1
|
Hotchkiss MZ, Poulain AJ, Forrest JRK. Bumble bee gut microbial community structure differs between species and commercial suppliers, but metabolic potential remains largely consistent. Appl Environ Microbiol 2025; 91:e0203624. [PMID: 39912643 PMCID: PMC11921327 DOI: 10.1128/aem.02036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Bumble bees are key pollinators for natural and agricultural plant communities. Their health and performance are supported by a core gut microbiota composed of a few bacterial taxa. However, the taxonomic composition and community structure of bumble bee gut microbiotas can vary with bee species, environment, and origin (i.e., whether colonies come from the wild or a commercial rearing facility), and it is unclear whether metabolic capabilities therefore vary as well. Here we used metagenomic sequencing to examine gut microbiota community composition, structure, and metabolic potential across bumble bees from two different commercial Bombus impatiens suppliers, wild B. impatiens, and three other wild bumble bee species sampled from sites within the native range of all four species. We found that the community structure of gut microbiotas varied between bumble bee species, between populations from different origins within species, and between commercial suppliers. Notably, we found that Apibacter is consistently present in some wild bumble bee species-suggesting it may be a previously unrecognized core phylotype of bumble bees-and that commercial B. impatiens colonies can lack core phylotypes consistently found in wild populations. However, despite variation in community structure, the high-level metabolic potential of gut microbiotas was largely consistent across all hosts, including for metabolic capabilities related to host performance, though metabolic activity remains to be investigated.IMPORTANCEOur study is the first to compare genome-level taxonomic structure and metabolic potential of whole bumble bee gut microbiotas between commercial suppliers and between commercial and wild populations. In addition, we profiled the full gut microbiotas of three wild bumble bee species for the first time. Overall, our results provide new insight into bumble bee gut microbiota community structure and function and will help researchers evaluate how well studies conducted in one bumble bee population will translate to other populations and species. Research on taxonomic and metabolic variation in bumble bee gut microbiotas across species and origins is of increasing relevance as we continue to discover new ways that social bee gut microbiotas influence host health, and as some bumble bee species decline in range and abundance.
Collapse
|
2
|
Tang Q, Zhao Y, Li X, Zhang J, Li J, Zhao C, Pang Y, Li W, Huang Q, Xiong J, Qian K, Liu Z, Guo J. Glyphosate and spinetoram alter viral communities with different effects on antibiotic resistance genes in the bumblebee gut. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124079. [PMID: 39798326 DOI: 10.1016/j.jenvman.2025.124079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/02/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Limited research investigating the impact of pesticides on antibiotic resistance genes (ARGs) and viral community in the gut of wild animals. In this study, we employed metagenomic to investigate the effects of glyphosate and spinetoram on the gut viral communities, ARGs, and their interactions in a key wild pollinator, bumblebees. The results showed that both 2.5 mg/L glyphosate and 2.5 mg/L spinetoram did not significantly alter the α-diversity of the ARGs (p > 0.05). However, spinetoram significantly enriched core ARG subtypes, such as Bado_rpoB_RIF, Bbif_ileS_MUP, and CRP, and total abundance of ARGs (p < 0.05). In contrast, glyphosate had no significant impact on ARG subtypes or total abundance (p > 0.05). The mantel test (R = 0.455, p = 0.020) and Procrustes analysis (M2 = 0.095, p = 0.069) revealed a significant correlation between the bacterial community and ARGs. Although glyphosate and spinetoram had no significant effect on the relative abundance of mobile ARGs (p > 0.05), both significantly altered the alpha diversity (p < 0.05) and compositional structure (one-way PERMANOVA, p = 0.003) of the gut viral communities, with glyphosate increasing the abundance of lytic phages (p < 0.05). Notably, a phage and host relationship network constructed revealed no evidence of phage-mediated ARGs transduction, but five associations between lytic phages and antibiotic-resistant bacteria (ARB) were identified. Furthermore, glyphosate and spinetoram exposure significantly reduced the total relative abundance of these five lytic phages in the viral community (p < 0.001), indicating that phages primarily function in lysing ARBs. These findings suggest that glyphosate may inhibit the enrichment of ARGs by increasing the abundance of lytic phages, while spinetoram may promote the enrichment of total ARGs by affecting the bacterial community.
Collapse
Affiliation(s)
- Qihe Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yazhou Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xijie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jilian Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Chonghui Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yantao Pang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wanli Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Qi Huang
- Kunming maternity and Child care hospital, Kunming, Yunnan, 650000, China
| | - Jian Xiong
- Yunnan Zhongfeng Technology Development Co. LTD., Kunming, Yunnan, 651701, China
| | - Kai Qian
- Department of Thoracic Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| | - Zhenxing Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Changes in bumblebee queen gut microbiotas during and after overwintering diapause. INSECT MOLECULAR BIOLOGY 2025; 34:136-150. [PMID: 39175129 PMCID: PMC11705525 DOI: 10.1111/imb.12957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Bumblebees are key pollinators with gut microbiotas that support host health. After bumblebee queens undergo winter diapause, which occurs before spring colony establishment, their gut microbiotas are disturbed, but little is known about community dynamics during diapause itself. Queen gut microbiotas also help seed worker microbiotas, so it is important that they recover post-diapause to a typical community structure, a process that may be impeded by pesticide exposure. We examined how bumblebee queen gut microbiota community structure and metabolic potential shift during and after winter diapause, and whether post-diapause recovery is affected by pesticide exposure. To do so, we placed commercial Bombus impatiens queens into diapause, euthanizing them at 0, 2 and 4 months of diapause. Additionally, we allowed some queens to recover from diapause for 1 week before euthanasia, exposing half to the common herbicide glyphosate. Using whole-community, shotgun metagenomic sequencing, we found that core bee gut phylotypes dominated queen gut microbiotas before, during and after diapause, but that two phylotypes, Schmidhempelia and Snodgrassella, ceased to be detected during late diapause and recovery. Despite fluctuations in taxonomic community structure, metabolic potential remained constant through diapause and recovery. Also, glyphosate exposure did not affect post-diapause microbiota recovery. However, metagenomic assembly quality and our ability to detect microbial taxa and metabolic pathways declined alongside microbial abundance, which was substantially reduced during diapause. Our study offers new insights into how bumblebee queen gut microbiotas change taxonomically and functionally during a key life stage and provides guidance for future microbiota studies in diapausing bumblebees.
Collapse
|
4
|
Pabiskova P, Sopko B, Shcherbachenko E, Erban T. Effect of an insecticide, fungicide and plant growth regulator and their mixture on the survival of the springtail Folsomia candida and the potential reduction of toxicity by vitamins. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104588. [PMID: 39542381 DOI: 10.1016/j.etap.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
A pesticide-free model soil was pretreated with field-realistic doses/applications of the insecticide, Biscaya 240 OD; the fungicide Tilmor; the growth regulator, Atonik and their mixture. Because Folsomia candida is eyeless, unpigmented, avoids light, and prefers dark, wet and cold conditions, we grew and tested it in the dark and at 18°C. Survival of springtails added to soil at 50 % moisture was assessed after 28 days. The experiments were repeated three times in order to confirm the validity of the test and results. The mixture decreased the survival most significantly. Bayesian statistics showed that pesticide treatment had a greater effect than repeating the experiment. Further tests revealed that the negative effect of the mixture on springtail survival was effectively suppressed by the application of biotin (vitamin B7), whereas riboflavin (vitamin B2) had little effect. Vitamins can reduce the toxicity of agrochemicals in the soil through potential effects on soil biological activity.
Collapse
Affiliation(s)
- Pavla Pabiskova
- Crop Research Institute, Drnovska 507/73, Prague 6 - Ruzyne, CZ-161 06, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 433/2, Prague 2 CZ-128 01, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6 - Ruzyne, CZ-161 06, Czechia
| | - Elena Shcherbachenko
- Crop Research Institute, Drnovska 507/73, Prague 6 - Ruzyne, CZ-161 06, Czechia; Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 433/2, Prague 2 CZ-128 01, Czechia
| | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6 - Ruzyne, CZ-161 06, Czechia.
| |
Collapse
|
5
|
Han L, Chang Z, Ren C, Chen X, Smagghe G, Yuan Y, Long J. Colony performance of three native bumblebee species from South China and association with their gut microbiome. INSECT SCIENCE 2024; 31:1960-1983. [PMID: 38516802 PMCID: PMC11632300 DOI: 10.1111/1744-7917.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/09/2024] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Bumblebees play an important ecological economic role as pollinators in nature and agriculture. For reasons of biosecurity, many countries promote the cultivation of native bumblebee species for crop pollination instead of importing "alien" species. In South China, a few bumblebee species are considered useful in this way, particularly, Bombus atripes, Bombus bicoloratus and Bombus breviceps. However, whether they are suitable for artificial rearing and forming healthy colonies for pollination, remains unknown. In this project, queens from the 3 native species of Guizhou Province were collected and colonies were started under standardized conditions. The colonies were scored based on 19 parameters, including the stage of colony development, number and weight of offspring, and diet consumed. The data revealed that B. breviceps had the best performance, produced more workers and consumed the smallest diet. Next, we performed 16S rDNA sequencing of the bacterial communities found in the guts of offspring workers, and then a correlation analysis between colony performance and gut bacteria was conducted. Here, B. breviceps showed the highest diversity in gut bacterial composition, dominated by the bacteria Gilliamella, Snodgrassella, Enterobacter, and Lactobacillus Firm5. The higher the abundance of Snodgrassella, the better the performance of the colony in the foundation stage, and later Lactobacillus Firm5, Apibacter and Bifidobacterium were beneficial during the stages of rapid growth and colony decline. Although we do not understand all of the interactions yet, these correlations explain why B. breviceps demonstrated better colony performance. Our data provide valuable information for breeding local Bombus species and will contribute to developing strong colonies for crop pollination.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of Education/College of Animal Science, Guizhou UniversityGuiyangChina
| | - Zhi‐Min Chang
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Chang‐Shi Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous RegionMinistry of Education/College of Animal Science, Guizhou UniversityGuiyangChina
| | - Xiang‐Sheng Chen
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Guy Smagghe
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Yi‐Ge Yuan
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| | - Jian‐Kun Long
- Institute of Entomology/Provincial Special Key Laboratory for Developing and Utilization of Insect ResourcesGuizhou UniversityGuiyangChina
| |
Collapse
|
6
|
Battisti L, Potrich M, Abati R, Sampaio AR, Libardoni G, Costa-Maia FM, Berté EA, Dos Reis Martinez CB, Sofia SH. Toxicity of glyphosate herbicides formulated for Africanized Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117247. [PMID: 39486248 DOI: 10.1016/j.ecoenv.2024.117247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Initially, products based on glyphosate (GLY) were considered non-toxic or slightly toxic to bees. Still, recent research has shown that these products can cause mortality or trigger sublethal effects in these insects. Roundup Transorb R® (RT) is one of the GLY-based formulations sold in Brazil. It is used in several crops, and studies are required on its toxicity to honey bees. Thus, the objective of this work was to evaluate, under laboratory conditions, the lethal and sublethal effects of RT for adult workers (foragers) of Africanized A. mellifera. For this, two bioassays were carried out with Africanized honey bees. The experimental design was completely randomized, consisting of five treatments (T0 - control, T25 - 25 % GLY, T50 - 50 % GLY, T75 - 75 % GLY, and T100 GLY - 100 % recommended dose). The bioassays were carried out as follows: (1) Acute oral and topical exposure, evaluating mortality, effects on flight capacity, vertical displacement, and locomotion (in the latter only for oral contamination), consisting of five repetitions and 10 honey bees per repetition; (2) Chronic exposure via the oral route and spraying, assessing mortality, for both contamination routes and damage to the midgut epithelium thickness when contaminated via the oral route, composed of five replicates and 20 honey bees per replicate. The results showed that chronic oral exposure to RT can increase honeybee mortality and damage the thickness of their midgut epithelium. In addition, when acutely exposed orally, the honey bees had reduced walking ability. RT did not affect the other evaluated parameters. Thus, it is concluded that the RT-formulated GLY can affect the survival, midgut morphology, and behavior of A. mellifera.
Collapse
Affiliation(s)
- Lucas Battisti
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - LABCON (Laboratório de Controle Biológico), Estrada para Boa Esperança, Km 04, Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil
| | - Michele Potrich
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - LABCON (Laboratório de Controle Biológico), Estrada para Boa Esperança, Km 04, Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil.
| | - Raiza Abati
- Programa de Pós-Graduação em Ciências Biológicas (Entomologia), Universidade Federal do Paraná, Curitiba, PR 81530-001, Brazil
| | - Amanda Roberta Sampaio
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - LABCON (Laboratório de Controle Biológico), Estrada para Boa Esperança, Km 04, Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil
| | - Gabriela Libardoni
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Fabiana Martins Costa-Maia
- Universidade Tecnológica Federal do Paraná, Campus Dois Vizinhos (Federal University of Technology - Paraná) - Unepe Apicultura, Estrada para Boa Esperança, Km 04,Comunidade São Cristóvão, Dois Vizinhos, PR 86660-000, Brazil
| | - Elizabete Artus Berté
- Universidade Estadual de Londrina (UEL) - Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid | PR 445 Km 380 | Campus Universitário Cx, Postal 10.011, Londrina, PR CEP 86.057-970, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Universidade Estadual de Londrina (UEL) - Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid | PR 445 Km 380 | Campus Universitário Cx, Postal 10.011, Londrina, PR CEP 86.057-970, Brazil
| | - Silvia Helena Sofia
- Universidade Estadual de Londrina (UEL) - Programa de Pós-Graduação em Ciências Biológicas, Rodovia Celso Garcia Cid | PR 445 Km 380 | Campus Universitário Cx, Postal 10.011, Londrina, PR CEP 86.057-970, Brazil
| |
Collapse
|
7
|
Motta EVS, de Jong TK, Gage A, Edwards JA, Moran NA. Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria. Appl Environ Microbiol 2024; 90:e0051524. [PMID: 39012136 PMCID: PMC11337805 DOI: 10.1128/aem.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tyler K. de Jong
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Joseph A. Edwards
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
8
|
Robino P, Galosi L, Bellato A, Vincenzetti S, Gonella E, Ferrocino I, Serri E, Biagini L, Roncarati A, Nebbia P, Menzio C, Rossi G. Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome. Biol Res 2024; 57:50. [PMID: 39113128 PMCID: PMC11304726 DOI: 10.1186/s40659-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND In this study, a probiotic mixture (Honeybeeotic) consisting of seven bacterial strains isolated from a unique population of honeybees (Apis mellifera ligustica) was used. That honeybee population was located in the Roti Abbey locality of the Marche Region in Italy, an area isolated from human activities, and genetic contamination from other honeybee populations. The aim was to investigate the effects of this probiotic mixture on the innate immunity and intestinal microbiome of healthy common honeybees in two hives of the same apiary. Hive A received a diet of 50% glucose syrup, while hive B received the same syrup supplemented with the probiotics, both administered daily for 1 month. To determine whether the probiotic altered the immune response, phenoloxidase activity and hemolymph cellular subtype count were investigated. Additionally, metagenomic approaches were used to analyze the effects on gut microbiota composition and function, considering the critical role the gut microbiota plays in modulating host physiology. RESULTS The results revealed differences in hemocyte populations between the two hives, as hive A exhibited higher counts of oenocytoids and granulocytes. These findings indicated that the dietary supplementation with the probiotic mixture was safe and well-tolerated. Furthermore, phenoloxidase activity significantly decreased in hive B (1.75 ± 0.19 U/mg) compared to hive A (3.62 ± 0.44 U/mg, p < 0.005), suggesting an improved state of well-being in the honeybees, as they did not require activation of immune defense mechanisms. Regarding the microbiome composition, the probiotic modulated the gut microbiota in hive B compared to the control, retaining core microbiota components while causing both positive and negative variations. Notably, several genes, particularly KEGG genes involved in amino acid metabolism, carbohydrate metabolism, and branched-chain amino acid (BCAA) transport, were more abundant in the probiotic-fed group, suggesting an effective nutritional supplement for the host. CONCLUSIONS This study advocated that feeding with this probiotic mixture induces beneficial immunological effects and promoted a balanced gut microbiota with enhanced metabolic activities related to digestion. The use of highly selected probiotics was shown to contribute to the overall well-being of the honeybees, improving their immune response and gut health.
Collapse
Affiliation(s)
- Patrizia Robino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy.
| | | | - Silvia Vincenzetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Elena Gonella
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Evelina Serri
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Alessandra Roncarati
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Patrizia Nebbia
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Chiara Menzio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
9
|
Díaz-Soto JA, Mussali-Galante P, Castrejón-Godínez ML, Saldarriaga-Noreña HA, Tovar-Sánchez E, Rodríguez A. Glyphosate resistance and biodegradation by Burkholderia cenocepacia CEIB S5-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37480-37495. [PMID: 38776026 DOI: 10.1007/s11356-024-33772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024]
Abstract
Glyphosate is a broad spectrum and non-selective herbicide employed to control different weeds in agricultural and urban zones and to facilitate the harvest of various crops. Currently, glyphosate-based formulations are the most employed herbicides in agriculture worldwide. Extensive use of glyphosate has been related to environmental pollution events and adverse effects on non-target organisms, including humans. Reducing the presence of glyphosate in the environment and its potential adverse effects requires the development of remediation and treatment alternatives. Bioremediation with microorganisms has been proposed as a feasible alternative for treating glyphosate pollution. The present study reports the glyphosate resistance profile and degradation capacity of the bacterial strain Burkholderia cenocepacia CEIB S5-2, isolated from an agricultural field in Morelos-México. According to the agar plates and the liquid media inhibition assays, the bacterial strain can resist glyphosate exposure at high concentrations, 2000 mg·L-1. In the degradation assays, the bacterial strain was capable of fast degrading glyphosate (50 mg·L-1) and the primary degradation metabolite aminomethylphosphonic acid (AMPA) in just eight hours. The analysis of the genomic data of B. cenocepacia CEIB S5-2 revealed the presence of genes that encode enzymes implicated in glyphosate biodegradation through the two metabolic pathways reported, sarcosine and AMPA. This investigation provides novel information about the potential of species of the genus Burkholderia in the degradation of the herbicide glyphosate and its main degradation metabolite (AMPA). Furthermore, the analysis of genomic information allowed us to propose for the first time a metabolic route related to the degradation of glyphosate in this bacterial group. According to the findings of this study, B. cenocepacia CEIB S5-2 displays a great glyphosate biodegradation capability and has the potential to be implemented in glyphosate bioremediation approaches.
Collapse
Affiliation(s)
- José Antonio Díaz-Soto
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, CP, 62209, México
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Hugo Albeiro Saldarriaga-Noreña
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad, 1001, Col. Chamilpa, Cuernavaca, CP, 62209, Morelos, México.
| |
Collapse
|
10
|
de Souza AR, Bernardes RC, Barbosa WF, Dos Santos Araújo R, Martins GF, Lima MAP. A mixture of mesotrione and atrazine harms adults and larvae of the predatory wasp Polistes satan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171526. [PMID: 38458447 DOI: 10.1016/j.scitotenv.2024.171526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Herbicides have been intensively used for weed control, raising concerns about their potentially adverse effects on non-target organisms. Research on the effects of these common agrochemicals on beneficial insects and the ecosystem services they provide (e.g., predation and pollination) is scarce. Therefore, we tested whether a commercial formulation comprising a mixture of mesotrione and atrazine was detrimental to adult females and larvae of the Neotropical predatory social wasp Polistes satan, which is an effective natural enemy of crop pests. Wasps were individually fed syrups contaminated with different concentrations of the herbicide above and below the maximum label rate (MLR = 12 mL/L). Survival was assessed. The locomotor activity, immune response, and midgut morphology of adults as well as the immune response of the larvae were also studied. Herbicide concentrations far above the MLR (12, 40, and 100 times) caused adult mortality, whereas lower concentrations (0.5, 1, and 6 times) did not. Herbicide exposure at 0.5 to 12 times the MLR increased adult activity. Adult exposure at 0.1 or 0.5 times the MLR did not affect melanotic encapsulation of foreign bodies but led to changes in the morphology of the midgut epithelium and peritrophic matrix. In larvae, the ingestion of herbicide at 0.1 or 0.2 times the MLR (corresponding to 9.6 and 19.2 ng of herbicide per individual) did not cause mortality but decreased their melanization-encapsulation response. Increased locomotor activity in herbicide-exposed adults can affect their foraging activity. The altered midgut morphology of adults coupled with the decreased immune response in larvae caused by herbicide exposure at realistic concentrations can increase the susceptibility of wasps to infections. Therefore, herbicides are toxic to predatory wasps.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | - Renan Dos Santos Araújo
- Istituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | | | | |
Collapse
|
11
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
12
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Exposure to a fungicide for a field-realistic duration does not alter bumble bee fecal microbiota structure. Appl Environ Microbiol 2024; 90:e0173923. [PMID: 38240563 PMCID: PMC10880609 DOI: 10.1128/aem.01739-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/22/2024] Open
Abstract
Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.
Collapse
|
13
|
Wu WY, Liao LH, Lin CH, Johnson RM, Berenbaum MR. Effects of pesticide-adjuvant combinations used in almond orchards on olfactory responses to social signals in honey bees (Apis mellifera). Sci Rep 2023; 13:15577. [PMID: 37730836 PMCID: PMC10511525 DOI: 10.1038/s41598-023-41818-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Exposure to agrochemical sprays containing pesticides and tank-mix adjuvants has been implicated in post-bloom mortality, particularly of brood, in honey bee colonies brought into California almond orchards for pollination. Although adjuvants are generally considered to be biologically inert, some adjuvants have exhibited toxicity and sublethal effects, including decreasing survival rates of next-generation queens. Honey bees have a highly developed olfactory system to detect and discriminate among social signals. To investigate the impact of pesticide-adjuvant combinations on honey bee signal perception, we performed electroantennography assays to assess alterations in their olfactory responsiveness to the brood ester pheromone (BEP), the volatile larval pheromone β-ocimene, and the alarm pheromone 2-heptanone. These assays aimed to uncover potential mechanisms underlying changes in social behaviors and reduced brood survival after pesticide exposure. We found that combining the adjuvant Dyne-Amic with the fungicide Tilt (propiconazole) and the insecticide Altacor (chlorantraniliprole) synergistically enhanced olfactory responses to three concentrations of BEP and as well exerted dampening and compensatory effects on responses to 2-heptanone and β-ocimene, respectively. In contrast, exposure to adjuvant alone or the combination of fungicide and insecticide had no effect on olfactory responses to BEP at most concentrations but altered responses to β-ocimene and 2-heptanone. Exposure to Dyne-Amic, Altacor, and Tilt increased BEP signal amplitude, indicating potential changes in olfactory receptor sensitivity or sensilla permeability to odorants. Given that, in a previous study, next-generation queens raised by nurses exposed to the same treated pollen experienced reduced survival, these new findings highlight the potential disruption of social signaling in honey bees and its implications for colony reproductive success.
Collapse
Affiliation(s)
- Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| | - Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA.
| | - Chia-Hua Lin
- Department of Entomology, Rothenbuhler Honey Bee Research Laboratory, The Ohio State University, 2501 Carmack Road, Columbus, OH, 43210, USA
| | - Reed M Johnson
- Department of Entomology, Rothenbuhler Honey Bee Research Laboratory, The Ohio State University, 2501 Carmack Road, Columbus, OH, 43210, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
14
|
Motta EVS, Arnott RLW, Moran NA. Caffeine Consumption Helps Honey Bees Fight a Bacterial Pathogen. Microbiol Spectr 2023; 11:e0052023. [PMID: 37212661 PMCID: PMC10269917 DOI: 10.1128/spectrum.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023] Open
Abstract
Caffeine has long been used as a stimulant by humans. Although this secondary metabolite is produced by some plants as a mechanism of defense against herbivores, beneficial or detrimental effects of such consumption are usually associated with dose. The Western honey bee, Apis mellifera, can also be exposed to caffeine when foraging at Coffea and Citrus plants, and low doses as are found in the nectar of these plants seem to boost memory learning and ameliorate parasite infection in bees. In this study, we investigated the effects of caffeine consumption on the gut microbiota of honey bees and on susceptibility to bacterial infection. We performed in vivo experiments in which honey bees, deprived of or colonized with their native microbiota, were exposed to nectar-relevant concentrations of caffeine for a week, then challenged with the bacterial pathogen Serratia marcescens. We found that caffeine consumption did not impact the gut microbiota or survival rates of honey bees. Moreover, microbiota-colonized bees exposed to caffeine were more resistant to infection and exhibited increased survival rates compared to microbiota-colonized or microbiota-deprived bees only exposed to the pathogen. Our findings point to an additional benefit of caffeine consumption in honey bee health by protecting against bacterial infections. IMPORTANCE The consumption of caffeine is a remarkable feature of the human diet. Common drinks, such as coffee and tea, contain caffeine as a stimulant. Interestingly, honey bees also seem to like caffeine. They are usually attracted to the low concentrations of caffeine found in nectar and pollen of Coffea plants, and consumption improves learning and memory retention, as well as protects against viruses and fungal parasites. In this study, we expanded these findings by demonstrating that caffeine can improve survival rates of honey bees infected with Serratia marcescens, a bacterial pathogen known to cause sepsis in animals. However, this beneficial effect was only observed when bees were colonized with their native gut microbiota, and caffeine seemed not to directly affect the gut microbiota or survival rates of bees. Our findings suggest a potential synergism between caffeine and gut microbial communities in protection against bacterial pathogens.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Ryan L. W. Arnott
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
15
|
Straw EA, Mesnage R, Brown MJF, Antoniou MN. No impacts of glyphosate or Crithidia bombi, or their combination, on the bumblebee microbiome. Sci Rep 2023; 13:8949. [PMID: 37268667 PMCID: PMC10238469 DOI: 10.1038/s41598-023-35304-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
Pesticides are recognised as a key threat to pollinators, impacting their health in many ways. One route through which pesticides can affect pollinators like bumblebees is through the gut microbiome, with knock-on effects on their immune system and parasite resistance. We tested the impacts of a high acute oral dose of glyphosate on the gut microbiome of the buff tailed bumblebee (Bombus terrestris), and glyphosate's interaction with the gut parasite (Crithidia bombi). We used a fully crossed design measuring bee mortality, parasite intensity and the bacterial composition in the gut microbiome estimated from the relative abundance of 16S rRNA amplicons. We found no impact of either glyphosate, C. bombi, or their combination on any metric, including bacterial composition. This result differs from studies on honeybees, which have consistently found an impact of glyphosate on gut bacterial composition. This is potentially explained by the use of an acute exposure, rather than a chronic exposure, and the difference in test species. Since A. mellifera is used as a model species to represent pollinators more broadly in risk assessment, our results highlight that caution is needed in extrapolating gut microbiome results from A. mellifera to other bee species.
Collapse
Affiliation(s)
- Edward A Straw
- Department of Botany, Trinity College Dublin, Dublin, Ireland.
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK.
| | - Robin Mesnage
- Buchinger Wilhelmi Clinic, Wilhelmi-Beck-Straße 27, 88662, Überlingen, Germany.
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK.
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|