1
|
Shakoor A, Pendall E, Macdonald CA. Microbial mechanisms of interactive climate-driven changes in soil N 2O and CH 4 fluxes: A global meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124380. [PMID: 39954501 DOI: 10.1016/j.jenvman.2025.124380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/16/2024] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
Soils represent both a source of and sink for greenhouse gases (GHG). Elevated temperature (eT) affects both the physical and biological factors that drive GHG emissions from soil and thus understanding the effects of rising global temperatures on terrestrial GHG emission is needed to predict future GHG emissions, and to identify mitigation strategies. However, uncertainty remains about the interactive effects of multiple climate factors across different ecosystems, complicating our ability to develop robust climate change projections. Therefore, a global meta-analysis of 1337 pairwise observations from 150 peer-reviewed publications (1990-2023) was conducted to assess the individual effect of eT and its combined effects with eCO2 (eT + eCO2), drought (eT + drought) and increased precipitation (eT + ePPT) on soil N2O and CH4 fluxes, microbial functional genes, and soil extracellular enzyme activities across grassland, cropland, and forestland ecosystems. Across the dataset, eT significantly increased N2O emissions (21%) and CH4 uptake (36%). Nitrogen cycling was consistently stimulated by eT, with NO3- and NH4+ and the abundance of amoA-AOB gene increasing by 6%, 10%, and 18%, respectively. Soil water content (SWC) was reduced, whereas increases of 9% in soil organic carbon (SOC), 14% in microbial biomass carbon (MBC), and 10% in total plant biomass were found under eT. The stimulation of soil N2O emissions by eT was maintained for all ecosystems when combined with other global change factors (ie., eT + eCO2, eT + ePPT, and eT + drought). By contrast, effects of eT on CH4 uptake and emissions were more variable when combined with other factors; for instance, eT + eCO2 and eT + ePPT suppressed CH4 uptake in grasslands. This study highlights the urgent need to study the microbial mechanisms responsible for combined global change effects on N2O and especially CH4 fluxes.
Collapse
Affiliation(s)
- Awais Shakoor
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2571, Australia.
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2571, Australia
| | - Catriona A Macdonald
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2571, Australia
| |
Collapse
|
2
|
Liu Y, Liu Y, Zhang J, Dong J, Ren S. The impact of global change factors on the functional genes of soil nitrogen and methane cycles in grassland ecosystems: a meta-analysis. Oecologia 2024; 207:6. [PMID: 39652247 DOI: 10.1007/s00442-024-05651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Soil functional genes in grasslands are crucial for processes like nitrogen fixation, nitrification, denitrification, methane production, and oxidation, integral to nitrogen and methane cycles. However, the impact of global changes on these genes is not well understood. We reviewed 84 studies to examine the effects of nitrogen addition (N), warming (W), increased precipitation (PPT +), decreased precipitation (PPT-), and elevated CO2 (eCO2) on these functional genes. For nitrogen cycling, global changes mainly boost genes involved in nitrification but reduce those in denitrification, with nirK being the most sensitive. Most nitrogen fixation-related genes did not show a significant response. Among single factors, N and PPT + have the most significant effects. The impact of global changes on nitrogen cycling genes is largely additive, and their interaction with N is particularly influential. For methane cycling, global changes notably affect mcrA, while only PPT + significantly reduces pmoA. The magnitude and duration of global change treatments are more critical than the treatment form for nitrogen cycling genes. For methane cycling, the form and intensity of nitrogen addition, along with treatment duration, affect pmoA abundance. We also identified a competitive relationship between methane oxidation and nitrification and a complex coupling with denitrification. This study provides new insights into microbial responses in nitrogen and methane cycling under global changes, with significant implications for experimental design and management strategies in grassland ecosystems.
Collapse
Affiliation(s)
- Yuhan Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yinghui Liu
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Jiaqi Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingyi Dong
- Beijing No.11 High School, Beijing, 100050, China
| | - Siyu Ren
- Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
3
|
Zhang L, Wang P, Xie G, Wang W. Spatial Distribution Pattern of Aromia bungii Within China and Its Potential Distribution Under Climate Change and Human Activity. Ecol Evol 2024; 14:e70520. [PMID: 39544392 PMCID: PMC11560860 DOI: 10.1002/ece3.70520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 11/17/2024] Open
Abstract
Aromia bungii is a pest that interferes with the health of forests and hinders the development of the fruit tree industry, and its spread is influenced by changes in abiotic factors and human activities. Therefore, exploring their spatial distribution patterns and potential distribution areas under such conditions is crucial for maintaining forest ecosystem security. This study analyzed the spatial differentiation characteristics of the geographic distribution pattern of A. bungii in China using Moran's I and the Getis-Ord General G index. Hot spot distribution areas were identified using Getis-Ord Gi*. An optimized MaxEnt model was used to predict the potential distribution areas of A. bungii within China under four shared economic pathways by combining multivariate environmental data: (1) prediction of natural environmental variables predicted under current climate models; (2) prediction of natural environmental variables + human activities under current climate models; and (3) prediction of natural environmental variables under the future climate models (2050s and 2070s). Meanwhile, MigClim was used to simulate the unoccupied suitable area in the presence of obstacles under future climate change. The results showed that human activities, minimum temperature of the coldest month, and precipitation of the wettest month had positive effects on the distribution of A. bungii. However, in the current period, human activities drastically reduced the survival area of A. bungii, and its suitable distribution area was mainly concentrated in the eastern and central regions of China. Under the influence of climate change in the future, the habitat of A. bungii will gradually increase. Additionally, the MigClim model indicates that the area unoccupied by A. bungii has been on a continuous increasing trend. This study provides a positive reference for the prevention and control of A. bungii and the maintenance of forest health and ecosystem security, and provides important theoretical guidance for researchers, policymakers, and governments.
Collapse
Affiliation(s)
- Liang Zhang
- Institute of Entomology, College of AgricultureYangtze UniversityJingzhouChina
| | - Ping Wang
- Institute of Entomology, College of AgricultureYangtze UniversityJingzhouChina
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co‐Construction by Ministry and Province), College of AgricultureYangtze UniversityJingzhouChina
| | - Guanglin Xie
- Institute of Entomology, College of AgricultureYangtze UniversityJingzhouChina
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co‐Construction by Ministry and Province), College of AgricultureYangtze UniversityJingzhouChina
| | - Wenkai Wang
- Institute of Entomology, College of AgricultureYangtze UniversityJingzhouChina
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co‐Construction by Ministry and Province), College of AgricultureYangtze UniversityJingzhouChina
| |
Collapse
|
4
|
Zhang L, Lin W, Sardans J, Li X, Hui D, Yang Z, Wang H, Lin H, Wang Y, Guo J, Peñuelas J, Yang Y. Soil warming-induced reduction in water content enhanced methane uptake at different soil depths in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171994. [PMID: 38561130 DOI: 10.1016/j.scitotenv.2024.171994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-10 and 10-20 cm depths. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28 %, 29.51 %, and 61.05 % in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α (a type of MOB) and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model analysis indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better CH4 penetration, thereby promoting more efficient activity of MOB.
Collapse
Affiliation(s)
- Lei Zhang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Weisheng Lin
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Xiaoling Li
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Zhijie Yang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China
| | - Haizhen Wang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Hao Lin
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Yufang Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu Province, China
| | - Jianfen Guo
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China.
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Yusheng Yang
- Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China
| |
Collapse
|
5
|
Xiang X, Yao T, Man B, Lin D, Li C. Global hotspots and trends in microbial-mediated grassland carbon cycling: a bibliometric analysis. Front Microbiol 2024; 15:1377338. [PMID: 38741733 PMCID: PMC11090204 DOI: 10.3389/fmicb.2024.1377338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Grasslands are among the most widespread environments on Earth, yet we still have poor knowledge of their microbial-mediated carbon cycling in the context of human activity and climate change. We conducted a systematic bibliometric analysis of 1,660 literature focusing on microbial-mediated grassland carbon cycling in the Scopus database from 1990 to 2022. We observed a steep increase in the number of multidisciplinary and interdisciplinary studies since the 2000s, with focus areas on the top 10 subject categories, especially in Agricultural and Biological Sciences. Additionally, the USA, Australia, Germany, the United Kingdom, China, and Austria exhibited high levels of productivity. We revealed that the eight papers have been pivotal in shaping future research in this field, and the main research topics concentrate on microbial respiration, interaction relationships, microbial biomass carbon, methane oxidation, and high-throughput sequencing. We further highlight that the new research hotspots in microbial-mediated grassland carbon cycling are mainly focused on the keywords "carbon use efficiency," "enzyme activity," "microbial community," and "high throughput sequencing." Our bibliometric analysis in the past three decades has provided insights into a multidisciplinary and evolving field of microbial-mediated grassland carbon cycling, not merely summarizing the literature but also critically identifying research hotspots and trends, the intellectual base, and interconnections within the existing body of collective knowledge and signposting the path for future research directions.
Collapse
Affiliation(s)
- Xing Xiang
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science, Shangrao Normal University, Shangrao, China
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, College of Life Science, Shangrao Normal University, Shangrao, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Lanzhou, China
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, China
- Key Laboratory for Regional Plants Conservation and Ecological Restoration of Northeast Jiangxi, College of Life Science, Shangrao Normal University, Shangrao, China
| | - Dong Lin
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| | - Changning Li
- College of Grassland Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Feigenwinter I, Hörtnagl L, Buchmann N. N 2O and CH 4 fluxes from intensively managed grassland: The importance of biological and environmental drivers vs. management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166389. [PMID: 37625710 DOI: 10.1016/j.scitotenv.2023.166389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/24/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Agriculture is the main contributor to anthropogenic nitrous oxide (N2O) and methane (CH4) emissions. Therefore, mitigation options are urgently needed. In contrast to carbon dioxide, eddy covariance measurements of N2O and CH4 fluxes are still scarce, and thus little is known how environmental and biotic drivers as well as management affect the net N2O and CH4 exchange in grasslands. Thus, we investigated the most important drivers of net ecosystem N2O and CH4 fluxes in a temperate grassland, and continued a N2O mitigation experiment (increased clover proportion vs. fertilization with slurry). Random forest gap-filling models were able to capture intermittent emission peaks, performing better for half-hourly N2O than for CH4 fluxes. The unfertilized clover parcel (parcel B) continued to show lower N2O emissions (4.4 and 2.7 kg N2O-N ha-1 yr-1) compared to the fertilized parcel (parcel A; 6.9 and 5.9 kg N2O-N ha-1 yr-1) for 2019 and 2020, respectively. Tier 1 nitrogen (N) emission factors of 2.6 % and 1.9 % were observed at the fertilized parcel during the study period. Lower soil N concentrations indicated a lower N leaching risk at the clover than at the fertilized parcel. Annual CH4 emissions (including periods with sheep grazing) were similar from both parcels, and ranged from 25 to 38.5 kg CH4-C ha-1. The most important drivers of both N2O and CH4 fluxes were lagged precipitation and water filled pore space, but also management (for N2O from parcel B; CH4 from parcel A). Biotic variables such as vegetation height and leaf area index were important predictors for the N2O exchange, while grazing temporarily increased CH4 emissions. Overall, reducing N fertilization and increasing the legume proportion were effective N2O reduction measures. In particular, adjusting N fertilization to plant N demands can help to avoid high N2O emissions from grasslands.
Collapse
Affiliation(s)
- Iris Feigenwinter
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland.
| | - Lukas Hörtnagl
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|