Yet, the environmental stratification and assembly mechanisms of these microbial sub-communities remain unclear. We investigated the diversities and assembly mechanisms in microbial sub-communities with distinct abundance in the deep-sea cold seep water column, from 400 m to 1400 m. We found that bacterial β-diversity, as measured by Sørensen dissimilarities, exhibited a significant species turnover pattern that was influenced by several environmental factors including depth, temperature, SiO32-, and salinity. In contrast, archaeal β-diversity showed a relatively high percentage of nestedness pattern, which was driven by the levels of soluble reactive phosphate and SiO32-. During the abundance dependency test, abundant taxa of both bacteria and archaea showed a significant species turnover, while the rare taxa possessed a higher percentage of nestedness. Stochastic processes were prominent in shaping the prokaryotic community, but deterministic processes were more pronounced for the abundant taxa than rare ones. Furthermore, the metagenomics results revealed that the abundances of methane oxidation, sulfur oxidation, and nitrogen fixation-related genes and related microbial groups were significantly higher in the bottom water. Our results implied that the carbon, sulfur, and nitrogen cycles were potentially strongly coupled in the bottom water. Overall, the results obtained in this study highlight taxonomic and abundance-dependent microbial community diversity patterns and assembly mechanisms in the water column of cold seeps, which will help understand the impacts of fluid seepage from the sea floor on the microbial community in the water column and further provide guidance for the management of cold seep ecosystem under future environmental pressures.
Collapse
Affiliation(s)
- Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Zhixin Ke
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|